Research article

Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior

  • Received: 23 February 2022 Revised: 24 April 2022 Accepted: 26 April 2022 Published: 11 May 2022
  • We consider a delayed diffusive predator-prey system with nonlocal competition in prey and schooling behavior in predator. We mainly study the local stability and Hopf bifurcation at the positive equilibrium by using time delay as the parameter. We also analyze the property of Hopf bifurcation by center manifold theorem and normal form method. Through the numerical simulation, we obtain that time delay can affect the stability of the positive equilibrium and induce spatial inhomogeneous periodic oscillations of prey and predator's population densities. In addition, we observe that the increase of space area will not be conducive to the stability of the positive equilibrium $ (u_*, v_*) $, and may induce the inhomogeneous periodic oscillations of prey and predator's population densities under some values of the parameters.

    Citation: Xiaowen Zhang, Wufei Huang, Jiaxin Ma, Ruizhi Yang. Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior[J]. Electronic Research Archive, 2022, 30(7): 2510-2523. doi: 10.3934/era.2022128

    Related Papers:

  • We consider a delayed diffusive predator-prey system with nonlocal competition in prey and schooling behavior in predator. We mainly study the local stability and Hopf bifurcation at the positive equilibrium by using time delay as the parameter. We also analyze the property of Hopf bifurcation by center manifold theorem and normal form method. Through the numerical simulation, we obtain that time delay can affect the stability of the positive equilibrium and induce spatial inhomogeneous periodic oscillations of prey and predator's population densities. In addition, we observe that the increase of space area will not be conducive to the stability of the positive equilibrium $ (u_*, v_*) $, and may induce the inhomogeneous periodic oscillations of prey and predator's population densities under some values of the parameters.



