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Abstract: This paper deals with the following quasilinear attraction-repulsion chemotaxis system

u, = V- ((u+1)"Vu — yu(u+ )7V + Eu(u + 1D7'Vw) +au — bu*, xe€Q, t >0,
0=Av+au” — v, xeQ, t>0,

0 = Aw + yu” — ow, xeQ, t>0,

with homogeneous Neumann boundary conditions in a bounded, smooth domain Q c R"(n > 1),
where m, 0,/ € R and y,&,a,b,a,B,y,0,v1,y2 > 0,k > 1. It is proved that if the nonlinear exponents of
the system satisfy 6 + y; < max {l + o, K, m + % + 1} , then the system has globally bounded classical
solutions. Furthermore, assume that 8 + y; = max{l/ + y,,«k} > m + % + 1, if one of the following
conditions holds:

[(c= 1 = m)n = 2]Qay = y¢) _
20-1D)+(k—-1-mn
) 2ax[(k — 1 —m)n — 2]
fl>0>1and b;
o = A ) Y k=1 —mm
(bywhen @+ vy, =1+vy, >«,if 0 >1>1and 2ay < y&;
2ayx[(k — 1 —m)n — 2]

hen 6 +y, =k > [+7,,if6 > 1 and b
(€) when 0 +y1 = k> L+ vy, if 0 > 1 and 2= e —— = < b,

b

(@)when@+vy, =1l+y,=«,if60>1>1 and

then the classical solutions of the system would be globally bounded. The global boundedness criteria
generalize the results established by previous researchers.

Keywords: boundedness criteria; attraction-repulsion system; nonlinear signal production; logistic
source
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1. Introduction

Chemotaxis is one of the basic physiological reactions of organisms, which refers to the directional
movement of biological cells or organisms along the concentration gradient of stimulants under the
stimulation of some chemicals in the environment. The chemotaxis phenomenon has been described
in the pioneering work proposed by Keller and Segel [1], which is given by

u; = Au—xV-(uVv), xeQ, t>0,
™, =Av—v+u, xeQ, t>0, (1.1)
u(x,0) = up(x), v(x,0) = vo(x) x€Q,

where Q ¢ R"(n > 1) is a bounded domain with smooth boundary, y > 0, 7 € {0, 1}, u(x, t) and v(x, 1)
denote the density of cells and the concentration of the chemical signal, respectively. It is well known
that chemotaxis research has many important applications in biology and medicine, such as in bacterial
colonies [2], tumor invasion processes [3,4] and embryonic development [5], so that it has been one of
the hottest research focuses in applied mathematics nowadays. In the past few decades, a large number
of valuable theoretical results have been obtained by scholars [6—8]. Among them, one of the main
issues related to (1.1) is to study whether there is a globally in-time bounded solution or when blow-up
occurs. For 7 = 1, it has been shown that the system (1.1) has globally bounded classical solution
whenn =1[9]orn =2 and fQ updx < ‘;—” [10, 11], whereas the system (1.1) has finite time blow-up
solution in the case of n = 2 and fQ uodx > ‘;—” [12,13] or in the case of n > 3 [14, 15]. When the
chemical substance diffuses much faster than the diffusion of cells [16], model (1.1) can be reduced
to the simplified parabolic-elliptic model, namely, the second equation in system (1.1) is replaced by
O=Av+u—vwithu= I_Slll fQ up(x)dx. Compared with the fully parabolic version of system (1.1), the
similar results on global boundedness and blow-up of solutions can be found in [17-20], which still
depend on the dimensions of space.

As described in system (1.1), the term of signal production is a linear function of the cell density
in the classical Keller-Segel model. Nevertheless, the mechanism of signal production might be very
complex, particularly, it could be in a nonlinear form. When the second equation in system (1.1) is
replaced by v, = Av — v + g(u) with g(u) € C'([0,+0)) and 0 < g(u) < Ku® for some constants
K,a > 0, Liu and Tao [21] proved that if 0 < a < %, the system (1.1) possesses a globally bounded
classical solution. When the second equation in system (1.1) degenerates into an elliptic equation, u
is replaced by g(u) and v is replaced by u(f) := Ilﬁl fQ g(u(-, 1)), glu) = u* with k > 0, Winkler [22]
derived a blow-up critical exponent « = %, which asserted that the radially symmetric solution blows
up in finite time if the parameter « satisfies « > % Conversely, when « < % they proved that there
existed suitable initial data u, such that the system has globally bounded classical solutions. In many
biological processes, the proliferation and death of cells should be considered, from which one can

