Loading [MathJax]/jax/output/SVG/jax.js
Research article

On the Drazin inverse of anti-triangular block matrices

  • Received: 28 August 2021 Revised: 17 January 2022 Accepted: 20 January 2022 Published: 29 April 2022
  • Our aim is to present new expressions for the Drazin inverse of anti-triangular block matrices under some circumstances. Applying the established new formulae for anti-triangular block matrices, we derive explicit representations for the Drazin inverse of a 2×2 complex block matrix under corresponding assumptions. We extend several well known results in the literature in this way.

    Citation: Daochang Zhang, Dijana Mosić, Liangyun Chen. On the Drazin inverse of anti-triangular block matrices[J]. Electronic Research Archive, 2022, 30(7): 2428-2445. doi: 10.3934/era.2022124

    Related Papers:

    [1] Ahmet S. Cevik, Eylem G. Karpuz, Hamed H. Alsulami, Esra K. Cetinalp . A Gröbner-Shirshov basis over a special type of braid monoids. AIMS Mathematics, 2020, 5(5): 4357-4370. doi: 10.3934/math.2020278
    [2] Ze Gu, Xiang-Yun Xie, Jian Tang . On C-ideals and the basis of an ordered semigroup. AIMS Mathematics, 2020, 5(4): 3783-3790. doi: 10.3934/math.2020245
    [3] Ali Yahya Hummdi, Amr Elrawy . On neutrosophic ideals and prime ideals in rings. AIMS Mathematics, 2024, 9(9): 24762-24775. doi: 10.3934/math.20241205
    [4] Jie Qiong Shi, Xiao Long Xin . Ideal theory on EQ-algebras. AIMS Mathematics, 2021, 6(11): 11686-11707. doi: 10.3934/math.2021679
    [5] Seok-Zun Song, Hee Sik Kim, Young Bae Jun . Commutative ideals of BCK-algebras and BCI-algebras based on soju structures. AIMS Mathematics, 2021, 6(8): 8567-8584. doi: 10.3934/math.2021497
    [6] G. Muhiuddin, Ahsan Mahboob . Int-soft ideals over the soft sets in ordered semigroups. AIMS Mathematics, 2020, 5(3): 2412-2423. doi: 10.3934/math.2020159
    [7] Chun Ge Hu, Xiao Guang Li, Xiao Long Xin . Dual ideal theory on L-algebras. AIMS Mathematics, 2024, 9(1): 122-139. doi: 10.3934/math.2024008
    [8] M. Mohseni Takallo, Rajab Ali Borzooei, Seok-Zun Song, Young Bae Jun . Implicative ideals of BCK-algebras based on MBJ-neutrosophic sets. AIMS Mathematics, 2021, 6(10): 11029-11045. doi: 10.3934/math.2021640
    [9] Nour Abed Alhaleem, Abd Ghafur Ahmad . Intuitionistic fuzzy normed prime and maximal ideals. AIMS Mathematics, 2021, 6(10): 10565-10580. doi: 10.3934/math.2021613
    [10] Bander Almutairi, Rukhshanda Anjum, Qin Xin, Muhammad Hassan . Intuitionistic fuzzy k-ideals of right k-weakly regular hemirings. AIMS Mathematics, 2023, 8(5): 10758-10787. doi: 10.3934/math.2023546
  • Our aim is to present new expressions for the Drazin inverse of anti-triangular block matrices under some circumstances. Applying the established new formulae for anti-triangular block matrices, we derive explicit representations for the Drazin inverse of a 2×2 complex block matrix under corresponding assumptions. We extend several well known results in the literature in this way.



    In this paper, we consider the time-dependent fractional convection-diffusion (TFCD) equation

    {Cαsϕ(t,s)ϕ(t,s)+ϕ(t,s)=f(t,s)(t,s)Ω×[0,T],ϕ(t,0)=φ0(t),ϕ(t,0)s=φ1(t),tΩ,ϕ(t,s)|Γ=g(t,s),s[0,T], (1.1)

    where 1 <α<2 and Ω are bounded domains in Rn with n=1,2 and Ω=[a,b] or Ω=[a,b]×[c,d], Γ is the boundary of Ω. f(t,s),φ0(t),φ1(t),g(t,s) are given functions and

    ϕ(t,s)=2ϕ(t,s)t21++2ϕ(t,s)t2n,ϕ(t,s)=ϕ(t,s)t1++ϕ(t,s)tn (1.2)

    The fractional derivative Cαs=αϕ(t,s)tα denotes the Caputo fractional derivative.

    The Caputo fractional derivative of time is defined as

    Cαsϕ(t,s)={1Γ(ξα)s0ξϕ(t,τ)τξdτ(sτ)α+1ξ,m1<ξ<m,ξϕ(t,τ)τξ,ξ=m, (1.3)

    and Γ(α) is the Γ function. The time fractional convection-diffusion equation has been widely applied in the modeling of the anomalous diffusive processes and in the description of viscoelastic damping materials.

    In [1], a class of time fractional reaction diffusion equations with variable coefficients and the nonhomogeneous Neumann problem was solved by a compact finite difference method. It was proven that the method was unconditionally stable for the general case of variable coefficients, and the optimal error estimate for the numerical solution under the discrete L2 norm was also given. In [2], by using Legendre spectral squares to discretize spatial variables, a high order numerical scheme for solving nonlinear time fractional reaction diffusion equations was proposed. Then, a priori estimate, existence, and uniqueness of the numerical solution were given, and the unconditional stability and convergence was proven. In [3] a fast and accurate numerical method for fractional reaction diffusion equations in unbounded domains using Fourier spectral method was constructed. In [4], an immersed finite element (IFE) method for solving time fractional diffusion equations with discontinuous coefficients was proposed. The singularity of the Caputo fractional derivative is approximated by the non-uniform L1 scheme. In [5], a numerical method for diffusion problems with fractional derivatives in a bilateral Riemannian Liouville space was proposed. Under appropriate constraints, the monotonicity, positive retention, and linear stability of the method were proven. In [6], a locally discontinuous Galerkin and finite difference method for solving multiple variable order time fractional diffusion equations with variable order fractional derivatives was proposed, which proven that the scheme was unconditionally stable. In [7], a finite difference method for solving time fractional wave equations (TFWE) was proposed. For α(1,2), the proposed difference scheme was of a second order accuracy in space and time, and the stability of the H-1-norm of the method was given. In [8], an hp discontinuous Galerkin method for solving nonlinear fractional differential equations with Caputo type fractional derivatives was proposed. This method converts fractional differential equations into either nonlinear Volterra or Fredholm integral equations, and then uses the hp discontinuous Galerkin method to solve the equivalent integral equations. Time-fractional diffusion equation [9] and nonlinear Caputo fractional differential equation [10] were studied by the finite difference scheme and optimal adaptive grid method.

