This paper deals with the following quasilinear attraction-repulsion chemotaxis system
$ \begin{equation*} \left\{ \begin{array}{ll} u_{t} = \nabla\cdot((u+1)^{m}\nabla u-\chi u(u+1)^{\theta-1}\nabla v+\xi u(u+1)^{l-1}\nabla w)+au-bu^{\kappa}, \ &\ \ x\in \Omega, \ t>0, \\ 0 = \Delta v+\alpha u^{\gamma_{1}}-\beta v, \ &\ \ x\in \Omega, \ t>0, \\ 0 = \Delta w+\gamma u^{\gamma_{2}}-\delta w, \ &\ \ x\in \Omega, \ t>0 , \end{array} \right. \end{equation*} $
with homogeneous Neumann boundary conditions in a bounded, smooth domain $ \Omega\subset\mathbb{R}^{n} (n\geq 1), $ where $ m, \theta, l \in \mathbb{R} $ and $ \chi, \xi, a, b, \alpha, \beta, \gamma, \delta, \gamma_{1}, \gamma_{2} > 0, \kappa > 1. $ It is proved that if the nonlinear exponents of the system satisfy $ \theta+\gamma_{1} < \max\left\{l+\gamma_{2}, \kappa, m+\frac{2}{n}+1\right\}, $ then the system has globally bounded classical solutions. Furthermore, assume that $ \theta+\gamma_{1} = \max\{l+\gamma_{2}, \kappa\}\geq m+\frac{2}{n}+1, $ if one of the following conditions holds:
$ \begin{align*} \mbox{(a)}\ \mbox{when}\ \theta+\gamma_{1} = l+\gamma_{2} = \kappa, & \ \mbox{if}\ \theta\geq l\geq 1 \ \mbox{and} \ \frac{[(\kappa-1-m)n-2](2\alpha \chi-\gamma\xi)}{2(l-1)+(\kappa-1-m)n}<b \\ \ &\mbox{or if}\ \ l \geq \theta\geq 1\ \mbox{and} \ \frac{2\alpha \chi[(\kappa-1-m)n-2]}{2(\theta-1)+(\kappa-1-m)n}<b; \\ \ \mbox{(b)}\ \mbox{when}\ \theta+\gamma_{1} = l+\gamma_{2}>\kappa, & \ \mbox{if}\ \theta\geq l\geq 1 \ \mbox{and} \ 2\alpha \chi\leq \gamma\xi; \\ \ \mbox{(c)}\ \mbox{when}\ \theta+\gamma_{1} = \kappa>l+\gamma_{2}, & \ \mbox{if}\ \theta\geq 1 \ \mbox{and} \ \frac{2\alpha \chi[(\kappa-1-m)n-2]}{2(\theta-1)+(\kappa-1-m)n}<b, \end{align*} $
then the classical solutions of the system would be globally bounded. The global boundedness criteria generalize the results established by previous researchers.
Citation: Chang-Jian Wang, Yu-Tao Yang. Boundedness criteria for the quasilinear attraction-repulsion chemotaxis system with nonlinear signal production and logistic source[J]. Electronic Research Archive, 2023, 31(1): 299-318. doi: 10.3934/era.2023015
This paper deals with the following quasilinear attraction-repulsion chemotaxis system
$ \begin{equation*} \left\{ \begin{array}{ll} u_{t} = \nabla\cdot((u+1)^{m}\nabla u-\chi u(u+1)^{\theta-1}\nabla v+\xi u(u+1)^{l-1}\nabla w)+au-bu^{\kappa}, \ &\ \ x\in \Omega, \ t>0, \\ 0 = \Delta v+\alpha u^{\gamma_{1}}-\beta v, \ &\ \ x\in \Omega, \ t>0, \\ 0 = \Delta w+\gamma u^{\gamma_{2}}-\delta w, \ &\ \ x\in \Omega, \ t>0 , \end{array} \right. \end{equation*} $
with homogeneous Neumann boundary conditions in a bounded, smooth domain $ \Omega\subset\mathbb{R}^{n} (n\geq 1), $ where $ m, \theta, l \in \mathbb{R} $ and $ \chi, \xi, a, b, \alpha, \beta, \gamma, \delta, \gamma_{1}, \gamma_{2} > 0, \kappa > 1. $ It is proved that if the nonlinear exponents of the system satisfy $ \theta+\gamma_{1} < \max\left\{l+\gamma_{2}, \kappa, m+\frac{2}{n}+1\right\}, $ then the system has globally bounded classical solutions. Furthermore, assume that $ \theta+\gamma_{1} = \max\{l+\gamma_{2}, \kappa\}\geq m+\frac{2}{n}+1, $ if one of the following conditions holds:
$ \begin{align*} \mbox{(a)}\ \mbox{when}\ \theta+\gamma_{1} = l+\gamma_{2} = \kappa, & \ \mbox{if}\ \theta\geq l\geq 1 \ \mbox{and} \ \frac{[(\kappa-1-m)n-2](2\alpha \chi-\gamma\xi)}{2(l-1)+(\kappa-1-m)n}<b \\ \ &\mbox{or if}\ \ l \geq \theta\geq 1\ \mbox{and} \ \frac{2\alpha \chi[(\kappa-1-m)n-2]}{2(\theta-1)+(\kappa-1-m)n}<b; \\ \ \mbox{(b)}\ \mbox{when}\ \theta+\gamma_{1} = l+\gamma_{2}>\kappa, & \ \mbox{if}\ \theta\geq l\geq 1 \ \mbox{and} \ 2\alpha \chi\leq \gamma\xi; \\ \ \mbox{(c)}\ \mbox{when}\ \theta+\gamma_{1} = \kappa>l+\gamma_{2}, & \ \mbox{if}\ \theta\geq 1 \ \mbox{and} \ \frac{2\alpha \chi[(\kappa-1-m)n-2]}{2(\theta-1)+(\kappa-1-m)n}<b, \end{align*} $
then the classical solutions of the system would be globally bounded. The global boundedness criteria generalize the results established by previous researchers.