    加载中


    [1] X. Zhang, Q. An, L. Wang, Spatiotemporal dynamics of a delayed diffusive ratio-dependent predator-prey model with fear effect, Nonlinear Dyn., 105 (2021), 3775–3790. https://doi.org/10.1007/s11071-021-06780-x doi: 10.1007/s11071-021-06780-x
    [2] R. Yang, C. Zhang, Dynamics in a diffusive predator–prey system with a constant prey refuge and delay, Nonlinear Anal. Real World Appl., 31 (2016), 1–22. https://doi.org/10.1016/j.nonrwa.2016.01.005 doi: 10.1016/j.nonrwa.2016.01.005
    [3] S. Djilali, S. Bentout, Pattern formations of a delayed diffusive predator-prey model with predator harvesting and prey social behavior, Math. Methods Appl. Sci., 30 (2021), 9128–9142. https://doi.org/10.1002/mma.7340 doi: 10.1002/mma.7340
    [4] R. Yang, X. Zhao, Y. An, Dynamical analysis of a delayed diffusive predator-prey model with additional food provided and anti-predator behavior, Mathematics, 10 (2022), 469. https://doi.org/10.3390/math10030469 doi: 10.3390/math10030469
    [5] R. Yang, D. Jin, W. Wang, A diffusive predator-prey model with generalist predator and time delay, AIMS Mathematics, 7 (2022), 4574–4591. https://doi.org/10.3934/math.2022255 doi: 10.3934/math.2022255
    [6] D. I. Rubenstein, On predation, competition, and the advantages of group living, Social Behav., 3 (1978), 469. https://doi.org/10.1007/978-1-4684-2901-5$\_$9 doi: 10.1007/978-1-4684-2901-5$\_$9
    [7] P. A. Schmidt, D. W. Macdonald, Wolf pack size and food acquisition, Am. Nat., 150 (1997), 513–517. https://doi.org/10.1086/286079 doi: 10.1086/286079
    [8] D. Scheel, C. Packer, Group hunting behaviour of lions: A search for cooperation, Anim. Behav., 41 (1991), 697–709. https://doi.org/10.1016/S0003-3472(05)80907-8 doi: 10.1016/S0003-3472(05)80907-8
    [9] C. Cosner, D. L. Deangelis, J. S. Ault, D. B. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol., 56 (1999), 65–75. https://doi.org/10.1006/tpbi.1999.1414 doi: 10.1006/tpbi.1999.1414
    [10] J. Li, G. Sun, Z. Guo, Bifurcation analysis of an extended Klausmeier-Gray-Scott model with infiltration delay, Stud. Appl. Math., 2022. https://doi.org/10.1111/sapm.12482
    [11] Q. Xue, C. Liu, L. Li, G. Sun, Z. Wang, Interactions of diffusion and nonlocal delay give rise to vegetation patterns in semi-arid environments, Appl. Math. Comput., 399 (2021), 126038. https://doi.org/10.1016/j.amc.2021.126038 doi: 10.1016/j.amc.2021.126038
    [12] X. P. Yan, C. H. Zhang, Turing instability and formation of temporal patterns in a diffusive bimolecular model with saturation law, Nonlinear Anal. Real World Appl., 43 (2018), 54–77. https://doi.org/10.1016/j.nonrwa.2018.02.004 doi: 10.1016/j.nonrwa.2018.02.004
    [13] F. Yi, J. Liu, J. Wei, Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model, Nonlinear Anal. Real World Appl., 11 (2010), 3770–3781. https://doi.org/10.1016/j.nonrwa.2010.02.007 doi: 10.1016/j.nonrwa.2010.02.007
    [14] R. Yang, D. Jin, Dynamics in a predator-prey model with memory effect in predator and fear effect in prey, Electron. Res. Arch., 30 (2022), 1322–1339. https://doi.org/10.3934/era.2022069 doi: 10.3934/era.2022069
    [15] R. Yang, L. Wang, D. Jin, Hopf bifurcation analysis of a diffusive nutrient-phytoplankton model with time delay, Axioms, 11 (2022), 56. https://doi.org/10.3390/axioms11020056 doi: 10.3390/axioms11020056
    [16] R. Yang, Q. Song, Y. An, Spatiotemporal dynamics in a predator–prey mModel with functional response increasing in both predator and prey densities, Mathematics, 10 (2022), 17. https://doi.org/10.3390/math10010017 doi: 10.3390/math10010017
    [17] J. Yang, S. Yuan, T. Zhang, Complex dynamics of a predator-prey system with herd and schooling behavior: With or without delay and diffusion, Nonlinear Dyn., 104 (2021), 1709–1735. https://doi.org/10.1007/s11071-021-06343-0 doi: 10.1007/s11071-021-06343-0
    [18] N. F. Britton, Aggregation and the competitive exclusion principle, J. Theor. Biol., 136 (1989), 57–66. https://doi.org/10.1016/S0022-5193(89)80189-4 doi: 10.1016/S0022-5193(89)80189-4
    [19] J. Furter, M. Grinfeld, Local vs. non-local interactions in population dynamics, J. Math. Biol., 27 (1989), 65–80. https://doi.org/10.1007/BF00276081 doi: 10.1007/BF00276081
    [20] S. Wu, Y. Song, Spatiotemporal dynamics of a diffusive predator-prey model with nonlocal effect and delay, Commun. Nonlinear Sci. Numer. Simul., 89 (2020), 105310. https://doi.org/10.1016/j.cnsns.2020.105310 doi: 10.1016/j.cnsns.2020.105310
    [21] J. Gao, S. Guo, Patterns in a modified Leslie-Gower model with Beddington-DeAngelis functional response and nonlocal prey competition, Int. J. Bifurcation Chaos, 30 (2020), 2050074. https://doi.org/10.1142/S0218127420500741 doi: 10.1142/S0218127420500741
    [22] Y. Liu, D. Duan, B. Niu, Spatiotemporal dynamics in a diffusive predator-prey model with group defense and nonlocal competition, Appl. Math. Lett., 103 (2020), 106175. https://doi.org/10.1016/j.aml.2019.106175 doi: 10.1016/j.aml.2019.106175
    [23] S. Djilali, Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition, Math. Methods Appl. Sci., 43 (2020), 2233–2250. https://doi.org/10.1002/mma.6036 doi: 10.1002/mma.6036
    [24] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer New York, NY, 1996. https://doi.org/10.1007/978-1-4612-4050-1
    [25] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981. http://dx.doi.org/10.1090/conm/445
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1596) PDF downloads(98) Cited by(1)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog