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Abstract: We consider a delayed diffusive predator-prey system with nonlocal competition in prey and
schooling behavior in predator. We mainly study the local stability and Hopf bifurcation at the positive
equilibrium by using time delay as the parameter. We also analyze the property of Hopf bifurcation
by center manifold theorem and normal form method. Through the numerical simulation, we obtain
that time delay can affect the stability of the positive equilibrium and induce spatial inhomogeneous
periodic oscillations of prey and predator’s population densities. In addition, we observe that the
increase of space area will not be conducive to the stability of the positive equilibrium (u∗, v∗), and
may induce the inhomogeneous periodic oscillations of prey and predator’s population densities under
some values of the parameters.
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1. Introduction

Predator-prey relationship exists widely in nature, and many scholars explore this relationship
between populations by studying predator-prey model [1–5]. In the real world, the schooling behavior
occurs for various reasons among both predator and prey population [6]. By schooling behavior, prey
can effectively avoid the capture of predators, and predators can increase the success rate of predation.
For example, the wolves [7], African wild dogs and lions [8] are famous examples who have the
schooling behavior among predator individuals. To reflect this effect in predator, Cosner et al. [9]
proposed the following functional response

η(u, v) =
Ce0uv

1 + thCe0uv
,

where u, v, C, e0, and th represent density of prey, density of predator, capture rate, encounter rate, and
handling time, respectively. The functional response η(u, v) monotonically increases with respect to
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the predator. This reflects that the increase in the number of predators will be conducive to the success
rate of predation.

The reaction diffusion equation is widely used in many fields, such as vegetation-water models [10,
11], bimolecular models [12,13], population models [14–16]. By introducing time and space variables,
the reaction-diffusion model can better describe the development law of things. Incorporating the group
cooperation in predator and the group defense behavior in prey, J. Yang [17] proposed the following
reaction diffusion predator-prey model

∂u(x, t)
∂t

= D1∆u + ru
(
1 −

u
K

)
−

Ce0
√

uv2

1 + th
√

uv
,

∂v(x, t)
∂t

= D2∆v + v
(
εCe0

√
u(x, t − τ)v(x, t − τ)

1 + th
√

u(x, t − τ)v(x, t − τ)
− d

)
, x ∈ Ω, t > 0

∂u(x, t)
∂ν̄

=
∂v(x, t)
∂ν̄

= 0, x ∈ ∂Ω, t > 0

u(x, θ) = u0(x, θ) ≥ 0, v(x, θ) = v0(x, θ) ≥ 0, x ∈ Ω̄, θ ∈ [−τ, 0],

(1.1)

where u(x, t) and v(x, t) represent prey and predator’s densities, respectively. r, K, ε, τ and d represent
growth rate, environmental capacity, conversion rate, gestation delay and death rate, respectively. The
terms

√
u and

√
u(t − τ) represent the herd behavior (or group defense behavior) in prey. They studied

saddle-node, Hopf and Bogdanov-Takens types of bifurcations, and discussed the effect of diffusion
and time delay on this model through numerical simulations [17].

In the model (1.1), the competition in prey is reflected by the term − u
K , which supposes this type

competition is spatially local. In fact, the resources is limited in nature, and competition within the
population always exist. This competition is usually nonlocal. In [18,19], the authors suggested that the
consumption of resources in spatial location is related not only to the local population density, but also
to the number of nearby population density. Some scholars have studied the predator-prey models with
nonlocal competition [20–22]. S. Chen et al studied the existence and uniqueness of positive steady
states and Hopf bifurcation in a diffusive predator-prey model with nonlocal effect [20]. J. Gao and S.
Guo discussed the steady-state bifurcation and Hopf bifurcation in a diffusive predator-prey model with
nonlocal effect and Beddington-DeAngelis Functional Response [21]. S. Djilali studied the pattern
formation in a diffusive predator-prey model with herd behavior and nonlocal prey competition, and
showed rich dynamic phenomena through numerical simulations [23]. These works suggest that the
predator-prey models with nonlocal competition will exhibit different dynamic phenomena compared
with the model without nonlocal competition, for example the stably spatially inhomogeneous periodic
solutions are more likely to appear.

Based on the model (1.1), we assume there is spatially nonlocal competition in prey. Then, we
proposed the following model.
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

∂u(x, t)
∂t

= d1∆u + u
(
1 −

∫
Ω

G(x, y)u(y, t)dy
)
−

α
√

uv2

1 +
√

uv
,

∂v(x, t)
∂t

= d2∆v + v
(
β
√

u(t − τ)v(t − τ)
1 +
√

u(t − τ)v(t − τ)
− γ

)
, x ∈ Ω, t > 0,

∂u(x, t)
∂ν̄

=
∂v(x, t)
∂ν̄

= 0, x ∈ ∂Ω, t > 0,

u(x, θ) = u0(x, θ) ≥ 0, v(x, θ) = v0(x, θ) ≥ 0, x ∈ Ω̄, θ ∈ [−τ, 0].

(1.2)

The model (1.2) has been changed by t̃ = rt̃, ũ = ũ
K , ṽ = thCe0

√
Kv, α = 1

rt2hCe0K3/2 , β = ε
rth

and

γ = d
r , then drop the tilde.

∫
Ω

G(x, y)u(y, t)dy represents the nonlocal competition effect in prey. We
also choose the Newman boundary condition, which is based on the hypothesis that the region is closed
and no prey and predator can leave or enter the boundary.

With the scope of our knowledge, there is no work to study the dynamics of the predator-prey
model (1.2) with the nonlocal competition in prey, schooling behavior in predator, reaction diffusion
and gestation delay, although it seems more realistic. The aim of this paper is to study the effect of time
delay and nonlocal competition on the model (1.2). Whether there exist stable spatially inhomogeneous
periodic solutions?

The paper is organized as follows. In Section 2, the stability of coexisting equilibrium and existence
of Hopf bifurcation are considered. In Section 3, the property of Hopf bifurcation is studied. In Section
4, some numerical simulations are given. In Section 5, a short conclusion is obtained.

2. Stability analysis

For convenience, we choose Ω = (0, lπ). The kernel function G(x, y) = 1
lπ , which is based on the

assumption that the competition strength among prey individuals in the habitat is the same, that is the
competition between any two prey is the same. (0, 0) and (1, 0) are boundary equilibria of model (1.2).
The existence of positive equilibria of model (1.2) has been studied in [17], that is

Lemma 2.1. [17] Assume β > γ, then the model (1.2) has
• two distinct coexisting equilibria E1 = (u1, v1) and E2 = (u2, v2) with 0 < u1 <

3
5 < u2 < 1 when

α < αc(β, γ) := 6
√

15β(β−γ)
125γ2 ;

• a unique coexisting equilibrium denoted by E3 = (u3, v3) when α = αc(β, γ);
• no coexisting equilibrium when α > αc(β, γ).

Make the following hypothesis

(H0) β > γ, α ≤ αc(β, γ). (2.1)

If (H0) holds, then model (1.2) has one or two coexisting equilibria. Hereinafter, for brevity, we just
denote E∗(u∗, v∗) as coexisting equilibrium. Linearize model (1.2) at E∗(u∗, v∗)

∂u
∂t

(
u(x, t)
u(x, t)

)
= D

(
∆u(t)
∆v(t)

)
+ L1

(
u(x, t)
v(x, t)

)
+ L2

(
u(x, t − τ)
v(x, t − τ)

)
+ L3

(
û(x, t)
v̂(x, t)

)
, (2.2)
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where

D =

(
d1 0
0 d2

)
, L1 =

(
a1 a2

0 0

)
, L2 =

(
0 0
b1 b2

)
, L3 =

(
−u∗ 0
0 0

)
,

and a1 = 1 − u∗ −
v2
∗α

2
√

u∗(1+
√

u∗v∗)2 , a2 = −
(2
√

u∗v∗+u∗v2
∗)α

(1+
√

u∗v∗)2 < 0, b1 =
v2
∗β

2
√

u∗(1+
√

u∗v∗)2 > 0, b2 =
√

u∗v∗β

(1+
√

u∗v∗)2 > 0,

û = 1
lπ

∫ lπ

0
u(y, t)dy. The characteristic equation is

λ2 + Anλ + Bn + (Cn − b2λ)e−λτ = 0, n ∈ N0, (2.3)

where

A0 = u∗ − a1, B0 = 0, C0 = −b2(u∗ − a1) − a2b1,

An = (d1 + d2)
n2

l2 − a1, Bn = d1d2
n4

l4 − a1d2
n2

l2 ,

Cn = −b2d1
n2

l2 + a1b2 − a2b1, n ∈ N.

(2.4)

When τ = 0, the characteristic Eq (2.3) is

λ2 + (An − b2)λ + Bn + Cn = 0, n ∈ N0, (2.5)

where 
A0 − b2 = −a1 + u∗ − b2, B0 + C0 = −b2(u∗ − a1) − a2b1,

An − b2 = (d1 + d2)n2

l2 − a1 − b2,

Bn + Cn = d1d2
n4

l4 − (a1d2 + b2d1) n2

l2 + a1b2 − a2b1, n ∈ N.
(2.6)

Make the following hypothesis

(H1) An − b2 > 0, Bn + Cn > 0, for n ∈ N0. (2.7)

Theorem 2.2. For model (1.2), assume τ = 0 and (H0) holds. Then E∗(u∗, v∗) is locally asymptotically
stable under (H1).

Proof. If (H1) holds, we can obtain that the characteristic root of (2.5) all have negative real parts.
Then E∗(u∗, v∗) is locally asymptotically stable.

Let iω (ω > 0) be a solution of Eq (2.3), then

−ω2 + iωAn + Bn + (Cn − b2iω)(cosωτ − isinωτ) = 0.

We can obtain cosωτ =
ω2(b2An+Cn)−BnCn

C2
n+b2

2ω
2 , sinωτ =

ω(AnCn+Bnb2−b2ω
2)

C2
n+b2

2ω
2 . It leads to

ω4 + ω2
(
A2

n − 2Bn − b2
2

)
+ B2

n −C2
n = 0. (2.8)

Let z = ω2, then (2.8) becomes

z2 + z
(
A2

n − 2Bn − b2
2

)
+ B2

n −C2
n = 0, (2.9)

Electronic Research Archive Volume 30, Issue 7, 2510–2523.



2514

and the roots of (2.9) are z± = 1
2 [−Pn ±

√
P2

n − 4QnRn] , where Pn = A2
n − 2Bn − b2

2, Qn = Bn + Cn, and
Rn = Bn −Cn. If (H0) and (H1) hold, Qn > 0 (n ∈ N0). By direct calculation, we have

P0 = (a1 − u∗)2 − b2
2 > 0,

Pk =

(
a1 − d1

k2

l2

)2

+ d2
2

n4

l4 − b2
2,

R0 = a2b1 + b2(u∗ − a1)

Rk = d1d2
k4

l4 + (b2d1 − a1d2)
k2

l2 + a2b1 − a1b2, for k ∈ N.

(2.10)

Define

W1 = {n|Rn < 0, n ∈ N0},

W2 = {n|Rn > 0, Pn < 0, P2
n − 4QnRn > 0, n ∈ N},

W3 = {n|Rn > 0, P2
n − 4QnRn < 0, n ∈ N0},

(2.11)

and

ω±n =
√

z±n , τ j,±
n =

 1
ω±n

arccos(V (n,±)
cos ) + 2 jπ, V (n,±)

sin ≥ 0,
1
ω±n

[
2π − arccos(V (n,±)

cos )
]

+ 2 jπ, V (n,±)
sin < 0.

V (n,±)
cos =

(ω±n )2(b2An + Cn) − BnCn

C2
n + b2

2(ω±n )2
, V (n,±)

sin =
ω±n

(
AnCn + Bnb2 − b2(ω±n )2

)
C2

n + b2
2(ω±n )2

.

(2.12)

We have the following lemma.

Lemma 2.3. Assume (H0) and (H1) hold, the following results hold.
• Eq (2.3) has a pair of purely imaginary roots ±iω+

n at τ j,+
n for j ∈ N0 and n ∈W1.

• Eq (2.3) has two pairs of purely imaginary roots ±iω±n at τ j,±
n for j ∈ N0 and n ∈W2.

• Eq (2.3) has no purely imaginary root for n ∈W3.

Lemma 2.4. Assume (H0) and (H1) hold. Then Re(dλ
dτ )|τ=τ j,+

n
> 0, Re(dλ

dτ )|τ=τ j,−
n
< 0 for n ∈W1 ∪W2 and

j ∈ N0.

Proof. By Eq (2.3), we have

(
dλ
dτ

)−1 =
2λ + An − b2e−λτ

(Cn − b2λ)λe−λτ
−
τ

λ
.

Then

[Re(
dλ
dτ

)−1]τ=τ j,±
n

= Re[
2λ + An − b2e−λτ

(Cn − b2λ)λe−λτ
−
τ

λ
]τ=τ j,±

n

= [
1

C2
n + b2

2ω
2
(2ω2 + A2

n − 2Bn − b2
2)]τ=τ j,±

n

= ±[
1

C2
n + b2

2ω
2

√
(A2

n − 2Bn − b2
2)2 − 4(B2

n −C2
n)]τ=τ j,±

n
.

Therefore Re(dλ
dτ )|τ=τ j,+

n
> 0, Re(dλ

dτ )|τ=τ j,−
n
< 0.
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Denote τ∗ = min{τ0
n| n ∈W1 ∪W2}. We have the following theorem.

Theorem 2.5. Assume (H0) and (H1) hold, then the following statements are true for model (1.2).
• E∗(u∗, v∗) is locally asymptotically stable for τ > 0 whenW1 ∪W2 = ∅.
• E∗(u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ∗) whenW1 ∪W2 , ∅.
• E∗(u∗, v∗) is unstable for τ ∈ (τ∗, τ∗ + ε) for some ε > 0 whenW1 ∪W2 , ∅.
• Hopf bifurcation occurs at (u∗, v∗) when τ = τ

j,+
n (τ = τ

j,−
n ), j ∈ N0, n ∈W1 ∪W2. The bifurcating

periodic solutions are spatially homogeneous when τ = τ
j,+
0 (τ = τ

j,−
0 ), and spatially inhomogeneous

when τ = τ
j,+
n (τ = τ

j,−
n ) for n ∈ N.

3. Property of Hopf bifurcation

By the works [24,25], we study the property of Hopf bifurcation. For fixed j ∈ N0 and n ∈W1∪W2,
we denote τ̃ = τ

j,±
n . Let ū(x, t) = u(x, τt) − u∗ and v̄(x, t) = v(x, τt) − v∗. Drop the bar, (1.2) can be

written as 
∂u
∂t

= τ[d1∆u + (u + u∗)
(
1 −

1
lπ

∫ lπ

0
(u(y, t) + u∗)dy

)
−

α
√

u + u∗(v + v∗)2

1 +
√

u + u∗(v + v∗)
],

∂v
∂t

= τ[d2∆v +

(
β
√

u(t − 1) + u∗(v(t − 1) + v∗)
1 +
√

u(t − 1) + u∗(v(t − 1) + v∗)
− γ

)
(v + v∗)].

(3.1)

Rewrite the model (3.1) as

∂u
∂t

=τ[d1∆u + a1u + a2v − u∗û + α1u2 − uû + α2uv + α3v2 + α4u3 + α5u2v + α6uv2

+ α7v3] + h.o.t.,
∂v
∂t

=τ[d2∆v + b1u(t − 1) + b2v(t − 1) + β1u2(t − 1) + β2u(t − 1)v(t − 1) + β3u2(t − 1)

+ β4u3(t − 1) + β5u2(t − 1)v(t − 1)] + β6u(t − 1)v2(t − 1) + β7v3(t − 1)] + h.o.t.,

(3.2)

where α1 =
v2
∗(1+3

√
u∗v∗)α

8u3/2
∗ (1+

√
u∗v∗)3 , α2 = − v∗α

√
u∗(1+

√
u∗v∗)3 , α3 = −

√
u∗α

(1+
√

u∗v∗)3 , α4 = −
v2
∗(1+4

√
u∗v∗+5u∗v2

∗)α
16u5/2

∗ (1+
√

u∗v∗)4 , α5 =

v∗(1+4
√

u∗v∗)α
u3/2
∗ (1+

√
u∗v∗)4 , α6 =

(−1+2
√

u∗v∗)α
2
√

u∗(1+
√

u∗v∗)4 , α7 = u∗α

(1+
√

u∗v∗)4 , β1 = −
v2
∗(1+3

√
u∗v∗)β

2u3/2
∗ (1+

√
u∗v∗)3 , β2 = −

v∗(−1+
√

u∗v∗)β
2
√

u∗(1+
√

u∗v∗)3 , β3 =

−
u∗v∗β

(1+
√

u∗v∗)3 , β4 =
v2
∗(1+4

√
u∗v∗+5u∗v2

∗)β
16u5/2

∗ (1+
√

u∗v∗)4 , β5 =
v∗(−1−4

√
u∗v∗+3u∗v2

∗)β
2u3/2
∗ (1+

√
u∗v∗)4 , β6 =

v∗(−2+
√

u∗v∗)β
2(1+

√
u∗v∗)4 , β7 =

u3/2
∗ v∗β

(1+
√

u∗v∗)4 .

Define the real-valued Sobolev space X :=
{
(u, v)T : u, v ∈ H2(0, lπ), (ux, vx)|x=0,lπ = 0

}
, the

complexification of X XC := X ⊕ iX = {x1 + ix2| x1, x2 ∈ X} . and the inner product
< ũ, ṽ >:=

∫ lπ

0
u1v1dx +

∫ lπ

0
u2v2dx for ũ = (u1, u2)T , ṽ = (v1, v2)T , ũ, ṽ ∈ XC. The phase space

C := C([−1, 0], X) is with the sup norm, then we can write φt ∈ C , φt(θ) = φ(t + θ) or −1 ≤ θ ≤ 0.
Denote β(1)

n (x) = (γn(x), 0)T , β(2)
n (x) = (0, γn(x))T , and βn = {β(1)

n (x), β(2)
n (x)}, where {β(i)

n (x)} is an an
orthonormal basis of X. We define the subspace of C as Bn := span{< φ(·), β( j)

n > β
( j)
n |φ ∈ C , j = 1, 2},

n ∈ N0. There exists a 2 × 2 matrix function ηn(σ, τ̃) −1 ≤ σ ≤ 0, such that
−τ̃Dn2

l2 φ(0) + τ̃L(φ) =
∫ 0

−1
dηn(σ, τ)φ(σ) for φ ∈ C . The bilinear form on C ∗ × C is defined by

(ψ, φ) = ψ(0)φ(0) −
∫ 0

−1

∫ σ

ξ=0
ψ(ξ − σ)dηn(σ, τ̃)φ(ξ)dξ, (3.3)
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for φ ∈ C , ψ ∈ C ∗. Define τ = τ̃+µ, then the system undergoes a Hopf bifurcation at (0, 0) when µ = 0,
with a pair of purely imaginary roots ±iωn0 . Let A denote the infinitesimal generators of semigroup,
and A∗ be the formal adjoint of A under the bilinear form (3.3). Define the following function

δ(n0) =

{
1 n0 = 0,
0 n0 ∈ N.

(3.4)

Choose ηn0(0, τ̃) = τ̃[(−n2
0/l

2)D + L1 + L3δ(nn0)], ηn0(−1, τ̃) = −τ̃L2, ηn0(σ, τ̃) = 0 for −1 < σ < 0.
Let p(θ) = p(0)eiωn0 τ̃θ (θ ∈ [−1, 0]), q(ϑ) = q(0)e−iωn0 τ̃ϑ (ϑ ∈ [0, 1]) be the eigenfunctions of A(τ̃)
and A∗ corresponds to iωn0 τ̃ respectively. We can choose p(0) = (1, p1)T , q(0) = M(1, q2), where
p1 = 1

a2
(iωn0 + d1n2

0/l
2 − a1 + u∗δ(n0)), q2 = a2/(iωn0 − b2eiτωn0 + d2n2

l2 ), and M = (1 + p1q2 + τ̃q2(b1 +

b2 p1)e−iωn0 τ̃)−1. Then (3.1) can be rewritten in an abstract form

dU(t)
dt

= (τ̃ + µ)D∆U(t) + (τ̃ + µ)[L1(Ut) + L2U(t − 1) + L3Û(t)] + F(Ut, Ût, µ), (3.5)

where

F(φ, µ) = (τ̃ + µ)


α1φ1(0)2 − φ1(0)φ̂1(0) + α2φ1(0)φ2(0) + α3φ2(0)2 + α4φ

3
1(0) + α5φ

2
1(0)φ2(0)

+α6φ1(0)φ2
2(0) + α7φ

3
2(0)

β1φ
2
1(−1) + β2φ1(−1)φ2(−1) + β3φ

2
2(−1) + β4φ

3
1(−1) + β4φ

2
1(−1)φ2(−1)

+β6φ1(−1)φ2
2(−1) + β7φ

3
2(−1)


(3.6)

respectively, for φ = (φ1, φ2)T ∈ C and φ̂1 = 1
lπ

∫ lπ

0
φdx. Then the space C can be decomposed as

C = P ⊕ Q, where P = {zpγn0(x) + z̄ p̄γn0(x)|z ∈ C }, Q = {φ ∈ C |(qγn0(x), φ) = 0 and (q̄γn0(x), φ) = 0}.
Then, model (3.6) can be rewritten as Ut = z(t)p(·)γn0(x) + z̄(t)p̄(·)γn0(x) +ω(t, ·) and Ût = 1

lπ

∫ lπ

0
Utdx,

where
z(t) = (qγn0(x),Ut), ω(t, θ) = Ut(θ) − 2Re{z(t)p(θ)γn0(x)}. (3.7)

then, we have ż(t) = iω)n0τ̃z(t) + q̄(0) < F(0,Ut), βn0 >. There exists a center manifold C0 and ω can
be written as follow near (0, 0).

ω(t, θ) = ω(z(t), z̄(t), θ) = ω20(θ)
z2

2
+ ω11(θ)zz̄ + ω02(θ)

z̄2

2
+ · · · . (3.8)

Then, restrict the system to the center manifold is ż(t) = iωn0 τ̃z(t) + g(z, z̄). Denote g(z, z̄) = g20
z2

2 +

g11zz̄ + g02
z̄2

2 + g21
z2 z̄
2 + · · · . By direct computation, we have

g20 = 2τ̃M(ς1 + q2ς2)I3, g11 = τ̃M(%1 + q2%2)I3, g02 = ḡ20,

g21 = 2τ̃M[(κ11 + q2κ21)I2 + (κ12 + q2κ22)I4],

where I2 =
∫ lπ

0
γ2

n0
(x)dx, I3 =

∫ lπ

0
γ3

n0
(x)dx, I4 =

∫ lπ

0
γ4

n0
(x)dx, ς1 = −δn + α1 + α2ξ + α3ξ

2, ς2 =

e−2iτωn(β1 + ξ(β2 + β3ξ)), %1 = 1
4 (2α1 − 2δn + α2ξ̄ + α2ξ + 2α3ξ̄ξ), %2 = 1

4 (2β1 + 2β3ξ̄ξ + β2(ξ̄ + ξ)),
κ11 = 2W (1)

11 (0)(−1+2α1−δn+α2ξ)+2W (2)
11 (0)(α2+2α3ξ)+W (1)

20 (0)(−1+2α1−δn+α2ξ̄)+W (2)
20 (0)(α2+2α3ξ̄),

κ12 = 1
2 (3α4+α5(ξ̄+2ξ)+ξ(2α6ξ̄+α6ξ+3α7ξ̄ξ)), κ21 = 2e−iτωnW (1)

11 (−1)(2β1+β2ξ)+2e−iτωnW (2)
11 (−1)(β2+
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2β3ξ) + eiτωnW (1)
20 (−1)(2β1 + β2ξ̄) + eiτωnW (2)

20 (−1)(β2 + 2β3ξ̄), κ22 = 1
2e−iτωn(3β4 + β5(ξ̄ + 2ξ) + ξ(2β6ξ̄ +

β6ξ + 3β7ξ̄ξ)).
Now, we compute W20(θ) and W11(θ) for θ ∈ [−1, 0] to give g21. By (3.7), we have

ω̇ = U̇t − żpγn0(x) − ˙̄zp̄γn0(x) = Aω + H(z, z̄, θ), (3.9)

where

H(z, z, θ) = H20(θ)
z2

2
+ H11(θ)zz + H02(θ)

z2

2
+ · · · . (3.10)