derived the related chemotaxis-growth model

u=Au—xV-wVv) + f(u), xeQ, >0,
™V, = Av —v + g(u), xeQ, t>0, (1.2)
u(x,0) = up(x), v(x,0) = vo(x) x€Q.
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Here it is worth mentioning that logistic source term f(u) should somewhat decrease the possibility
of blow-up. When 7 = 0, Tello and Winkler [23] considered the system (1.2) with f(u) < u(a — bu)
and g(u) = u for a,b > 0 and they proved that the system has globally bounded classical solution
whenever %)( < b. For the more general case f(u) < u(a — bu®) and g(u) = u* with k, s > 0, Wang
and Xiang [24] showed that the system (1.2) has globally bounded classical solutions if either s > k
or s = k with 22y < b. For f(u) = au — bu* and g(u) = u with s > 1,a > 0,b > 0, Winkler [25]
proved global existence of very weak solutions of (1.2) under the assumption that s > 2 — i, moreover,
boundedness properties of the constructed solutions were studied. When 7 = 1, g(u) = u and f(u) is
controlled by —cy(u+u*) and a—bu®, respectively, for all u > 0 with some s > 1,b,¢y > 0 and a > 0, by
an appropriate definition of very weak solution, Viglialoro [26] constructed the such global solutions
under the assumptions that n > 2 and s > 1 — %, and in [27], a relaxation of these hypotheses could
be achieved so as to ensure solvability even for any s > % when n > 2. Furthermore, when f(u) =
au—>bu’ and g(u) = u, Winkler [28] proved that if s > 2 — %, under an appropriate smallness assumption
on y any such solution at least asymptotically exhibits relaxation by approaching the nontrivial spatially
homogeneous steady state ((%)ﬁ, (%)ﬁ) in the large time limit. Continuing the research initiated
in [26], Viglialoro and Woolley [29] studied the boundedness and regularity of these solutions after
some time.

However, not all logistic source terms can guarantee the global existence of solutions. When g(u) =
u and v is replaced by m(t) := ﬁ fQ u(-, t) in the second equation of system (1.2), f satisfies the set of
hypotheses: (i) f € C°([0, )) N C'((1, )); (ii) f(u) > —uu* for all u > 0 and some u > 0 and « > 1;
(ii1) f(u) < A(u + 1) for all u > 0 with some A > 0. Winkler [30] proved thatif n > 5 and k < % + 2’11_2,
then there exist initial data such that the smooth local-in-time solution of (1.2) blows up in finite time.
When f(u) = Au — pu® with 4 > 0, u > 0 and Au in the first equation of system (1.2) is replaced
by €Au with € — 0, Winkler [31] proved that if 4 < 1 then some solutions blow up in finite time.
Later, Lankiet [32] extended this result to higher-dimensional cases. Kang [33] improved the results
in [31,32] to R"(n > 1) and f(u) = Au — uu® with 8 > 0. When f(u) = Au — pu* with 1 € R, u > 0 and
k > 1, Winkler [34] obtained a condition on initial data to ensure the occurrence of finite-time blow-up
to system (1.2) for

7 ifn e (3,4),
K<

1 .
l+m, ifn > 5.

When f(u) = Au—uu® for @ > 1 and the second equation in system (1.2) is replaced by 0 = Av—m(7) +
g(u) with g(u) > ku* for k,x > 0 and m(t) = ﬁ fg g(u(-,1)), Yietal. [35] proved that if k and « satisfy
k+1>a(l+ %), then the corresponding solutions to system blow up in finite time. Besides, for the
fully parabolic case, Winkler [36] revealed an unboundeness phenomenon, possibly transient in time,
despite logistic growth restrictions.

From a physical point of view, the equation modeling the migration of cells should rather be re-
garded as nonlinear diffusion [37], especially the slow diffusion with finite propagation property, which
reads

{ u, =V -(Dwu) =V -wSw)Vv) + f(u), xe€Q, t>0, 13)

v, =Av—v+u, xeQ, t>0,

where the positive functions D(u) and S («) are used to describe the strength of diffusion and chemoat-
tractant, respectively. When 7 = 1,n > 2, Q c R" is a ball and f(u) = 0, Winkler [38] proved that if

Electronic Research Archive Volume 31, Issue 1, 299-318



302

?gg grows faster than ur as u — oo and some further technical conditions are fulfilled, then there exist

solutions that blow up in either finite or infinite time, which implies that the result is optimal. Inter
alia, there still exist many results on global boundedness and blow-up in (1.3), please see [39—42]. For
7 =0, when f(u) = au—bu* forallu > 0O witha > 0,b > 0 and « > 1, and the second equation in (1.3)
is replaced by 0 = Av — u(t) + u with u(r) = ﬁ fQ u(x, t)dx. In [43], for D(u) > Dou™ and S (u) = y for
all u > 0 with some m € R, y, Dy > 0, it was shown that the system (1.3) possesses a unique globally
bounded classical solution for any initial data uy € Co(ﬁ) andn > 2 if k > max{m + 3 — n%, 2}; and

for D(u) = Dou™ and S (u) = y with % — 1 < m <0, the system (1.3) blows up in finite time in a ball

if kK € (1, %) and n > 5. For more boundedness results and blow-up of solutions to system (1.3)
with or without logistic source, we refer the interested readers to [44—48].