[1] | E. Keller, L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5 |
[2] | D. E. Woodward, R. Tyson, M. R. Myerscough, J. D. Murray, E. O. Budrene, H. C. Berg, Spatiotemporal patterns generated by Salmonella typhimurium, Biophys. J., 68 (1995), 2181–2189. https://doi.org/10.1016/S0006-3495(95)80400-5 doi: 10.1016/S0006-3495(95)80400-5 |
[3] | R. A. Gatenby, E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Res., 56 (1996), 5745–5753. |
[4] | G. E. Mahlbacher, K. C. Reihmer, H. B. Frieboes, Mathematical modeling of tumor-immune cell interactions, J. Theoret. Biol., 469 (2019), 47-60. https://doi.org/10.1016/j.jtbi.2019.03.002 doi: 10.1016/j.jtbi.2019.03.002 |
[5] | K. J. Painter, P. K. Maini, H. G. Othmer, Complex spatial patterns in a hybrid chemotaxis reaction-diffusion model, J. Math. Biol., 41 (2000), 285–314. |
[6] | T. Ciéslak, M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057–1076. inkhttps://doi.org/10.1088/0951-7715/21/5/009 doi: 10.1088/0951-7715/21/5/009 |
[7] | D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences Ⅰ, Jahresber. DMV, 105 (2003), 103–165. |
[8] | R. Kowalczyk, Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl., 305 (2005), 566-588. https://doi.org/10.1016/j.jmaa.2004.12.009 doi: 10.1016/j.jmaa.2004.12.009 |
[9] | K. Osaki, A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441–469. |
[10] | H. Gajewski, K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77–114. https://doi.org/10.1002/mana.19981950106 doi: 10.1002/mana.19981950106 |
[11] | T. Nagai, T. Senba, K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411–433. |
[12] | D. Horstmann, G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159–177. https://doi:10.1017/S0956792501004363 doi: 10.1017/S0956792501004363 |
[13] | T. Senba, T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349–367. https://dx.doi.org/10.4310/MAA.2001.v8.n2.a9 doi: 10.4310/MAA.2001.v8.n2.a9 |
[14] | M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equation, 248 (2010), 2889–2905. https://doi.org/10.1016/j.jde.2010.02.008 doi: 10.1016/j.jde.2010.02.008 |
[15] | M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767. https://doi.org/10.1016/j.matpur.2013.01.020 doi: 10.1016/j.matpur.2013.01.020 |
[16] | W. Jäger, S. Luckhaus, On explosions of solutions to a system of partial differential equations modeling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819–824. https://doi.org/10.1090/S0002-9947-1992-1046835-6 doi: 10.1090/S0002-9947-1992-1046835-6 |
[17] | T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581–601. |
[18] | T. Senba, T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology, Adv. Differ. Equation, 6 (2001), 21–50. |
[19] | T. Senba, T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis, J. Funct. Anal., 191 (2002), 17-51. https://doi.org/10.1006/jfan.2001.3802 doi: 10.1006/jfan.2001.3802 |
[20] | M. Winkler, How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two-and higher-dimensional parabolic-elliptic cases, Math. Ann., 373 (2019), 1237–1282. https://doi.org/10.1007/s00208-018-1722-8 doi: 10.1007/s00208-018-1722-8 |
[21] | D. Liu, Y. Tao, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chin. Univ. Ser. B, 31 (2016), 379–388. https://doi.org/10.1007/s11766-016-3386-z doi: 10.1007/s11766-016-3386-z |
[22] | M. Winkler, A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity, 31 (2018), 2031–2056. https://doi.org/10.1088/1361-6544/aaaa0e doi: 10.1088/1361-6544/aaaa0e |
[23] | J. I. Tello, M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differ. Equation, 32 (2007), 849–877. https://doi.org/10.1080/03605300701319003 doi: 10.1080/03605300701319003 |
[24] | Z. Wang, T. Xiang, A class of chemotaxis systems with growth source and nonlinear secretion, preprient, arXiv : 1510.07204. |
[25] | M. Winkler, Chemotaxis with logistic source: very weak global solutions and boundedness properties, J. Math. Anal. Appl., 348 (2008), 708–729. https://doi.org/10.1016/j.jmaa.2008.07.071 doi: 10.1016/j.jmaa.2008.07.071 |
[26] | G. Viglialoro, Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439 (2016), 197–212. https://doi.org/10.1016/j.jmaa.2016.02.069 doi: 10.1016/j.jmaa.2016.02.069 |
[27] | M. Winkler, The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in $L^{1}$, Adv. Nonlinear Anal., 9 (2020), 526–566. https://doi.org/10.1515/anona-2020-0013 doi: 10.1515/anona-2020-0013 |
[28] | M. Winkler, Attractiveness of constant states in logistic-type Keller-Segel systems involving subquadratic growth restrictions, Adv. Nonlinear Stud., 20 (2020), 795–817. https://doi.org/10.1515/ans-2020-2107 doi: 10.1515/ans-2020-2107 |
[29] | G. Viglialoro, T. E. Woolley, Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3023–3045. https://doi:10.3934/dcdsb.2017199 doi: 10.3934/dcdsb.2017199 |
[30] | M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261–272. https://doi.org/10.1016/j.jmaa.2011.05.057 doi: 10.1016/j.jmaa.2011.05.057 |
[31] | M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809–855. https://doi.org/10.1007/s00332-014-9205-x doi: 10.1007/s00332-014-9205-x |
[32] | J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1499–1527. https://doi.org/10.3934/dcdsb.2015.20.1499 doi: 10.3934/dcdsb.2015.20.1499 |
[33] | K. Kang, A. Stevens, Blowup and global solutions in a chemotaxis-growth system, Nonlinear Anal. Real World Appl., 135 (2016), 57–72. https://doi.org/10.1016/j.na.2016.01.017 doi: 10.1016/j.na.2016.01.017 |
[34] | M. Winkler, Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Z. Angew. Math. Phys., 69 (2018), 40. https://doi.org/10.1007/s00033-018-0935-8 doi: 10.1007/s00033-018-0935-8 |
[35] | H. Yi, C. Mu, G. Xu, P. Dai, A blow-up result for the chemotaxis system with nonlinear signal production and logistic source, Discrete Contin. Dyn. Syst. B, 22 (2017). https://doi.org/10.3934/dcdsb.2020194 doi: 10.3934/dcdsb.2020194 |
[36] | M. Winkler, Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discr. Cont. Dyn. Syst. Ser. B, 22 (2017), 2777–2793. https://doi.org/10.3934/dcdsb.2017135 doi: 10.3934/dcdsb.2017135 |
[37] | Z. Szymanska, C. Morales-Rodrigo, M. Lachowicz, M. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Models Methods Appl. Sci., 19 (2009), 257–281. https://doi.org/10.1142/S0218202509003425 doi: 10.1142/S0218202509003425 |
[38] | M. Winkler, Does a "volume-filling effect" always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12–24. https://doi.org/10.1002/mma.1146 doi: 10.1002/mma.1146 |
[39] | T. Cieślak, C. Stinner, Finite-time blowup and global-in-time unbounded solutions toa parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differ. Equation, 252 (2012), 5832–5851. https://doi.org/10.1016/j.jde.2012.01.045 doi: 10.1016/j.jde.2012.01.045 |
[40] | T. Cieślak, C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, Acta Appl. Math., 129 (2014), 135–146. https://doi.org/10.1007/s10440-013-9832-5 doi: 10.1007/s10440-013-9832-5 |
[41] | T. Cieślak, C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differ. Equation, 258 (2015), 2080–2113. https://doi.org/10.1016/j.jde.2014.12.004 doi: 10.1016/j.jde.2014.12.004 |
[42] | S. Ishida, K. Seki, T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differ. Equation, 256 (2014), 2993–3010. https://doi.org/10.1016/j.jde.2014.01.028 doi: 10.1016/j.jde.2014.01.028 |
[43] | K. Lin, C. L. Mu, H. Zhong, A blow-up result for a quasilinear chemotaxis system with logistic source in higher dimensions, J. Math. Anal. Appl., 464 (2018), 435–455. https://doi.org/10.1016/j.jmaa.2018.04.015 doi: 10.1016/j.jmaa.2018.04.015 |
[44] | X. Li, Z. Xiang, Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source, Discrete Contin. Dyn. Syst., 35 (2015), 3503–3531. https://doi:10.3934/dcds.2015.35.3503 doi: 10.3934/dcds.2015.35.3503 |
[45] | Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equation, 252 (2012), 692–715. https://doi.org/10.1016/j.jde.2011.08.019 doi: 10.1016/j.jde.2011.08.019 |
[46] | L. Wang, C. Mu, P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differ. Equation, 256 (2014), 1847–1872. https://doi.org/10.1016/j.jde.2013.12.007 doi: 10.1016/j.jde.2013.12.007 |
[47] | L. Wang, Y. Li, C. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 34 (2014), 789–802. https://doi:10.3934/dcds.2014.34.789 doi: 10.3934/dcds.2014.34.789 |
[48] | Q. Zhang, Y. Li, Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source, Z. Angew. Math. Phys., 66 (2015), 2473–2484. https://doi.org/10.1007/s00033-015-0532-z doi: 10.1007/s00033-015-0532-z |
[49] | G. Ren, B. Liu, Global boundedness and asymptotic behavior in a quasilinear attraction-repulsion chemotaxis model with nonlinear signal production and logistic-type source, Math. Models Methods Appl. Sci., 30 (2020), 2619–2689. https://doi.org/10.1142/S0218202520500517 doi: 10.1142/S0218202520500517 |
[50] | M. Luca, A. Chavez-Ross, L. Edelstein-Keshet, A. Mogliner, Chemotactic signalling, microglia, and Alzheimer's disease senile plague: Is there a connection?, Bull. Math. Biol., 65 (2003), 673–730. |
[51] | Q. Zhang, Y. Li, An attraction-repulsion chemotaxis system with logistic source, Z. Angew. Math. Mech., 96 (2016), 570–584. https://doi.org/10.1002/zamm.201400311 doi: 10.1002/zamm.201400311 |
[52] | L. Hong, M. Tian, S. Zheng, An attraction-repulsion chemotaxis system with nonlinear productions, J. Math. Anal. Appl., 484 (2020), 123703. https://doi.org/10.1016/j.jmaa.2019.123703 doi: 10.1016/j.jmaa.2019.123703 |
[53] | X. Zhou, Z. Li, J. Zhao, Asymptotic behavior in an attraction-repulsion chemotaxis system with nonlinear productions, J. Math. Anal. Appl., 507 (2022), 125763. https://doi.org/10.1016/j.jmaa.2021.125763 doi: 10.1016/j.jmaa.2021.125763 |
[54] | Y. Li, Y. Li, Blow-up of nonradial solutions to attraction-repulsion chemotaxis system in two dimensions, Nonlinear Anal. RWA, 30 (2016), 170–183. https://doi.org/10.1016/j.nonrwa.2015.12.003 doi: 10.1016/j.nonrwa.2015.12.003 |
[55] | H. Yu, Q. Guo, S. Zheng, Finite time blow-up of nonradial solutions in an attraction-repulsion chemotaxis system, Nonlinear Anal. RWA, 34 (2017), 335–342. https://doi.org/10.1016/j.nonrwa.2016.09.007 doi: 10.1016/j.nonrwa.2016.09.007 |
[56] | M. Liu, Y. Li, Finite-time blowup in attraction-repulsion systems with nonlinear signal production, Nonlinear Anal.: Real World Appl., 61 (2021), 103305. https://doi.org/10.1016/j.nonrwa.2021.103305 doi: 10.1016/j.nonrwa.2021.103305 |
[57] | C. Wang, L. Zhao, X. Zhu, A blow-up result for attraction-repulsion system with nonlinear signal production and generalized logistic source, J. Math. Anal. Appl., 518 (2023), 126679. https://doi.org/10.1016/j.jmaa.2022.126679 doi: 10.1016/j.jmaa.2022.126679 |
[58] | Y. Chiyo, T. Yokota, Boundedness and finite-time blow-up in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system, Z. Angew. Math. Phys., 73 (2022), 61. https://doi.org/10.1007/s00033-022-01695-y doi: 10.1007/s00033-022-01695-y |
[59] | Y. Wang, A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259–292. https://doi.org/10.1016/j.jmaa.2016.03.061 doi: 10.1016/j.jmaa.2016.03.061 |
[60] | M. Winkler, K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044–1064. https://doi.org/10.1016/j.na.2009.07.045 doi: 10.1016/j.na.2009.07.045 |
[61] | N. D. Alikakos, $L^{p}$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differ. Equation, 4 (1979), 827–868. http://doi.org/10.1080/03605307908820113 doi: 10.1080/03605307908820113 |