Compare the coefficients of (3.8) with (3.9), we have

(A − 2iωn0 τ̃I)ω20 = −H20(θ), Aω11(θ) = −H11(θ). (3.11)

Then, we have

ω20(θ) =
−g20

iωn0 τ̃
p(0)eiωn0 τ̃θ −

ḡ02

3iωn0 τ̃
p̄(0)e−iωn0 τ̃θ + E1e2iωn0 τ̃θ,

ω11(θ) =
g11

iωn0 τ̃
p(0)eiωn0 τ̃θ −

ḡ11

iωn0 τ̃
p̄(0)e−iωn0 τ̃θ + E2,

(3.12)

where E1 =
∑∞

n=0 E(n)
1 , E2 =

∑∞
n=0 E(n)

2 ,

E(n)
1 = (2iωn0 τ̃I −

∫ 0

−1
e2iωn0 τ̃θdηn0(θ, τ̄))−1 < F̃20, βn >,

E(n)
2 = −(

∫ 0

−1
dηn0(θ, τ̄))−1 < F̃11, βn >, n ∈ N0,

(3.13)

< F̃20, βn >=


1
lπ F̂20, n0 , 0, n = 0,
1

2lπ F̂20, n0 , 0, n = 2n0,
1
lπ F̂20, n0 = 0, n = 0,
0, other,

< F̃11, βn >=


1
lπ F̂11, n0 , 0, n = 0,
1

2lπ F̂11, n0 , 0, n = 2n0,
1
lπ F̂11, n0 = 0, n = 0,
0, other,

and F̂20 = 2(ς1, ς2)T , F̂11 = 2(%1, %2)T .
Thus, we can obtain

c1(0) =
i

2ωnτ̃
(g20g11 − 2|g11|

2 −
|g02|

2

3
) +

1
2

g21, µ2 = −
Re(c1(0))
Re(λ′(τ̃))

,

T 2 = −
1

ωn0 τ̃
[Im(c1(0)) + µ2Im(λ′(τ j

n))], β2 = 2Re(c1(0)).
(3.14)

Theorem 3.1. For any critical value τ j
n (n ∈ S, j ∈ N0), we have the following results.

• When µ2 > 0 (resp.¡0), the Hopf bifurcation is forward (resp. backward).
• When β2 < 0 (resp. ¿0), the bifurcating periodic solutions on the center manifold are orbitally

asymptotically stable (resp. unstable).
• When T2 > 0 (resp. T2 < 0), the period increases (resp. decreases).
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4. Numerical simulations

To verify our theoretical results, we give the following numerical simulations. Fix parameters

α = 1.07, γ = 0.2, l = 2, d1 = 1, d2 = 1. (4.1)

The bifurcation diagram of model (1.2) with parameter β is given in Figure 1. We can see that with
the increase of parameter β, the stable region of positive equilibrium (u∗, v∗) will decrease.

Τ0
0,+

Τ1
0,+

Stable region

0.595 0.600 0.605
Β

0.05

0.10

0.50

1.00

5.00

10.00

Τ

Figure 1. Bifurcation diagram of model (1.2) with parameter β.

Especially, fix β = 0.595, we can obtain E1 ≈ (0.5362, 0.6914) and E2 ≈ (0.6616, 0.6225) are
two positive equilibria. It is easy to obtain that E2 is always unstable. Then we mainly consider the
stability of E1. It can be verified that (H1) holds. By direct calculation, we have τ∗ = τ0,+

1 ≈ 0.6271 <
τ0,+

0 ≈ 5.7949. When τ = τ∗, we have µ2 ≈ 147.6936, β2 ≈ −6.770 and T2 ≈ 48.7187, then E1 is
locally asymptotically stable for τ < τ∗ (shown in Figure 2). And the stable inhomogeneous periodic
solutions exists for τ > τ∗ (shown in Figure 3). To compare our result with the work in [17], we give
the numerical simulations of model (1.2) without nonlocal competition same with the model in [17]
under the same parameter τ = 4 in Figure 4. We can see that nonlocal competition is the key to the
existence of stable inhomogeneous periodic solutions.

To consider the effect of space length on the stability of the positive equilibrium (u∗, v∗), we give the
bifurcation diagram of model (1.2) with parameter l (Figure 5) as other parameters fixed in (4.1) and
β = 0.595. We can see that when the parameter l smaller than the critical value, stable region of the
positive equilibrium (u∗, v∗) remains unchanged. This means that the spatial diffusion will not affect
the stability of the positive equilibrium (u∗, v∗). When the parameter l is larger than the critical value,
increasing of parameter l will cause the stable region of positive equilibrium (u∗, v∗) decrease. This
means that the increase of space area will not be conducive to the stability of the positive equilibrium
(u∗, v∗), and the inhomogeneous periodic oscillations of prey and predator’s population densities may
occur.

Electronic Research Archive Volume 30, Issue 7, 2510–2523.



2519

Figure 2. The numerical simulations of model (1.2) with τ = 0.5. The positive equilibrium
E1 is asymptotically stable.

5. Conclusions

In this paper, we study a delayed diffusive predator-prey system with nonlocal competition and
schooling behavior in prey. By using time delay as parameter, we study the local stability of the
positive equilibrium and Hopf bifurcation at the positive equilibrium. We also analyze the property of
Hopf bifurcation by center manifold theorem and normal form method. Through numerical simulation,
we consider the effect of nonlocal competition on the model (1.2). Our results suggest that time delay
can affect the stability of the positive equilibrium. When time delay is smaller than the critical value,
the positive equilibrium is locally stable, and becomes unstable when time delay larger than the critical
value. Then the prey and predator’s population densities will oscillate periodically. But under the same
parameters, spatial inhomogeneous periodic oscillations of prey and predator’s population densities
will appear in the model with nonlocal competition, and prey and predator’s population densities will
tend to the positive equilibrium in the model without nonlocal competition. This means that time delay
can induce spatial inhomogeneous periodic oscillations in the predator-prey model with the nonlocal
competition term, which is different from the model without the nonlocal competition term. In addition,
we obtain that the increase of space area will not be conducive to the stability of the positive equilibrium
(u∗, v∗), and may induce the inhomogeneous periodic oscillations of prey and predator’s population
densities under some parameters.
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Figure 3. The numerical simulations of model (1.2) with τ = 4. The positive equilibrium E1

is unstable and there exists a spatially inhomogeneous periodic solution with mode-1 spatial
pattern.

Figure 4. The numerical simulations of model (1.2) without nonlocal competition, and with
τ = 4. The positive equilibrium E1 is asymptotically stable.

Electronic Research Archive Volume 30, Issue 7, 2510–2523.



2521

Τ1
0,+Τ0

0,+

Stable region

1.7 1.8 1.9 2.0 2.1
l

0.5

1.0

2.0

5.0

10.0

20.0

Τ

Figure 5. Bifurcation diagram of model (1.2) with parameter l.

Acknowledgments

This research is supported by the Fundamental Research Funds for the Central Universities (Grant
No. 2572022BC01), Postdoctoral program of Heilongjiang Province (No. LBH-Q21060), and College
Students Innovations Special Project funded by Northeast Forestry University (No. 202210225160).

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. X. Zhang, Q. An, L. Wang, Spatiotemporal dynamics of a delayed diffusive ratio-
dependent predator-prey model with fear effect, Nonlinear Dyn., 105 (2021), 3775–3790.
https://doi.org/10.1007/s11071-021-06780-x

2. R. Yang, C. Zhang, Dynamics in a diffusive predator–prey system with a constant
prey refuge and delay, Nonlinear Anal. Real World Appl., 31 (2016), 1–22.
https://doi.org/10.1016/j.nonrwa.2016.01.005

3. S. Djilali, S. Bentout, Pattern formations of a delayed diffusive predator-prey model with
predator harvesting and prey social behavior, Math. Methods Appl. Sci., 30 (2021), 9128–9142.
https://doi.org/10.1002/mma.7340

4. R. Yang, X. Zhao, Y. An, Dynamical analysis of a delayed diffusive predator-prey model
with additional food provided and anti-predator behavior, Mathematics, 10 (2022), 469.
https://doi.org/10.3390/math10030469

5. R. Yang, D. Jin, W. Wang, A diffusive predator-prey model with generalist predator and time
delay, AIMS Mathematics, 7 (2022), 4574–4591. https://doi.org/10.3934/math.2022255

6. D. I. Rubenstein, On predation, competition, and the advantages of group living, Social Behav., 3
(1978), 469. https://doi.org/10.1007/978-1-4684-2901-5 9

Electronic Research Archive Volume 30, Issue 7, 2510–2523.

http://dx.doi.org/https://doi.org/10.1007/s11071-021-06780-x
http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2016.01.005
http://dx.doi.org/https://doi.org/10.1002/mma.7340
http://dx.doi.org/https://doi.org/10.3390/math10030469
http://dx.doi.org/https://doi.org/10.3934/math.2022255
http://dx.doi.org/https://doi.org/10.1007/978-1-4684-2901-5$_$9


2522

7. P. A. Schmidt, D. W. Macdonald, Wolf pack size and food acquisition, Am. Nat., 150 (1997),
513–517. https://doi.org/10.1086/286079

8. D. Scheel, C. Packer, Group hunting behaviour of lions: A search for cooperation, Anim. Behav.,
41 (1991), 697–709. https://doi.org/10.1016/S0003-3472(05)80907-8

9. C. Cosner, D. L. Deangelis, J. S. Ault, D. B. Olson, Effects of spatial grouping
on the functional response of predators, Theor. Popul. Biol., 56 (1999), 65–75.
https://doi.org/10.1006/tpbi.1999.1414

10. J. Li, G. Sun, Z. Guo, Bifurcation analysis of an extended Klausmeier-Gray-Scott model with
infiltration delay, Stud. Appl. Math., 2022. https://doi.org/10.1111/sapm.12482

11. Q. Xue, C. Liu, L. Li, G. Sun, Z. Wang, Interactions of diffusion and nonlocal delay give rise
to vegetation patterns in semi-arid environments, Appl. Math. Comput., 399 (2021), 126038.
https://doi.org/10.1016/j.amc.2021.126038

12. X. P. Yan, C. H. Zhang, Turing instability and formation of temporal patterns in a diffusive
bimolecular model with saturation law, Nonlinear Anal. Real World Appl., 43 (2018), 54–77.
https://doi.org/10.1016/j.nonrwa.2018.02.004

13. F. Yi, J. Liu, J. Wei, Spatiotemporal pattern formation and multiple bifurcations in a
diffusive bimolecular model, Nonlinear Anal. Real World Appl., 11 (2010), 3770–3781.
https://doi.org/10.1016/j.nonrwa.2010.02.007

14. R. Yang, D. Jin, Dynamics in a predator-prey model with memory effect in predator and fear effect
in prey, Electron. Res. Arch., 30 (2022), 1322–1339. https://doi.org/10.3934/era.2022069

15. R. Yang, L. Wang, D. Jin, Hopf bifurcation analysis of a diffusive nutrient-phytoplankton model
with time delay, Axioms, 11 (2022), 56. https://doi.org/10.3390/axioms11020056

16. R. Yang, Q. Song, Y. An, Spatiotemporal dynamics in a predator–prey mModel with
functional response increasing in both predator and prey densities, Mathematics, 10 (2022), 17.
https://doi.org/10.3390/math10010017

17. J. Yang, S. Yuan, T. Zhang, Complex dynamics of a predator-prey system with herd and
schooling behavior: With or without delay and diffusion, Nonlinear Dyn., 104 (2021), 1709–
1735. https://doi.org/10.1007/s11071-021-06343-0

18. N. F. Britton, Aggregation and the competitive exclusion principle, J. Theor. Biol., 136 (1989),
57–66. https://doi.org/10.1016/S0022-5193(89)80189-4

19. J. Furter, M. Grinfeld, Local vs. non-local interactions in population dynamics, J. Math. Biol., 27
(1989), 65–80. https://doi.org/10.1007/BF00276081

20. S. Wu, Y. Song, Spatiotemporal dynamics of a diffusive predator-prey model with
nonlocal effect and delay, Commun. Nonlinear Sci. Numer. Simul., 89 (2020), 105310.
https://doi.org/10.1016/j.cnsns.2020.105310

21. J. Gao, S. Guo, Patterns in a modified Leslie-Gower model with Beddington-DeAngelis
functional response and nonlocal prey competition, Int. J. Bifurcation Chaos, 30 (2020), 2050074.
https://doi.org/10.1142/S0218127420500741

Electronic Research Archive Volume 30, Issue 7, 2510–2523.

http://dx.doi.org/https://doi.org/10.1086/286079
http://dx.doi.org/https://doi.org/10.1016/S0003-3472(05)80907-8
http://dx.doi.org/https://doi.org/10.1006/tpbi.1999.1414
http://dx.doi.org/https://doi.org/10.1111/sapm.12482
http://dx.doi.org/https://doi.org/10.1016/j.amc.2021.126038
http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2018.02.004
http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2010.02.007
http://dx.doi.org/https://doi.org/10.3934/era.2022069
http://dx.doi.org/https://doi.org/10.3390/axioms11020056
http://dx.doi.org/https://doi.org/10.3390/math10010017
http://dx.doi.org/https://doi.org/10.1007/s11071-021-06343-0
http://dx.doi.org/https://doi.org/10.1016/S0022-5193(89)80189-4
http://dx.doi.org/https://doi.org/10.1007/BF00276081
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2020.105310
http://dx.doi.org/https://doi.org/10.1142/S0218127420500741


2523

22. Y. Liu, D. Duan, B. Niu, Spatiotemporal dynamics in a diffusive predator-prey model
with group defense and nonlocal competition, Appl. Math. Lett., 103 (2020), 106175.
https://doi.org/10.1016/j.aml.2019.106175

23. S. Djilali, Pattern formation of a diffusive predator-prey model with herd behavior
and nonlocal prey competition, Math. Methods Appl. Sci., 43 (2020), 2233–2250.
https://doi.org/10.1002/mma.6036

24. J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer New York,
NY, 1996. https://doi.org/10.1007/978-1-4612-4050-1

25. B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and Applications of Hopf Bifurcation,
Cambridge University Press, Cambridge, 1981. http://dx.doi.org/10.1090/conm/445

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 30, Issue 7, 2510–2523.

http://dx.doi.org/https://doi.org/10.1016/j.aml.2019.106175
http://dx.doi.org/https://doi.org/10.1002/mma.6036
http://dx.doi.org/https://doi.org/10.1007/978-1-4612-4050-1
http://dx.doi.org/http://dx.doi.org/10.1090/conm/445
http://creativecommons.org/licenses/by/4.0

	Introduction 
	Stability analysis
	Property of Hopf bifurcation
	Numerical simulations
	Conclusions