    The above methods such as the finite difference method, the Legendre spectral method, the Fourier spectral method, the finite element, and the discontinuous Galerkin method had been used to solve fractional partial equation with the time direction and space direction solved separatively in different directions. Different from the above methods, we construct the barycentric rational interpolation method (BRIM) to solve the time-dependent fractional convection-diffusion (TFCD) equation with time direction and space direction at the same time. For the barycentric interpolation method (BIM), there are BRIM and the barycentric Lagrange interpolation method (BLIM) which can be used to avoid the Runge phenomenon. In the recent years, linear rational interpolation (LRI) was proposed by Floater [14,15,16] and the error of linear rational interpolation [11,12,13] was also proven. BIM has been developed by Wang et al.[17] and the algorithm of BIM has been used to linear/non-linear problems [18,19]. In recent research, the Volterra integro-differential equation (VIDE) [20], heat equation (HE) [21], biharmonic equation (BE) [22,23], telegraph equation (TE) [24], generalized Poisson equations [25], semi-infinite domain problems[27], fractional reaction-diffusion equation [28], and KPP equation [29] have been studied by linear BRIM and their convergence rate are also proven.

    In this paper, BRIM has been used to solve the TFCD equation. As the fractional derivative is the nonlocal operator, spectral methods are developed to solve the TFCD equation and the coefficient matrix is a full matrix. The fractional derivative of the TFCD equation is changed to nonsingular integral by integral with order of density function plus one. The new Gauss formula is constructed to compute it simply and the matrix equation of discrete the TFCD equation is obtained by the unknown function replaced by the barycentric rational interpolation basis function. Then, the convergence rate of BRIM is proven.

    By the definition of (1.3), there are certain kinds of singularities in (1.1). Solving the TDFC equation is needed to efficiently calculate the Caputo fractional derivative. There are some methods to overcome the difficulty of singularity, we adopt the fractional integration as follow:

    Cαsϕ(t,s)=1Γ(ξα)s0ξϕ(t,τ)τξdτ(sτ)α+1ξ=1(ξα)Γ(ξα)[ξϕ(t,0)sξsξα+s0ξ+1ϕ(t,τ)τξ+1dτ(sτ)αξ]=Γξα[ξϕ(t,0)sξsξα+s0ξ+1ϕ(t,τ)τξ+1dτ(sτ)αξ], (2.1)

    where Γξα=1(ξα)Γ(ξα).

    Combining Eqs (2.1) and (1.1), we have

    Γξα[ξϕ(t,0)sξsξα+s0ξ+1ϕ(t,τ)τξ+1dτ(sτ)αξ]ϕ(t,s)+ϕ(t,s)=f(t,s) (2.2)

    The discrete formula of TFCD equation is obtained as

    ϕ(t,s)=mj=1Rj(t)ϕj(s) (2.3)

    where

    ϕ(ti,s)=ϕi(s),i=1,2,,m

    and

    Rj(t)=λjttjnk=1λkttk (2.4)

    is the basis function, see [20]. Taking (2.3) into (2.2), we get

    Γξα[ξϕ(t,0)sξsξα+s0ξ+1ϕ(t,τ)τξ+1dτ(sτ)αξ][2ϕ(t,s)t2+2ϕ(t,s)s2]+[ϕ(t,s)t+ϕ(t,s)s]=f(t,s) (2.5)

    Then we get

    Γξαmj=1[Rj(t)ϕ(ξ)j(0)sξα+Rj(t)s0ϕ(ξ+1)(τ)dτ(sτ)αξ]mj=1[Rj(t)ϕj(s)+Rj(t)ϕj(s)]+mj=1[Rj(t)ϕj(s)+Rj(t)ϕj(s)]=f(t,s), (2.6)

    As for the discrete of t and s, we get

    ϕj(s)=nk=1Rk(s)ϕik (2.7)

    where ϕi(sj)=ϕ(ti,sj)=ϕij,i=1,,m;j=1,,n and

    Ri(s)=wissimk=1wkssk (2.8)

    is the basis function.

    Combining (2.6) and (2.7),

    Γξαmj=1nk=1[Rj(t)R(ξ)k(0)sξα+Rj(t)s0R(ξ+1)k(τ)dτ(sτ)αξ]ϕikmj=1nk=1[Rj(t)Rk(s)+Rj(t)Ri(s)]ϕik+mj=1nk=1[Rj(t)Rk(s)+Rj(t)Rk(s)]ϕik=f(t,s) (2.9)

    where

    Rk(τ)=λkττknk=0λkττk

    and

    {Ri(τ)=Ri(τ)[1ττk+ls=0λk(ττk)2ls=0λkττk],R(ξ+1)i(τ)=[R(ξ)i(τ)],ξN+.

    The term of (2.9) can be written as

    s0R(ξ+1)j(τ)dτ(sτ)αξ=Qαj(s), (2.10)

    The integral (2.9) is calculated by

    Qαj(s)=s0R(ξ+1)j(τ)dτ(sτ)αξ:=gi=1R(ξ+1)i(τθ,αi)Gθ,αi, (2.11)

    where Gθ,αi is Gauss weight and τθ,αi is Gauss points with weights (sτ)ξα, see reference [25].

    For the (1+1) dimensional TFCD equation with Ω1=[a,b], (2.9) can be written as

    Γξαm1j1=1nk=1[Rj1(t1)R(ξ)k(0)sξα+Rj1(t1)s0R(ξ+1)k(τ)dτ(sτ)αξ]ϕikm1j1=1nk=1[Rj1(t1)Rk(s)+Rj1(t1)Ri(s)]ϕik+m1j1=1nk=1[Rj1(t1)Rk(s)+Rj1(t1)Rk(s)]ϕik=f(t1,s) (3.1)

    Taking a=t11<t12<<t1m1=b,0=s1<s2<<sn=T with ht=(ba)/m1,hs=T/n as either a uniform partition or uninform as a Chebychev point, (t1i,sl),1i=1,2,,m1,l=1,2,,n, we get

    Γξαm1j1=1nk=1[Rj1(t1i)R(ξ)k(0)sξαl+Rj1(t1i)sl0R(ξ+1)k(τ)dτ(slτ)αξ]ϕikm1j1=1nk=1[Rj1(t1i)Rk(sl)+Rj1(t1i)Ri(sl)]ϕik+m1j1=1nk=1[Rj1(t1i)Rk(sl)+Rj1(t1i)Rk(sl)]ϕik=f(t1i,sl) (3.2)

    By introducing the notation, Rj1(t1i)=δj1i,Rk(sl)=δkl,Rj1(t1i)=R(1,0)ij1,Rk(sl)=R(0,1)ij,Rj1(t1i)=R(2,0)ij1,Rk(sl)=R(0,2)kl where R(0,2)il is the second order of the barycentric matrix.

    Γξαm1j1=1nk=1[δjiR(ξ)k(0)sξαl+δj1isl0R(ξ+1)k(τ)dτ(slτ)αξ]ϕikm1j1=1nk=1[R(2,0)ijδkl+δj1iR(0,2)kl]ϕik+m1j1=1nk=1[R(1,0)ij1δkl+δj1iR(0,1)kl]ϕik=f(t1i,sl) (3.3)

    by taking (2.11),

    Qαj1l=Qαj(sl)=sl0R(ξ+1)j1(τ)dτ(slτ)αξ (3.4)

    then we get

    Γξαm1j1=1nk=1[δj1iR(ξ)k(0)sξαl+δj1iQαkl]ϕikm1j1=1nk=1[R(2,0)ij1δkl+δj1iR(0,2)klR(1,0)ij1δklδj1iR(0,1)kl]ϕik=f(t1i,sl). (3.5)

    Systems of (3.5) can be written as

    Γξα[diag(sξα)M(ξ0)1In+Im1Qα2][ϕ11ϕ1nϕm11ϕm1n][M(2,0)In+Im1M(0,2)M(1,0)InIm1M(0,1)][ϕ11ϕ1nϕm11ϕm1n]=[f11f1nfm11fm1n], (3.6)

    where Im1 and In are identity matrices, and is Kronecker product.

    Then, we get Eq (3.6) as

    [Γξα(diag(sξα)M(ξ0)1In+Im1Qα2)(M(2,0)In+Im1M(0,2)M(1,0)InIm1M(0,1))]Φ=F (3.7)

    and

    MΦ=F, (3.8)

    with M=Γξα(diag(sξα)M(ξ0)1In+Im1Qα2)(M(2,0)In+Im1M(0,2)M(1,0)InIm1M(0,1)) and Φ=[ϕ11ϕ1nϕm11ϕm1n]T,F=[f11f1nfm11fm1n]T.

    For the (2+1) dimensional TFCD equation with Ω2=[a,b]×[c,d], then we have

    Γξαm1j1=1m2j2=1nk=1[Rj1(t1)Rj2(t2)R(ξ)k(0)sξα+Rj1(t1)Rj2(t2)s0R(ξ+1)k(τ)dτ(sτ)αξ]ϕijkm1j1=1m2j2=1nk=1[Rj1(t1)Rj2(t2)Rk(s)+Rj1(t1)Rj2(t2)Ri(s)+Rj1(t1)Rj2(t2)Ri(s)]ϕijk+m1j1=1m2j2=1nk=1[Rj1(t1)Rj2(t2)Rk(s)+Rj1(t1)Rj2(t2)Ri(s)+Rj1(t1)Rj2(t2)Ri(s)]ϕijk=f(t1,t2,s) (3.9)

    By a=t11<t12<<t1m1=b,c=t21<t22<<t2m1=d,0=s1<s2<<sn=T with ht1=(ba)/m1,ht2=(dc)/m2,hs=T/n or uninform as a Chebychev point, (t1i,t2i,sl),1i=1,2,,m1,2i=1,2,,m2,l=1,2,,n, we get

    Γξαm1j1=1m2j2=1nk=1[Rj1(t1i)Rj2(t2j)R(ξ)k(0)sξα+Rj1(t1i)Rj2(t2j)s0R(ξ+1)k(τ)dτ(sτ)αξ]ϕijkm1j1=1m2j2=1nk=1[Rj1(t1i)Rj2(t2j)Rk(sl)+Rj1(t1i)Rj2(t2j)Ri(sl)+Rj1(t1i)Rj2(t2j)Ri(sl)]ϕijk+m1j1=1m2j2=1nk=1[Rj1(t1i)Rj2(t2j)Rk(s)+Rj1(t1i)Rj2(t2j)Ri(sl)+Rj1(t1i)Rj2(t2j)Ri(sl)]ϕijk=f(t1i,t2j,sl) (3.10)

    By introducing the notation, Rj1(t1i)=δj1i,Rj2(t1j)=δj2j,Rk(sl)=δkl,Rj1(t1i)=R(1,0,0)ij1,Rj2(t1j)=R(0,1,0)ij1,Rk(sl)=R(0,0,1)ij,Rj1(t1i)=R(2,0,0)ij1,Rj2(t1j)=R(0,2,0)ij1,Rk(sl)=R(0,0,2)ij, we get

    Γξαm1j1=1m2j2=1nk=1[δj1iδj2jR(ξ)k(0)sξα+δj1iδj2js0R(ξ+1)k(τ)dτ(sτ)αξ]ϕijkm1j1=1m2j2=1nk=1[R(2,0,0)ij1δj2jδkl+δj1iR(0,2,0)ij1δkl+δj1iδj2jR(0,0,2)ij]ϕijk+m1j1=1m2j2=1nk=1[R(1,0,0)ij1δj2jδkl+δj1iR(0,1,0)ij1δkl+δj1iδj2jR(0,0,1)ij]ϕijk=f(t1i,t2j,sl) (3.11)

    Then, Eq (3.6) can be written as

    Γξα(diag(sξα)M(ξ0)1Im1Im2+Im1Im2Qα2)Φ(M(2,0,0)Im2In+Im1M(0,2,0)In+Im1Im2M(0,0,2))Φ+(M(1,0,0)Im2In+Im1M(0,1,0)In+Im1Im2M(0,0,1))Φ=F (3.12)

    and

    MΦ=F, (3.13)

    with M=Γξα(diag(sξα)M(ξ0)1Im1Im2+Im1Im2Qα2)(M(2,0,0)Im2In+Im1M(0,2,0)In+Im1Im2M(0,0,2))+ (M(1,0,0)Im2In+Im1M(0,1,0)In+Im1Im2M(0,0,1)) and Φ=[ϕ111ϕ112ϕ11n,ϕ121ϕ122ϕ12n,,ϕm1m21ϕm1m22ϕm1m2n]T, F=[f111f112f11n,f121f122f12n,, fm1m21fm1m22fm1m2n]T.

    The boundary condition can be solved by the substitution method, the additional method or the elimination method, see [17]. In the following, we adopt the substitution method and the additional method to add the boundary condition.

    In this part, the error estimate of the TFCD equation is given with rn(s)=ni=1ri(s)ϕi to replace ϕ(s), where ri(s) is defined as (2.8) and ϕi=ϕ(si). We also define

    e(s):=ϕ(s)rn(s)=(ssi)(ssi+d)ϕ[si,si+1,,si+d,s], (4.1)

    see reference [20].

    Then, we have

    Lemma 1. For e(s) be defined by (4.1) and ϕ(s)Cd+2[a,b],d=1,2,, there

    |e(k)(s)|Chdk+1,k=0,1,. (4.2)

    For the TFCD equation, the rational interpolation function of ϕ(t,s) is defined as rmn(t,s)

    rmn(t,s)=m+dsi=1n+dtj=1wi,j(ssi)(ttj)ϕi,jm+dsi=1n+dtj=1wi,j(ssi)(ttj) (4.3)

    where

    wi,j=(1)ids+jdtk1Jik1+dsh1=k1,h1j1|sish1|k2Jik2+dth2=k2,h2j1|tjth2|. (4.4)

    We define e(t,s) be the error of ϕ(t,s) as

    e(t,s):=ϕ(t,s)rmn(t,s)=(ssi)(ssi+ds)ϕ[si,si+1,,si+d1,s;t]+(ttj)(ttj+dt)ϕ[s;tj,tj+1,,tj+d2,t](ssi)(ssi+ds)(ttj)(ttj+dt)ϕ[si,si+1,,si+d1,s;tj,tj+1,,tj+d2,t]. (4.5)

    With a similar analysis of Lemma 1, we have

    Theorem 1. For e(t,s) defined as (4.5) and ϕ(t,s)Cds+2[a,b]×Cdt+2[0,T], then we have

    |e(k1,k2)(s,t)|C(hdsk1+1s+hdtk2+1t),k1,k2=0,1,. (4.6)

    Let ϕ(sm,tn) be the approximate function of ϕ(t,s) and L to be bounded operator, there holds

    Lϕ(tm,sn)=f(tm,sn) (4.7)

    and

    limm,nLϕ(tm,sn)=ϕ(t,s). (4.8)

    Then, we get

    Theorem 2. For ϕ(tm,sn):Lϕ(tm,sn)=ϕ(t,s) and L defined as (4.7), there

    |ϕ(t,s)ϕ(tm,sn)|C(hds1+τdt1).

    Proof. By the definition of (4.7), we have

    Lϕ(t,s)Lϕ(tm,sn)=Cαsϕ(t,s)ϕ(t,s)+ϕ(t,s)f(t,s)[Cαsϕ(tm,sn)ϕ(tm,sn)+ϕ(tm,sn)f(tm,sn)]=Cαsϕ(t,s)Cαsϕ(tm,sn)[ϕ(t,s)ϕ(sm,tn)]+[ϕ(t,s)ϕ(tm,sn))][f(t,s)f(tm,sn)]:=E1(t,s)+E2(t,s)+E3(t,s)+E4(t,s) (4.9)

    here

    E1(t,s)=Cαsϕ(t,s)Cαsϕ(tm,sn),
    E2(t,s)=ϕ(t,s)ϕ(sm,tn),
    E3(t,s)=ϕ(t,s)ϕ(tm,sn)),
    E4(t,s)=f(t,s)f(tm,sn).

    As for E1(t,s), we get

    E1(t,s)=Cαsϕ(t,s)Cαsϕ(tm,sn)=Γξα[ξϕ(0,s)tξsξα+t0ξ+1ϕ(τ,s)τξ+1dτ(tτ)αξ]Γξα[ξϕ(0,sn)tξsξαn+tm0ξ+1ϕ(τ,sn)τξ+1dτ(tmτ)αξ]=Γξα[ξϕ(0,s)tξsξαξϕ(0,sn)tξsξαn]+Γξα[t0ξ+1ϕ(τ,s)τξ+1dτ(tτ)αξtm0ξ+1ϕ(τ,sn)τξ+1dτ(tmτ)αξ] (4.10)

    and

    |E1(t,s)||Γξα[ξϕ(0,s)tξsξαξϕ(0,sn)tξsξαn]|+|Γξα[t0ξ+1ϕ(τ,s)τξ+1dτ(tτ)αξtm0ξ+1ϕ(τ,sn)τξ+1dτ(tmτ)αξ]||Γξα||ξϕtξ(0,s)ξϕtξ(0,sn)|+|Γξα||ξ+1ϕtξ+1(t,s)ξ+1ϕtξ+1(tm,sn)|:=E11(t,s)+E12(t,s) (4.11)

    where

    E11(t,s)=|Γξα||ξϕtξ(0,s)ξϕtξ(0,sn)|E12(t,s)=|Γξα||ξ+1ϕtξ+1(t,s)ξ+1ϕtξ+1(tm,sn)| (4.12)

    Now we estimate E11(t,s) and E12(t,s) part by part, for the second part we have

    E12(t,s)=|Γξα||ξ+1ϕtξ+1(t,s)ξ+1ϕtξ+1(tm,sn)|=|Γξα||ξ+1ϕtξ+1(t,s)ξ+1ϕtξ+1(tm,s)+ξ+1ϕtξ+1(tm,s)ξ+1ϕtξ+1(tm,sn)||Γξα||ξ+1ϕtξ+1(t,s)ξ+1ϕtξ+1(tm,s)|+|Γξα||ξ+1ϕtξ+1(tm,s)ξ+1ϕtξ+1(tm,sn)|=|Γξα||mdsi=1(1)iξ+1ϕtξ+1[si,si+1,,si+d1,sn,t]mdsi=1λi(s)|+|Γξα||ndtj=1(1)jξ+1ϕtξ+1[tj,tj+1,,tj+d2,sn,tm]ndtj=1λj(t)|=|Γξα||ξ+1etξ+1(tm,s)|+|Γξα||ξ+1etξ+1(tm,sn)|.

    then we have

    |E12(t,s)||ξ+1etξ+1(tm,s)|+|ξ+1etξ+1(tm,sn)|C(hds1+τdt1). (4.13)

    For E11(t,s), we get

    |E11(t,s)|C(hds+1ξ+τdt1). (4.14)

    Similarly as E2(t,s), for E3(t,s) we have

    |E3(t,s)|C(hds+τdt). (4.15)

    Combining (4.9), (4.13), and (4.15) together, the proof of theorem 4.2 is completed.

    In this part, two examples are presented to test the theorem.

    Example 1. Consider the time-dependent fractional convection-diffusion equation

    {αϕ(t,s)sα2ϕ(t,s)t2+ϕ(t,s)t=f(t,s)(t,s)[0,1]×[0,1],ϕ(t,0)=0,ϕ(t,0)t=sinπt,t[0,1],ϕ(t,s)|Γ=g(t,s),s[0,1], (5.1)

    with the analysis solution is

    ϕ(t,s)=(s+s3)sin(πt)

    with the initial condition

    ϕ(t,0)=0

    and boundary condition

    ϕ(0,s)=ϕ(1,s)=0

    and

    f(t,s)=6t3αΓ(4α)sin(πt)+π2(s+s3)sin(πt)+(s+s3)cos(πt)

    In Figures 1 and 2, errors of m=n=12, Ω1=[0,1],α=1.2 and m=n=12,dt=ds=8, Ω1=[0,1],α=1.2 in Example 1 with uniform and nonuniform partition for the TFCD equation by BRIM are presented, respectively. From the Figure, we know that the precision can reach to 108 for both the uniform and nonuniform partition.

    Figure 1.  Errors of m=n=12, Ω1=[0,1],α=1.2 in Example 1 (a) uniform; (b) nonuniform.
    Figure 2.  Errors of m=n=12,dt=ds=8, Ω1=[0,1],α=1.2 in Example 1 (a) uniform; (b) nonuniform.

    In Figures 3 and 4, errors of m=n=12, Ω1=[0,1],α=1.8 and m=n=12,dt=ds=8,α=1.8, Ω1=[0,1] in Example 1 with uniform and nonuniform partition for the TFCD equation by BRIM are presented, respectively. From the Figure, we know that the precision can reach to 108 for both uniform and nonuniform partition. For different value of α, BRIM can be used to solve the TFCD equation efficiently.

    Figure 3.  Errors of m=n=12, Ω1=[0,1],α=1.8 in Example 1 (a) uniform; (b) nonuniform.
    Figure 4.  Errors of m=n=12,dt=ds=8, Ω1=[0,1],α=1.8 in Example 1 (a) uniform; (b) nonuniform.

    In Table 1, errors of the TFCD equation for α1=1.8,dt=ds=5 with t=0.1,0.9,1,5,10,15 are presented under the uniform and nonuniform partition with BRIM and BLIM. As the time variable increases from 0.5 to 15, there is still high accuracy. For BRIM, we can choose the parameters dt,ds and m,n approximately to get high accuracy. Under the same partition of m,n, the accuracy of BLIM is higher than BRIM.

    Table 1.  Errors of TFCD equation for α1=1.8,dt=ds=5.
    uniform nonuniform uniform nonuniform
    t (12,12)dt=ds=5 (12,12)dt=ds=5 (12,12) (12,12)
    0.5 1.6077e-05 3.4641e-06 9.4012e-09 5.4710e-11
    0.9 7.6161e-06 1.2065e-06 1.1950e-08 1.0220e-11
    1 3.3826e-05 3.2595e-06 6.1614e-08 4.5688e-11
    5 2.7710e-04 2.3571e-05 8.8436e-07 9.3036e-10
    10 4.0780e-03 3.8953e-04 2.8067e-05 1.4820e-08
    15 3.3288e-03 2.8728e-04 2.1309e-04 2.2781e-07

     | Show Table
    DownLoad: CSV

    In Table 2, for BRIM, the errors of different α1=1.05,1.1,1.3,1.5,1.6,1.8,1.9,1.99 under uniform with m=n=10,dt=5,ds=5 are presented under the uniform and nonuniform partition. From the table, we know that for different α, BRIM has a high accuracy with decreased values for m and n.

    Table 2.  Errors of different α under BRIM with m=n=10,dt=5,ds=5.
    uniform nonuniform
    1.05 1.3605e-05 5.0592e-05
    1.1 1.5511e-06 1.0653e-05
    1.3 3.7907e-06 2.0445e-05
    1.5 2.9437e-07 3.9908e-06
    1.6 1.5585e-06 7.4171e-06
    1.8 1.7836e-07 1.7089e-06
    1.9 2.5754e-07 3.4347e-06
    1.99 6.0471e-08 9.9797e-07

     | Show Table
    DownLoad: CSV

    In the following table, numerical results are presented to test our theorem.

    From Tables 3 and 4, the error of BRIM under uniform for α=1.8,ds=5 with different dt are given, and the convergence rate is O(hdt). From Table 4, with space variable uniform for α=1.8,dt=5, the convergence rate is O(h7), which we will investigate in future paper.

    Table 3.  Errors of BRIM under uniform for α=1.8,ds=5.
    m,n dt=2 dt=3 dt=4 dt=5
    8 1.0091e-03 1.0123e-03 1.0227e-03 1.0394e-03
    10 2.0466e-04 7.1497 2.0526e-04 7.1511 2.0654e-04 7.1692 2.0796e-04 7.2107
    12 5.5556e-05 7.1521 5.7191e-05 7.0089 5.7426e-05 7.0204 5.7744e-05 7.0278
    14 1.9062e-05 6.9393 2.1790e-05 6.2599 2.8246e-05 4.6029 3.3826e-05 3.4693

     | Show Table
    DownLoad: CSV
    Table 4.  Errors of BRIM under uniform for α=1.8,dt=5.
    m,n ds=2 ds=3 ds=4 ds=5
    8 1.4494e-02 4.3112e-03 2.0427e-03 1.0394e-03
    10 7.1283e-03 3.1802 1.4415e-03 4.9096 6.7844e-04 4.9395 2.0796e-04 7.2107
    12 3.9852e-03 3.1894 6.0013e-04 4.8062 2.7092e-04 5.0349 5.7744e-05 7.0278
    14 2.9746e-03 1.8973 1.4504e-03 - 6.3278e-04 - 3.3826e-05 3.4693

     | Show Table
    DownLoad: CSV

    For Tables 5 and 6, the errors of Chebyshev partition for s and t are presented. For α=1.8,dt=5, the convergence rate is O(hds) in Table 5, while in Table 6, the convergence rate is O(hdt), which agrees with our theorem.

    Table 5.  Errors of BRIM under Chebyshev partition with α=1.8,dt=5.
    m,n ds=2 ds=3 ds=4 ds=5
    8 1.9490e-02 4.4626e-03 7.1364e-04 1.0394e-03
    10 8.1224e-03 3.9224 5.4856e-04 9.3939 4.5776e-04 1.9899 2.0796e-04 7.2107
    12 3.9100e-03 4.0098 2.0389e-04 5.4284 1.0292e-04 8.1858 5.7744e-05 7.0278
    14 2.1533e-03 3.8697 6.4616e-05 7.4546 2.0776e-05 10.380 3.3826e-05 3.4693

     | Show Table
    DownLoad: CSV
    Table 6.  Errors of BRIM under Chebyshev partition α=1.8,ds=5.
    m,n dt=2 dt=3 dt=4 dt=5
    8 7.4953e-05 7.4985e-05 7.4823e-05 7.4663e-05
    10 4.4669e-05 2.3195 4.4515e-05 2.3369 4.4571e-05 2.3216 4.4558e-05 2.3133
    12 1.3867e-05 6.4158 1.4149e-05 6.2868 1.4072e-05 6.3235 1.4030e-05 6.3383
    14 4.0908e-06 7.9196 3.3018e-06 9.4397 3.4105e-06 9.1944 3.2595e-06 9.4687

     | Show Table
    DownLoad: CSV

    In the following table, α=1.2 is chosen to present numerical results. From Tables 7 and 8, the error of BRIM under uniform for dt=5 with different ds is given, and the convergence rate is O(h7). From Table 7, with space variable s,ds=5, the convergence rate is O(hdt), which agrees with our theorem.

    Table 7.  Errors of BRIM under uniform partition for α=1.2,dt=5.
    m,n ds=2 ds=3 ds=4
    8 9.3201e-04 9.4352e-04 9.4689e-04
    10 1.9149e-04 7.0919 1.8804e-04 7.2283 1.8804e-04 7.2443
    12 4.9055e-05 7.4696 5.2968e-05 6.9491 5.1073e-05 7.1490
    14 2.2723e-05 4.9923 2.0827e-05 6.0553 2.1242e-05 5.6910

     | Show Table
    DownLoad: CSV
    Table 8.  Errors of BRIM under uniform partition for α=1.2,ds=5.
    m,n dt=1 dt=2 dt=3 dt=4
    8 1.3533e-02 3.9763e-03 1.8858e-03 9.5103e-04
    10 6.6743e-03 3.1676 1.3072e-03 4.9852 6.1744e-04 5.0035 1.8959e-04 7.2270
    12 3.7253e-03 3.1983 5.3934e-04 4.8559 2.4381e-04 5.0965 5.1750e-05 7.1218
    14 2.5987e-03 2.3364 3.0681e-04 3.6595 1.3060e-04 4.0495 2.0609e-05 5.9726

     | Show Table
    DownLoad: CSV

    For Tables 9 and 10, the errors of BRIM under the Chebyshev partition for with α=1.2 are presented. For dt=5, the convergence rate is O(h7) in Table 9, while in Table 10, the convergence rate is O(hdt), which agrees with our theorem.

    Table 9.  Errors of BRIM under Chebyshev partition with α=1.2,dt=5.
    m,n ds=2 ds=3 ds=4 ds=5
    8 7.3421e-05 7.3288e-05 7.3555e-05 7.3699e-05
    10 4.5834e-05 2.1115 4.5522e-05 2.1341 4.6189e-05 2.0852 4.6041e-05 2.1083
    12 1.4338e-05 6.3739 1.4995e-05 6.0906 1.4208e-05 6.4662 1.4082e-05 6.4975
    14 2.8314e-06 10.523 3.3197e-06 9.7819 4.2225e-06 7.8714 4.4239e-06 7.5113

     | Show Table
    DownLoad: CSV
    Table 10.  Errors of BRIM under Chebyshev partition with α1=1.2,ds=5.
    m,n dt=1 dt=2 dt=3
    8 1.9844e-02 4.6715e-03 7.3397e-04
    10 8.1292e-03 3.9994 5.3572e-04 9.7050 4.7628e-04 1.9380
    12 3.9786e-03 3.9191 1.8927e-04 5.7066 9.7191e-05 8.7172
    14 2.4670e-03 3.1002 9.6933e-05 4.3409 3.4887e-05 6.6466

     | Show Table
    DownLoad: CSV

    Example 2. Consider the time-dependent fractional convection-diffusion equation

    {αϕ(t1,t2,s)sα2ϕ(t1,t2,,s)t212ϕ(t1,t2,,s)t22+ϕ(t1,t2,s)t1+ϕ(t1,t2,s)t2=f(t1,t2,s)(t1,t2,s)Ω2×[0,1]ϕ(t1,t2,0)=0,ϕ(t1,t2,0)s=0,t1,t2Ω2ϕ(t1,t2,s)|Γ=0,s[0,1], (5.2)

    with the analysis solution is

    ϕ(t1,t2,s)=s3+αsin(πt1)sin(πt2)

    with the initial condition

    ϕ(t1,t2,0)=0

    and

    f(t1,t2,s)=(Γ(4+α)s36+2π2s3+α)sin(πt1)sin(πt2)+πs3+α[cos(πt1)sin(πt2)+sin(πt1)cos(πt2)].

    In Figures 5 and 6, errors of m=n=13, Ω2=[0,1]×[0,1],α=1.2 and m=n=13,dt=ds=7, Ω2=[0,1]×[0,1],α=1.2 in Example 2(a) uniform and 2(b) nonuniform for the TFCD equation by the rational interpolation collocation methods are presented, respectively. From the Figure, we know that the precision can reach to 106 for both the uniform and nonuniform partition.

    Figure 5.  Errors of m=n=l=13, Ω2=[0,1]×[0,1],α=1.2 in Example 2 (a) uniform; (b) nonuniform.
    Figure 6.  Errors of m=n=l=13,dt1=dt2=ds=6, Ω2=[0,1]×[0,1],α=1.2 in Example 2 (a) uniform; (b) nonuniform.

    In Figures 7 and 8, the errors of m=n=13, Ω2=[0,1]×[0,1],α=1.9 and m=n=13,dt=ds=6,α=1.9, Ω2=[0,1]×[0,1] in Example 2(a) uniform and 2(b) nonuniform for the TFCD equation by rational interpolation collocation methods are presented, respectively. From the figure, we know that the precision can reach to 106 for both the uniform and nonuniform partition.

    Figure 7.  Errors of m=n=l=13, Ω2=[0,1]×[0,1],α=1.9 in Example 2 (a) uniform; (b) nonuniform.
    Figure 8.  Errors of m=n=l=13,dt=ds=6, Ω2=[0,1]×[0,1],α=1.8 in Example 2 (a) uniform; (b) nonuniform.

    In Table 11, the errors of the TFCD equation with dt1=dt2=ds=5,α=1.9 for substitution methods and additional methods are presented, and there are nearly no differences for the two methods. Compared with two methods, the additional method is more simple than the substitution methods. In the following, we chose the substitution method to deal with the boundary condition.

    Table 11.  Errors of TFCD equation with dt1=dt2=ds=5,α=1.9.
    method of substitution method of additional
    uniform nonuniform uniform nonuniform
    8 7.0419e-04 3.3178e-04 3.1465e-03 3.3304e-03
    10 3.3310e-04 1.0079e-04 9.2704e-04 3.2072e-04
    12 1.8129e-04 3.1367e-05 5.3770e-04 1.0461e-04
    14 1.0696e-04 1.3069e-05 3.2444e-04 2.7111e-05

     | Show Table
    DownLoad: CSV

    From Tables 12 and 13, the error of BRIM under non-uniform for α=1.2,ds=5 with different dt1,dt2 are given, and the convergence rate is O(hd1). From Table 13, with space variable uniform for α=1.2,dt1=dt2=5, the convergence rate is O(hds), which we will investigate in future paper.

    Table 12.  Errors of non-uniform with α=1.2,ds=5.
    m,n,l dt1=dt2=1 dt1=dt2=2 dt1=dt2=3 dt1=dt2=4
    8 2.7562e-02 1.2846e-02 2.8232e-03 2.1145e-04
    10 2.4880e-02 0.4586 4.2585e-03 4.9481 4.1631e-04 8.5782 4.1373e-04 -
    12 1.3801e-02 3.2323 2.2876e-03 3.4084 9.6620e-05 8.0115 1.0619e-04 7.4594
    14 1.0876e-02 1.5456 1.2425e-03 3.9594 4.6241e-05 4.7805 3.9039e-05 6.4913

     | Show Table
    DownLoad: CSV
    Table 13.  Errors of non-uniform with α=1.2,dt1=dt2=5.
    m,n,l ds=2 ds=3 ds=4 ds=5
    8 1.3243e+00 7.8057e-02 1.5961e-02 6.2422e-04
    10 7.3310e-01 2.6500 3.5876e-02 3.4837 4.9632e-03 5.2349 3.0553e-04 3.2017
    12 6.2810e-01 0.8479 2.2361e-02 2.5930 2.1901e-03 4.4870 1.1816e-04 5.2105
    14 5.5624e-01 0.7881 1.5276e-02 2.4719 1.1022e-03 4.4542 6.8114e-05 3.5737

     | Show Table
    DownLoad: CSV

    For Tables 14 and 15, the errors of the uniform partition for s and t are presented. For α=1.2,ds=5, the convergence rate is O(hds) in Table 14, while in Table 15, the convergence rate is O(hdt1), which agrees with our theorem.

    Table 14.  Errors of uniform with α=1.2,dt1=dt2=5.
    m,n,l ds=2 ds=3 ds=4 ds=5
    8 1.4288e+00 7.6992e-01 7.8669e-02 2.0025e-03
    10 3.3357e-01 6.5191 1.2495e+00 3.3837e-02 3.7810 1.0038e-03 3.0947
    12 1.4418e-01 4.6005 2.8110e+00 1.6731e-02 3.8627 5.9571e-04 2.8621
    14 1.0264e-01 2.2045 4.1671e+01 1.0120e-02 3.2616 5.0537e-04 1.0670

     | Show Table
    DownLoad: CSV
    Table 15.  Errors of uniform with α1=1.2,ds=5.
    m,n,l dt1=dt2=1 dt1=dt2=2 dt1=dt2=3 dt1=dt2=4
    8 1.2826e-02 5.7354e-03 1.5229e-03 1.2495e-03
    10 9.0437e-03 1.5660 2.9311e-03 3.0082 4.9942e-04 4.9966 5.6185e-04 3.5819
    12 6.2085e-03 2.0631 1.6990e-03 2.9911 2.0744e-04 4.8189 2.9431e-04 3.5465
    14 4.8193e-03 1.6431 1.0705e-03 2.9963 1.1045e-04 4.0887 1.9707e-04 2.6017

     | Show Table
    DownLoad: CSV

    In the following table, α=1.9 is chosen to present numerical results. From Tables 16 and 17, the error of BRIM under uniform for ds=5 with different dt1,dt2 are given, and the convergence rate is O(hdt1). From Table 17, with space variable dt1=dt2=5, the convergence rate is O(hds1), which agrees with our theorem.