As stated in [49], studies have shown that the reaction of one species to multiple stimuli is given by
the motion of microglia in Alzheimer disease tethered to a glass side in a conflict situation involving
B-amyloid (an attractant) and tumor necrosis factor « (a repellent). To model such biological processes,

the following attraction-repulsion chemotaxis system was proposed in [50]

u=V-Vu—xyVv+&Vw) + f(u), xe€Q, t>0,
0=Av-pBv+gi(u), xeQ, t>0, (1.4)
0=Aw —ow + g(u), xeQ, t>0,

where u, v and w represent the density of cell, chemical concentration of attractant and chemical con-
centration of repellent, respectively, the parameters y, & > 0. To better understand system (1.4), let us
mention some previous contributions in this direction. We first introduce some global boundedness of
classical solutions related to system (1.4). For the case of f(u) < u(a — bu), when g(u) = au and
g (u) = yuwith a, b, a,y > 0, Zhang et al. [51] obtained that for any nonnegative uy(x) € C 0(5), if one
of the following conditions holds

n —

2
(y — y€) < bwithn > 3, (1.5)
n

@ axy -y <b; (b)n<2; ()

then the system (1.4) has a globally bounded classical solution. For the case of f(u) < u(a—bu*), when

g1(w) = au* and go(u) = yu' with a,b, @,y,k, 1, s > 0, Hong et al. [52] showed that if k < max({l, s, 2},

then the system (1.4) admits a globally bounded solution. Furthermore, when k& = max{/, s} > %,

the system (1.4) also admits a globally bounded solution if one of the following assumptions holds:
@k=1=s5%2ax-y) <b;®k=10>sax-yf <0, k=s>1L%2qy < b. More

n

recently, on the basis of [52], in high dimension (n > 2), Zhou et al. [53] have further studied the

boundedness of globally classical solution for the critical cases: (a) k = [ = s, "’;;z(a)( - ¥€) = b;

®k=s> l,%a)( =b;(0)k=1>s,ay —y¢ = O,nk(nk —2) < 4,0 < k =1 < 1. Apart from
that, there are some interesting findings about blow-up behavior of solutions for system (1.4). When
f(w) =0, g1(u) = au and g,(u) = yu with @,y > 0, Li et al. [54] proved that the nonradial solutions
to system (1.4) would blow-up in finite time if either ay — &y > 0, 8 # 6 and fg updx > a)fffy or

ayo — &yp > 0,6 < B and fguodx > axfj’ﬁﬁ in the case n = 2. Yu et al. [55] improved the above

finite-time blowup result under the condition of ay — &y > 0 and fQ updx >

8
axy—=&y”
f(u) = 0, the second and third equations are replaced by 0 = Av — m () + g1(u), m(t) = ﬁ fg g1(u)

More recently, when
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and 0 = Aw —my (1) + go(u), my(t) = ﬁ fg g1(u), respectively, for g;(u) > kju”" and g,(u) < kou”* for all
u > 0 with ki, kp, y1,v2 > 0, Liu et al. [56] proved that if y; > max{y,, %}, the radial solutions to system
(1.4) would blow-up in finite time, and if y; < %, the classical solution would be globally bounded.
Later on, Wang et al. [57] extended such blow-up results to a quasilinear system with logistic source.
Similar to classical Keller-Segel system, when considering the effect of nonlinear diffusion and logistic
source, Chiyo et al. [58] studied the following parabolic-elliptic-elliptic system

u, =V ((u+ D" 'V — yu@ + DP2Vy + Eu(u + 1)472Vw) + f(u), x€Q, t>0,
0=Av—av+pu, xeQ, t>0,
0=Aw—7yw + du, xeQ, t>0,

with m, p, g € R, where they classify boundedness and blow-up into the cases p < g and p > g without
any condition for the sign of ya — &y and the case p = g with ya — &y > 0 or ya — €y < 0.

In contrast to the systems mentioned above, we find that there are very few results on the existence
of globally bounded classical solutions to the attraction-repulsion system with nonlinear diffusion and
logistic source as well as nonlinear signal production at the same time. On the basis of work [52], the
purpose of the present paper is to continue to detect the effect among nonlinear diffusion and logistic
source as well as nonlinear signal production on the boundedness of the solution to the following
attraction-repulsion system

u, =V ((u+1)"Vu— yu(u+ 1)7'Vv + Eu(u + D7'Vw) + au — bu*,  xe€Q, t>0,

0=Av+au" - By, xeQ, t>0,

0 =Aw +yu” — ow, xeQ, t>0, (1.6)
%:%:%:O’ x€oQ, t>0,

Lt(x, O) = MO(-X)’ XEQ,

where Q C R"(n > 1) is a bounded domain with smooth boundary d€, v denotes the outward unit
normal vector on dQ. Here, u,v and w represent the density of cell, chemical concentration of at-
tractant and chemical concentration of repellent, respectively, and the parameters satisfy m, 0, € R,
x.&a,b,a,B,v,0,v1,y2 > 0,k > 1.

We state our main results to system (1.6) as follows.

Theorem 1.1. Let Q C R"(n > 1) be a bounded domain with smooth boundary and the parameters
satisfy m, 0,1 € R and y,&,a,b,a,B,v,06,y1,y2 > 0,k > 1. For any nonnegative initial data uy(x) €
Q) if

2
0+vy < max{l+72,/<,m+ -+ 1},
n
then the system (1.6) admits a globally bounded classical solution.

Remark 1.2. Theorem 1.1 implies that the behavior of solutions to system (1.6) is determined by
the interactions among the six mechanisms, namely, self-diffusion V - (u + 1)"Vu), cross-diffusion
-V - Oeu(u + 1)7'Vv), cross-diffusion V - (Eu(u + 1)-'Vw), attraction, repulsion and logistic source. If
attraction and cross-diffusion =V - (eu(u + 1)°-'Vv) are dominated by the other four mechanisms with
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6 + y; < max {l + Vo, K, m + % + 1} , then the solutions would be globally bounded. From the previous
work by Winkler [22], we know that if the nonlinear exponent of attractant production is controlled
by % , the classical solution would be globally bounded. Thus the boundedness criteria established in
Theorem 1.1 are consistent with [22] for the case w = 0,m = 0,0 = 1,a = b,k = 1. Moreover, if the
parameters m = 0,0 = [ = 1, Theorem 1.1 covers the conclusions of Theorem 1(i) in [52].

Theorem 1.3. Let Q C R"(n > 1) be a bounded domain with smooth boundary and the parameters
satiﬂ"y m,0,l € R and y,&,a,b,a,B,v,06,v1,v2 > 0,k > 1. For any nonnegative initial data uy(x) €
C%Q), assume that 6 +y; = max{l +y,,k} > m+ % + 1. If one of the following three conditions holds:

[(x =1 —m)n - 2]Qax -y
20-1)+(k—=1-m)n
. 2ayx[(k — 1 —m)n — 2]
[>60>1and b;
orif 1202 1land o e o < O
(b) when 0 +y, =1+ vy, >k, if0 > 1> 1and 2ay < y¢;
2ax[(k — 1 —m)n — 2]

20-1)+(k—1-m)n

(a) when 0 + y, =1l+vy, =k, if0>1>1and <b

(c) when @+ vy, =k>1+vy,,if0>1and < b,

then the system (1.6) admits a globally bounded classical solution.

Remark 1.4. Under the above three balance situations, namely, 0+7y, = l+7y, =k, 0+7y, =1l+7y, >«
or 0+ vy, = k > [ +y,, the boundedness of solutions would be determined by the sizes of the coefficients
involved. Whenm = 0,0 = [ =1, Theorem 1.3 is consistent with Theorem 1(ii) in [52]. Here, it should
be noted that we only prove the case of min{l, 0} > 1, and we will continue to study the other cases in
future.

Remark 1.5. Theorem 1.1 and Theorem 1.3 also leave an interesting problem, i.e. it is still unknown
whether the boundedness criteria obtained in Theorem 1.1 and Theorem 1.3 are optimal for system
(1.6). We will also further study the finite-time blow-up criteria of the solution for system (1.6) in the
future research.

We carry out this paper as follows. In Section 2, we state a result on the existence local solutions
and give some useful lemmas. In Section 3, we construct the L”—estimates for component # and then
use the Moser iteration to prove Theorem 1.1 and Theorem 1.3.

2. Preliminaries

In this section, we first state the existence of local solutions to system (1.6). The proof relies on
Schauder fixed theorem. We omit it for brevity and refer the readers to [59, 60] for more details.

Lemma 2.1. Let Q C R"(n > 1) be a bounded domain with smooth boundary. For any nonnegative
initial data uy € C°(Q), there exists Tmax € (0, oo]_such that the system Ll.6) admits a unique nonneg-
ative classical solution (u,v,w) belonging to C°(Q X [0, Tax)) N C*H(Q X (0, Tay)) in Q X (0, Tiax)
with

w,v,w >0 in QX (0, Tu)- 2.1
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Furthermore,

if Tmax < 00, then limsup||u(:, t)||~q) = oo. (2.2)
I/Tmax

The following two lemmas are useful in obtaining the estimate of fQ u?. The proof of Lemma 2.2
can be found in [58, Lemma 2.3], we omit it here.

Lemma 2.2. Let o > 1. Then for all € > 0,
x+1)"<d+ex"+C., x>0, (2.3)

where C. := (1 + e)((1 + e)71 — 1)17.

Lemma 2.3. Let (u,v,w) be a solution of system (1.6), then for any y,,n > 0 and T > 1, there exists
co > 0 depending only on y,,n and T such that

fwT < nf u" +cq forallt e (0, Tmay)- 2.4)
Q Q

Proof. Integrating the first equation of system (1.6) over Q, we find

= |, fe= L)
— | udx = au—bu*<a | u- u| forall e (0, Tma), (2.5)
dr Jo Q Q Q1 \Ja

where we have used Holder’s inequality ( fg w)< < |Q! fg u*. Thus, using a standard ODI comparison

theory, we can obtain
f uSmaX{ f uo,(‘—l)“ |Q|} for all £ € (0, Tyay). 2.6)
Q Q b

Moreover, we can derive directly by integrating the third equation over €,

Wl = gnu’zny(m. 2.7)

Multiplying the third equation of system (1.6) with w™~! and integrating over Q, we can get

At -1 . -1 T
U )f|Vw2|2+6fwT:yfu”wT_l <! 5fwf+ Y fuw (2.8)
72 Q Q Q T Q 707! Jo

by Young’s inequality and thus

Wl < glluwllmg) for all 7 € (0, T'max) (2.9)

and

4 _1 T T
Sk f VwiP < 2 f W for all 1 € (0, Trnas). (2.10)
T O o™~ Q
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By Ehrling’s lemma, for any 7 > 0 and 7 > 1, there exists C; = C(17,7) > 0 such that
T 1,2
191520y < 7012, + CllGIT,  For all ¢ € W), @.11)

Let ¢ = w2, from (2.7), (2.9) and (2.10), there exists C; = C (i, 7) > 0 such that

fw’ < nfunf+cl||uw||;(g). (2.12)
Q Q

For vy, € (0, 1], using Holder’s inequality, from (2.6) one may obtain

||u72 ||21 (Q)

<G (2.13)

with C, = C(1, 7,7¥2) > 0. For vy, € (1, 00), using interpolation inequality and Young’s inequality, from
(2.6) we have

[l

1-9
L@ S |72 ol 7" <7 f W+ Cs, (2.14)
L72(Q) Q

where ¢ = Zj—j € (0,1) and C3 = C5(n,7,72) > 0. Thus (2.4) is the direct result of combining
(2.12)-(2.14). 0
3. Global existence and boundedness

In this section, we construct the L”—estimate for component « under different conditions to prove
Theorem 1.1 and Theorem 1.3.

Lemma 3.1. Let p > max{1,1 - 0,2 — 6 —y,,3 — [}. Then there exists a constant C > 0 such that the
solution of system (1.6) satisfies

f( + 1)y <-— ( )ZIIV(“ 1)’%’"|2+ ZZ):_(I;_II)fupwm—l
- Q

. oo [ vy - 22D [
p+l-1 p+l-1

af(u+ l)p—bfu”““] +C forallt € (0, Tmay)- (3.1)
Q Q

Proof. Multiplying the first equation of system (1.6) by (u + 1)”~! and integrating by parts over Q, we
derive

i f(“ H= f(” + PV (e + )"V —Xf(u + 1PV - (uu + 1))
pdt Q [e) a

+§f(u+1)p_1V-(u(u+1)l‘le)+af
Q

Q

u(u + 1)P7! —bfu"(u+ 1Pt
Q
—(p—1)f(u+l)p+m_2|Vu|2+)((p—1)fu(u+1)p+9_3Vu-Vv
Q Q
—f(p—1)fu(u+1)P+l—3Vu-Vw+af
Q

Q

u(u + 1P —bfu"(u+ 1!
Q
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=h+L+L+1, (32)

for all £ € (0, Tax)-
As to the first term [, it can be rewritten as

L=-(p-1) f(u + 1Py = _Ap-1) f|V(u + DR (3.3)
Q (p+m)? Jq

For the second term I, by integrating by parts we can obtain from the second equation of system (1.6)

L=x(p-1) f u(u + 1)P3Vy - Vy
Q

=x(p — 1)[V[fu s(s + 1)”+9_3ds] - Vv
Q 0

=x(p — 1)f [f s(s + 1)”+9_3ds] (=Av)
alJo

=x(p - 1)f [fu s(s + 1)”+9_3ds] (au” — Bv)
alJo

<ay(p-1) f [ f s(s + 1)P+"3ds] u, (3.4)
Q 0
For p > 1 — 6, we can infer that
[ f s(s+ P73 dslu < f (s + 1)p+9‘2ds] u
0 0
< ;(u + Pty
p+6—-1

< — (u+ Dot 3.5
- 1(u ) (3.5)

Using Lemma 2.2 with e = 1 and p > 2 — 6 — y;, we can obtain from (3.4) and (3.5)

I, < 2(:L//\/(p - 1) up+9+yl_

Sy ¥ e (3.6)
- Q

with some ¢; > 0.
Similarly, for the third term /5, we deduce

13:—g(p—1)fu(u+1)P+’—3Vu-Vw
Q

= —f(p— l)fV[fu S(S + 1)p+l—3ds] -Vw
Q 0
=(p-1) f [ f s(s+1)1’”‘3ds] Aw
olJo

=&(p-1) f [ f " s(s + 1)”+l‘3ds] (w — yu™). (3.7)
Q 0
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Noticing that s”*'=2 < s(s + 1)P*'=3 < (s + 1)?*"=2 for p > 3 — I, we derive that

1 ‘ 1
mu””_l < f s(s + P ds < FEY G Dot (3.8)
_ . _
Substituting (3.8) into (3.7), we have
5(p—1 ~ 1
3 < fp—ipl 1) f(u + 1P — Yp—fipl 1) uPthret (3.9)
1, _

For the term I, we can obtain

Iy :afu(u+ 1Pt —bfuk(u+ 1!
Q Q
Saf(u+1)P—bfup+K_l. (3.10)
Q Q

Thus the inequality (3.1) is the direct result of combining (3.2), (3.3), (3.6), (3.9) and (3.10).
O

Lemma 3.2. Let (u,v,w) be a solution of system (1.6). If 8 + y; < max{l + y,,k,m + % + 1}, then for
any p > max{l,1 —-6,2 — 0 —vy,,3 — [} there exists a constant C > 0 such that

f(u +1)? < C forallt € (0, Tyax). (3.11)
Q
Proof. Using Lemma 2.2 once more with € = 1 and p > 2 — [, one may infer that
! +[-3 26 +1-1
) s(s + PP ds|w < u’ T w + cow (3.12)
0 p + l - 1

with some ¢, > 0. Moreover, by Young’s inequality and Lemma 2.3 we have

25 — 1 p+l+yy—1
pé:fl; 1) l/lp+l_1W ngup+l+yz 1+03(8)f ). 72
- Q

<e f uPtml g ea(e) (3.13)
Q

¢y f w=2Y f W < sf W (e (3.14)
Q 6 Q Q
with any € > 0.

Thus, from (3.12)—(3.14), we can get

o(p—1 -1 1
é;g—pl 1) f(u + 1)p+l—1w _ );fipl 1) ul?+1+72—1 < (28 ’};é:_('_pl 1)) f up+l+yz—1 + 2C3(8). (315)
- Q - Q - Q

and

Substitute (3.15) into (3.1) to get

ld 4 ) -1
——f(u+ P < - Hp— ) fIV(u+ D=+ 2oxtp 1) )fuf’“’”“l
P dt o) ( + )2 P +6 - 1 QO
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-1
- (28— xp =1 ))fup””z_l + af(u + 1) - bf uP* ! 4oy (3.16)
p+l-1]Jg Q Q
for all 1 € (0, Tpax)-

Let 8 + v, < k. In view of Young’s inequality, we get

2 -1 b
2=V " peon-1 o b f Pl 4 s forall £ € (0, Togy). (3.17)
P +6 - 1 le) 2
Choosing € = % > 01n (3.16), one can derive

1
—if(u+ 1)? Saf(u+ l)p—éfu’”"_] + cs. (3.18)
pdt Jg Q 2 Jo

This proves (3.11).

Let 8 + vy, <[+ y,. We know from Young’s inequality

ZaX(p - 1) up+0+'y1—1 < /yg(p - 1)

Ey— S St T D) uPt=l g e forall 7 € (0, To)- (3.19)
_ R _

Substituting (3.19) into (3.16) and taking & := ngfl__ll)) > (0, we can obtain

1d
—Ef(u+1)” Saf(u+ 1)P—bfuP+K-1 + cg. (3.20)
Q Q Q

Hence we complete the proof of (3.11) under this case.
Let0+vy, < m+ % + 1. Without loss of generality, suppose 8 + y; > max{/ + 7y, «}. Taking

= % > (0 in (3.16), we can obtain by Young’s inequality that
1d 1
——f(u+1)p_ fw( F DR+ “X(p )f( T+ ypeeen-l
pdt Jo (r+ )2 -
+af(u+1)p+c4
Q
4(p-1 2 -1
<D f Y+ )R (22D f(u + 1Pl L e, (3.21)
(p + m)? p+60-1 Q
Using the Gagliardo-Nirenberg inequality and (2.6), we have
| + 2(p+0+y-1)
[ vt e ¥
Q L™ Q)
mtp 2(p+0+y1=1) 2(/7+9+y]—1)(1_€*)
paara p+m p+m
<enllV+ D=, 5" N+ s ”L,ﬁm(g)
mtp 2(p+6+y1-1)
+enllw+ D= ™
L7 (Q)
mtp 2(p+6+y1 =D p
<c12||V(u + 1)T||L2(§”2;m + ¢y forall ¢ € (0, Tiax)s (3.22)
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ptm p+m
with 6" = Z" 10 € (0, 1), where 2222100 < 2 due to 6+ y) < m + 2 + 1. This yields
2 n 2
2ax(p—1) f o 4p-1 iy
—_— + +1 +1”+9+711<—V +1)72 2 + 3.23
( P+ 0—1 Co Q(u ) = (p + m)2|| (I/l ) ||L2(Q) €13 ( )

with ¢;3 > 0 by Young’s inequality. Now combining (3.21) and (3.23), we have

1
1d f(u+ 1y < —f(u+ 1Pl 4 e for all £ € (0, Tgy). (3.24)
pdt Jo Q

Thus there exist ¢4, c15 > 0 such that

! 1
_if(”+1)p+cl4f(u+1)ps —if(u+1)”+f(u+1)“9+71—‘
pdt Jo Q pdt Jo o

<5 forallt € (0, Tiax)- (3.25)
This completes the proof of (3.11). O

Now we are in a position to prove Theorem 1.1.
The proof of Theorem 1.1 Letm, 0,/ € R, y,¢&,a,b,a,B,%,0,¥1,y2 > 0,k > 1 and p > max{l,1 -
0,2 — 60— vy,3 — Lny;,ny,}. If 0+ y; < max {l+y2,/<,m+ % + 1}, there exists C > 0 such that

fQ u? < C for all t € (0, Tiax) from Lemma 3.2. By the elliptic L”—estimate applied to the second and
third equations in system (1.6), we have

G Dl e WG Dlyarins ) < € for all £ € (0, Trna), (3.26)
and hence
V(- Dllergys IWCE DIl < € forall £ € (0, Tinax) (3.27)
by the Sobolev imbedding theorem. Using the technique of Moser iteration [45,61], we have
(-, Dll o) < C (3.28)

for all ¢ € (0, Thax). Thus it follows from Lemma 2.1 that T, = oo. This concludes the Theorem
1.1. O

Lemma 3.3. Let (u, v, w) be a solution of system (1.6). Assume that 0 +y; = max{l+y,,k} > m+ ,% +1.
If one of the following three conditions holds:

[(x = 1 = mn = 2]Qaxy — ¥é)
20-1)+(k=1-m)n
2ax[(k — 1 —m)n — 2] < b
20-D+(k—-1-mn
(b) when 0 +y, =1+ vy, >k, if0 >1>1and 2ay < v¢,
2ax[(k — 1 —m)n — 2]

<b

(a) when 0 +y, =1l+7y, =k, if0>1>1and

orif l>62>1and

hen 6+ vy, =k >1+vy,,if0 > 1 and < b,
(c)when 6+, = k> 1+yn if0 = Land 5 o
then for any p > 1 there exists a constant C > 0 such that
f(u + 1)? < C forallt e (0, Tax)- (3.29)
Q
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Proof. For 6 + vy, = [+ y,, we can get from (3.16) that

ld o CYEp-1)  2ax(p-1) P
dtfg(wl)ps p+ )Zflv( FDEP +( p+i-1 " p+0-1 )fQ”p ’

+ af(u + 1)’ - bf uP* 1 4 ¢, forallt € (0, Tay)- (3.30)
Q Q

(a) Let 8 + y; = [ + v, = «. Then the inequality (3.30) can be rewritten as

d Hp - vy Yep-1) 2ax(p-1) e
_EL(LH_DPS Ty )sz( +1) |© + ( p+l—l+p+9—1 b)fg;up

+ af(u + 1)? + ¢4 forall t € (0, Tpay)- (3.31)
Q

If 6 > [ > 1, then we have

1d 4p-1) _Yép-=1  2ax(p-1) k-
EEL<M+1)FS_(p+m)2f|V( +1) | +( i1 + 01 —b)fgu”

+af(u+1)p+c4,
Q
_4p-1) m O -2a0(p-1) f e
= <p+m)2f'v( FDEF pri-1 b] o
+a f(u + 1) + ¢4 forall t € (0, Tpay)- (3.32)
Q

When 2ay < ¢, by taking ¢ : [% + b] > (), we can get

(¥ —2ax)(p—-1)
f( Fhs - [ p+i-1 +h

fup+/<—l + af(u + 1)p + ¢4 forall 1 € (0, Tpay).
Q Q
(3.33)

This yields (3.29).
When 2ay > ¥, take p € (1, 222Dy 6 ensure & = }L[b— M] > 0 in (3.30). We

> Qaxy—yé-b)+ p+l-1
deduce
1 1 2ay — -1
4 f(u+ < - |p- CX Y0 D fup”_l +af(u+ Y +e (334

for all £ € (0, Tmax). This concludes (3.29) with p € (1, 222220y g it suffices to deal with the case

L= 1-mn-22ax-76) ey
. k—1-m)n—=2]2ay—
of 2ay — y& — b > 0. Since 2(1_1)+(K_1_n’f)ny < b, we can take pg €

( (k—1-m)n 2ay—yé+b(I-1) )
> Qax—yé-b)

Electronic Research Archive Volume 31, Issue 1, 299-318



312
In view of Gagliardo-Nirenberg inequality , we have
1 mp 2(p+k—1)
f(u+ DPF =+ D g,
Q L ptm (Q)
2(p+k-1) 2(p+k—1)
mp 6o mip o (1=60)
ScislVu+ 1) g, I+ D=5y
L (Q)
2(p+k—1)
m p+m
+osll+ D2 5,
L7 (Q)
mp 2,
<ci6llV(u + 1)2 ||L2(Q) + c16 forall 7 € (0, Tiax), (3.35)
mtp _ __m+p

. 2p, 2(p+k—1)
with ) = 1

——1 € (0,1) when p > po. Due to pg > (c=L-mp
2pg 'n 2 _
inequality, for any € > 0 we have

2(p+x—1) )
, we have =t < 2. By Young’s

]Yu+DMWlstW+1f?ﬁmn+qﬂa
Q
with some c7(€) > 0. Choosing & = %’ in (3.31), we can take € small enough to obtain

1d
—— f(u + 1) < —cg f(u + Pty af(u + 1)’ + ¢19 forall t € (0, Tiax)-
pdt Jg Q Q

This yields (3.29). If / > 6 > 1, taking 2¢ = 2=, we have

(3.36)

(3.37)

1d 4(p—l)f pm s Yé(p—-1) 2ax(p-1) f -1
- W<-—— = \Y 1 e — - prx
pdtfgz(u+ )< (p + m)? Q| w+ = +(28 p+l-1 * p+6—1 b Qu
+af(u+1)p+c4,
Q

_ _4p-D pmo | 2ax(p—1) el
- —(p+m)2fQ|V(u+1) | +[—p+9_1 b]fgu”

+ af(u + 1)? + ¢4 forall t € (0, Tpay)-
Q

(3.38)
. 2ax+b(-1) 2ax(p-1)
Taking p € (1, (2)2;——17%) to ensure b — X2 > 0, we can get
1d
P (u+1)Y <a | (u+ 1) +c4 forallt e (0, Tmax). (3.39)
p Q Q

This proves (3.29) with p € (1, 24201

s “Gar-b) ). So it suffices to deal with the case of 2ay — b > 0. Since
2ax[(k=1-m)n-2] (k=1—-m)n 2ayx+b(6-1)
oDt < b, we can take p; € (~—5—,

oD ). Using the Gagliardo-Nirenberg inequality
once more, we have
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f(ll 1) “ ||(lt 1) ||2(p K+ l—)
2(pt+k=1)
Q

[ p+m (Q)
w2y, mp 22901 g,)
<caollVGu+ )7l i+ 1))
© L
Q)
2(p+k-1)

ptm
2pg

m+p
+ cooll(u+ 1) ||

Lp+m (Q)
2(p+x=1)
<eullVGu+ DF 2" + ey forall 1 € (0, Tina), (3.40)
mt+p __ mtp
with 6, = % € (0,1) when p > p;. Due to p; > “=2"" we have %01 < 2. By Young’s
2 n 2
inequality, fo; 1any € > 0 we have
s v < eV ) g+ ente) (3.41)
Q
with some ¢,,(€;) > 0. Choosing 2¢ = %:P, in (3.38), we can take €; small enough to obtain
d
—— f(u + 1) < —cpy f(u + Pty af(u + 1)? + ¢o5 forall t € (0, Thax), (3.42)
dr Jo Q Q

with ¢4, 25 > 0. This yields (3.29).
(b) Let@ +7y; =1+ vy, > «. Since 8 > [ > 1, we can obtain from (3.30)

1d _Yép-1) 2ax(p-1) 0y 1
;EL(M+1)P§ o5 )2f|V( + B +(2 e )fQ”p v

+af(u+1)p—bfu1’+K_1+c4
Q

4p -1
< Hp- )f|V(u+1)2|2+2

_ ('yé: - 20’)()(p - 1)] f up+9+y1—1
Q

(p +m)? p+Il-1
+ af(u + 1)’ - bf w4 ¢y forall t € (0, Tiay). (3.43)
Q Q
For 2ay < vé¢, by letting € = %, we know
d ¢ —2a0)(p -1 f bry1-1 f
—— + 1) < - Pl 4 +1)7 + 3.44
dtfg(u ) pri-1) L a Q(u )ty (3.44)

for all t € (0, Tphax). This implies (3.29).

(c)Let@+ 7y, = k> 1+, Taking € = 27(5(51 11)) in (3.16), we have

d 2“)((17 ) +x—1
;d—tfg(uu)l’s f|(+1) ( +9_1)fu”

+a f(u + 1)7 + ¢4 forallt € (0, Thx). (3.45)
Q

The process of proof is same as the case (a) with 0 +vy, =« + [+ 7y, and [ > 6 > 1. Thus we omit them
here. .
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The proof of Theorem 1.3 With the aid of Lemma 3.3 and Moser iteration in [45,61], we can
obtain the boundedness of |[u(-, )|| =) for all ¢+ € (0, T,). And we can also get the boundedness
of [[v(-, Dl @ and [w(, Dlle g by (3.27) for all t € (0, Tax). Hence we deduce from Lemma from
Lemma 2.1 that 7',,,x = co. This completes the proof of Theorem 1.3. m|
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