    Table 16.  Errors of uniform with α=1.9,ds=5.
    m,n,l dt1=dt2=2 dt1=dt2=3 dt1=dt2=4 dt1=dt2=5
    8 7.2024e-03 4.2245e-03 1.1282e-03 7.7258e-04
    10 4.6350e-03 1.9754 2.3361e-03 2.6550 4.1889e-04 4.4402 3.3536e-04 3.7399
    12 3.2040e-03 2.0251 1.4242e-03 2.7142 1.8938e-04 4.3540 1.8214e-04 3.3481
    14 2.3575e-03 1.9902 9.3114e-04 2.7567 1.0609e-04 3.7595 1.0722e-04 3.4378

     | Show Table
    DownLoad: CSV
    Table 17.  Errors of uniform with α=1.9,dt1=dt2=5.
    m,n,l ds=1 ds=2 ds=3 ds=4
    8 7.1413e-01 1.9907e-01 6.9366e-02 1.2212e-03
    10 7.5039e-01 1.7041e-01 0.6966 4.4086e-02 2.0312 8.0096e-04 1.8900
    12 7.7490e-01 1.4576e-01 0.8571 3.0184e-02 2.0778 5.3284e-04 2.2356
    14 7.8155e-01 1.2601e-01 0.9444 2.1918e-02 2.0758 3.6584e-04 2.4392

     | Show Table
    DownLoad: CSV

    For Tables 18 and 19, the errors of BRIM under thev Chebyshev partition for with α=1.9 are presented. For ds=5, the convergence rate is O(ht1) in Table 18, while in Table 19, the convergence rate is O(hds), which agrees with our theorem.

    Table 18.  Errors of non-uniform with α1=1.9,ds=5.
    m,n,l dt1=dt2=2 dt1=dt2=3 dt1=dt2=4 dt1=dt2=5
    8 1.8544e-02 9.4605e-03 1.8420e-03 3.1671e-04
    10 1.4747e-02 1.0267 3.2891e-03 4.7346 3.5472e-04 7.3821 2.6826e-04 0.7440
    12 8.6541e-03 2.9234 1.4864e-03 4.3563 1.0556e-04 6.6478 7.3391e-05 7.1092
    14 5.9605e-03 2.4189 8.7234e-04 3.4574 3.7193e-05 6.7671 1.8804e-05 8.8340

     | Show Table
    DownLoad: CSV
    Table 19.  Errors of non-uniform with α=1.9,dt1=dt2=5.
    m,n,l ds=2 ds=3 ds=4 ds=5
    8 5.8112e-01 1.1023e-01 2.9033e-02 6.2495e-04
    10 6.2713e-01 - 7.3871e-02 1.7937 1.2478e-02 3.7842 2.6071e-04 3.9179
    12 6.4611e-01 - 5.1865e-02 1.9399 6.0291e-03 3.9897 1.0664e-04 4.9032
    14 6.5178e-01 - 3.7744e-02 2.0616 3.1919e-03 4.1257 4.9371e-05 4.9957

     | Show Table
    DownLoad: CSV

    In this paper, BRIM is used to solve the TFCD equation. The singularity of fractional derivative is overcome by thre integral to the density function from the singular kernel. For arbitrary fractional derivative new Gauss formula is constructed to simply calculate it. For the Diriclet boundary condition, the TFCD equation is changed to discrete the TFCD equation and the matrix equation. In the future, the TFCD equation with the Nuemann condition can be solved by BRIM, and a high dimensional TFCD equation can be studied by our methods.

    The work of Jin Li was supported by Natural Science Foundation of Shandong Province (Grant No. ZR2022MA003).

    The authors declare that they have no conflicts of interest.



    [1] C. D. Meyer, The role of the group generalized inverse in the theory of finite Markov chains, SIAM Review., 17 (1975), 443–464. https://doi.org/10.1137/1017044 doi: 10.1137/1017044
    [2] C. D. Meyer, The condition number of a finite Markov chains and perturbation bounds for the limitimg probabilities, SIAM J. Alg. Dis. Methods, 1 (1980), 273–283. https://doi.org/10.1137/0601031 doi: 10.1137/0601031
    [3] C. D. Meyer, R. J. Plemmons, Convergent powers of a matrix with applications to iterative methods for singular systems of linear systems, SIAM J. Numer. Anal., 14 (1977), 699–705. https://doi.org/10.1137/0714047 doi: 10.1137/0714047
    [4] Q. Xu, C. Song, L. He, Representations for the Drazin inverse of an anti-triangular block operator matrix E with ind(E)2, Linear Multilinear Algebra, 66 (2018), 1026–1045. https://doi.org/10.1080/03081087.2017.1335688 doi: 10.1080/03081087.2017.1335688
    [5] D. Zhang, D. Mosić, T. Tam, On the existence of group inverses of Peirce corner matrices, Linear Algebra Appl., 582 (2019), 482–498. https://doi.org/10.1016/j.laa.2019.07.033 doi: 10.1016/j.laa.2019.07.033
    [6] S. L. Campbell, C. D. Meyer, Generalized inverses of linear Transformations, London, Pitman, 1979, Reprint, Dover, New York, 1991.
    [7] I. Kyrchei, Explicit formulas for determinantal representations of the Drazin inverse solutions of some matrix and differential matrix equations, Appl. Math. Comput., 219 (2013), 7632–7644. https://doi.org/10.1016/j.amc.2013.01.050 doi: 10.1016/j.amc.2013.01.050
    [8] I. Kyrchei, Determinantal representations of the Drazin inverse over the quaternion skew field with applications to some matrix equations, Appl. Math. Comput., 238 (2014), 193–207. https://doi.org/10.1016/j.amc.2014.03.125 doi: 10.1016/j.amc.2014.03.125
    [9] J. Rafael Sendra, J. Sendra, Symbolic computation of Drazin inverses by specializations, J. Comput. Anal. Appl., 301 (2016), 201–212. https://doi.org/10.1016/j.cam.2016.01.059 doi: 10.1016/j.cam.2016.01.059
    [10] P. S. Stanimirović, V. N. Katsikis, S. Srivastava, D. Pappas, A class of quadratically convergent iterative methods, RACSAM, 113 (2019), 3125–3146. https://doi.org/10.1007/s13398-019-00681-w doi: 10.1007/s13398-019-00681-w
    [11] P. S. Stanimirović, M. D. Petković, D. Gerontitis, Gradient neural network with nonlinear activation for computing inner inverses and the Drazin inverse, Neural Process Lett, 48 (2018), 109–133. https://doi.org/10.1007/s11063-017-9705-4 doi: 10.1007/s11063-017-9705-4
    [12] D. S. Djordjević, P. S. Stanimirović, On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math. J., 51 (2001), 617–634. https://doi.org/10.1023/A:1013792207970 doi: 10.1023/A:1013792207970
    [13] E. Dopazo, M. F. Martínez-Serrano, Further results on the representation of the Drazin inverse of a 2×2 block matrix, Linear Algebra Appl., 432 (2010), 1896–1904.
    [14] R. E. Hartwig, X. Li, Y. Wei, Representations for the Drazin inverse of a 2×2 block matrix, SIAM J. Matrix Anal. Appl., 27 (2006), 757–771. https://doi.org/10.1137/040606685 doi: 10.1137/040606685
    [15] M. Catral, D. D. Olesky, P. Van Den Driessche, Block representations of the Drazin inverse of a bipartite matrix, Electron. J. Linear Algebra, 18 (2009), 98–107. https://doi.org/10.13001/1081-3810.1297 doi: 10.13001/1081-3810.1297
    [16] A. S. Cvetković, G. V. Milovanović, On Drazin inverse of operator matrices, J. Math. Anal. Appl., 375 (2011), 331–335. https://doi.org/10.1016/j.jmaa.2010.08.080 doi: 10.1016/j.jmaa.2010.08.080
    [17] L. Guo, J. Chen, H. Zou, Representations for the Drazin inverse of the sum of two matrices and its applications, Bull. Iran. Math. Soc., 45 (2019), 683–699. https://doi.org/10.1007/s41980-018-0159-x doi: 10.1007/s41980-018-0159-x
    [18] C. Bu, K. Zhang, The explicit representations of the Drazin inverses of a class of block matrices, Electron. J. Linear Algebra, 20 (2010), 406–418. https://doi.org/10.13001/1081-3810.1384 doi: 10.13001/1081-3810.1384
    [19] C. Bu, C. Feng, S. Bai, Representations for the Drazin inverses of the sum of two matrices and some block matrices, Appl. Math. Comput., 218 (2012), 10226–10237. https://doi.org/10.1016/j.amc.2012.03.102 doi: 10.1016/j.amc.2012.03.102
    [20] C. Bu, J. Zhao, J. Tang, Representation of the Drazin inverse for special block matrix, Appl. Math. Comput., 217 (2011), 4935–4943. https://doi.org/10.1016/j.amc.2010.11.042 doi: 10.1016/j.amc.2010.11.042
    [21] N. Castro-González, E. Dopazo, Representations of the Drazin inverse for a class of block matrices, Linear Algebra Appl., 400 (2005), 253–269. https://doi.org/10.1016/j.laa.2004.12.027 doi: 10.1016/j.laa.2004.12.027
    [22] C. Deng, Generalized Drazin inverses of anti-triangular block matrices, J. Math. Anal. Appl., 368 (2010), 1–8. https://doi.org/10.1016/j.jmaa.2010.03.003 doi: 10.1016/j.jmaa.2010.03.003
    [23] E. Dopazo, M. F. Martínez-Serrano, J. Robles, Block representations for the Drazin inverse of anti-triangular matrices, Filomat, 30 (2016), 3897–3906. https://doi.org/10.2298/FIL1614897D doi: 10.2298/FIL1614897D
    [24] J. Huang, Y. Shi, A. Chen, The representation of the Drazin inverse of anti-triangular operator matrices based on resolvent expansions, Appl. Math. Comput., 242 (2014), 196–201. https://doi.org/10.1016/j.amc.2014.05.053 doi: 10.1016/j.amc.2014.05.053
    [25] X. Liu, H. Yang, Further results on the group inverses and Drazin inverses of anti-triangular block matrices, Appl. Math. Comput., 218 (2012), 8978–8986. https://doi.org/10.1016/j.amc.2012.02.058 doi: 10.1016/j.amc.2012.02.058
    [26] C. Deng, Y. Wei, A note on the Drazin inverse of an anti-triangular matrix, Linear Algebra Appl., 431 (2009), 1910–1922. https://doi.org/10.1016/j.laa.2009.06.030 doi: 10.1016/j.laa.2009.06.030
    [27] C. Bu, K. Zhang, J. Zhao, Representation of the Drazin inverse on solution of a class singular differential equations, Linear Multilinear Algebra, 59 (2011), 863–877. https://doi.org/10.1080/03081087.2010.512291 doi: 10.1080/03081087.2010.512291
    [28] P. Patrício, R. E. Hartwig, The (2, 2, 0) Drazin inverse problem, Linear Algebra Appl., 437 (2012), 2755–2772. https://doi.org/10.1016/j.laa.2012.07.008
    [29] D. Zhang, D. Mosić, Explicit formulae for the generalized Drazin inverse of block matrices over a Banach algebra, Filomat, 32 (2018), 5907–5917. https://doi.org/10.2298/FIL1817907Z doi: 10.2298/FIL1817907Z
    [30] R. E. Cline, An application of representation for the generalized inverse of a matrix, MRC Technical Report 592, 1965.
    [31] R. E. Hartwig, J. M. Shoaf, Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices, J. Aust. Math. Soc., 24 (1977), 10–34. https://doi.org/10.1017/S1446788700020036 doi: 10.1017/S1446788700020036
    [32] C. D. Meyer, N. J. Rose, The index and the Drazin inverse of block triangular matrices, SIAM J. Appl. Math., 33 (1977), 1–7. https://doi.org/10.1137/0133001 doi: 10.1137/0133001
    [33] H. Yang, X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math., 235 (2011), 1412–1417. https://doi.org/10.1016/j.cam.2010.08.027 doi: 10.1016/j.cam.2010.08.027
  • This article has been cited by:

    1. Yan Chen, Xindong Zhang, Xian-Ming Gu, A High Accuracy Numerical Method Based on Interpolation Technique for Time-Fractional Advection-Diffusion Equations, 2024, 2024, 2314-4785, 1, 10.1155/2024/2740720
    2. Yones Esmaeelzade Aghdam, Hamid Mesgarani, Zeinab Asadi, Van Thinh Nguyen, Investigation and analysis of the numerical approach to solve the multi-term time-fractional advection-diffusion model, 2023, 8, 2473-6988, 29474, 10.3934/math.20231509
    3. Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation, 2024, 304, 00219045, 106106, 10.1016/j.jat.2024.106106
    4. Xindong Zhang, Yan Chen, Leilei Wei, Sunil Kumar, Numerical Simulation Based on Interpolation Technique for Multi-Term Time-Fractional Convection–Diffusion Equations, 2024, 8, 2504-3110, 687, 10.3390/fractalfract8120687
    5. Shuang Wang, FanFan Chen, Chunlian Liu, The existence of periodic solutions for nonconservative superlinear second order ODEs: a rotation number and spiral analysis approach, 2025, 33, 2688-1594, 50, 10.3934/era.2025003
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1688) PDF downloads(116) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog