In this paper, we study symmetry properties of stable solutions to the Lane-Emden equation
$ \Delta u+|u|^{p-1}u = 0\quad{\rm{in}}\quad\mathbb{R}^{n} $
with $ n\geq 11 $, $ p $ in a suitable range and the Liouville equation
$ \Delta u+e^{u} = 0\quad{\rm{in}}\quad\mathbb{R}^{n} $
with $ n = 10 $.
Citation: Yong Liu, Kelei Wang, Juncheng Wei, Ke Wu. Qualitative properties of stable solutions to some supercritical problems[J]. Electronic Research Archive, 2022, 30(5): 1668-1690. doi: 10.3934/era.2022084
In this paper, we study symmetry properties of stable solutions to the Lane-Emden equation
$ \Delta u+|u|^{p-1}u = 0\quad{\rm{in}}\quad\mathbb{R}^{n} $
with $ n\geq 11 $, $ p $ in a suitable range and the Liouville equation
$ \Delta u+e^{u} = 0\quad{\rm{in}}\quad\mathbb{R}^{n} $
with $ n = 10 $.
[1] | B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure. Appl. Math., 34 (1981), 525–598. https://doi.org/10.1002/cpa.3160340406 doi: 10.1002/cpa.3160340406 |
[2] | L. Caffarelli, B. Gidas, J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure. Appl. Math., 42 (1989), 271–297. https://doi.org/10.1002/cpa.3160420304 doi: 10.1002/cpa.3160420304 |
[3] | W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615–622. https://doi.org/10.1215/s0012-7094-91-06325-8 doi: 10.1215/s0012-7094-91-06325-8 |
[4] | H. Zou, Symmetry of positive solutions of $\Delta u+u^{p} = 0$ in $\mathbb{R}^{n}$, J. Differ. Equ., 120 (1995), 46–88. https://doi.org/10.1006/jdeq.1995.1105 doi: 10.1006/jdeq.1995.1105 |
[5] | Z. Guo, On the symmetry of positive solutions of the Lane Emden equation with supercritical exponent, Adv. Differ. Equ., 7 (2002), 641–666. |
[6] | Z. Guo, X. Huang, F. Zhou, Radial symmetry of entire solutions of a bi-harmonic equation with exponential nonlinearity, J. Funct. Anal., 268 (2015), 1972–2004. https://doi.org/10.1016/j.jfa.2014.12.010 doi: 10.1016/j.jfa.2014.12.010 |
[7] | C. Gui, W.-M. Ni, X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $\mathbb{R}^{n}$, Comm. Pure. Appl. Math., 45 (1992), 1153–1181. https://doi.org/10.1002/cpa.3160450906 doi: 10.1002/cpa.3160450906 |
[8] | N. Ghoussoub, C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481–499. https://doi.org/10.1007/s002080050196 doi: 10.1007/s002080050196 |
[9] | L. Ambrosio, X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbb{R}^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725–739. https://doi.org/10.1090/S0894-0347-00-00345-3 doi: 10.1090/S0894-0347-00-00345-3 |
[10] | O. Savin, Regularity of flat level sets in phase transitions, Ann. Math., 169 (2009), 41–78. https://doi.org/10.4007/annals.2009.169.41 doi: 10.4007/annals.2009.169.41 |
[11] | M. Del Pino, M. Kowalczyk, J. Wei, On De Giorgi's conjecture in dimension $n \geq 9$. Ann. of Math., 174 (2011), 1485–1569. http://doi.org/10.4007/annals.2011.174.3.3 doi: 10.4007/annals.2011.174.3.3 |
[12] | A. Bahri, P.-L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure. Appl. Math., 45 (1992), 1505–1215. https://doi.org/10.1002/cpa.3160450908 doi: 10.1002/cpa.3160450908 |
[13] | A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbb{R}^{n}$, J. Math. Pures Appl., 87 (2007), 537–561. https://doi.org/10.1016/j.matpur.2007.03.001 doi: 10.1016/j.matpur.2007.03.001 |
[14] | L. Damascelli, A. Farina, B. Sciunzi, E. Valdinoci, Liouville results for $m-$Laplace equations of Lane-Emden-Fowler type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1099–1119. https://doi.org/10.1016/J.ANIHPC.2008.06.001 doi: 10.1016/J.ANIHPC.2008.06.001 |
[15] | L. Dupaigne, A. Farina, Stable solutions of $-\Delta u = f(u)$ in $\mathbb{R}^n$, J. Eur. Math. Soc., 12 (2010), 855–882. https://doi.org/10.4171/JEMS/217 doi: 10.4171/JEMS/217 |
[16] | A. Farina, Some symmetry results and Liouville-type theorems for solutions to semilinear equations, Nonlinear Anal., 121 (2015), 223–229. https://doi.org/10.1016/j.na.2015.02.004 doi: 10.1016/j.na.2015.02.004 |
[17] | L. Dupaigne, Stable solutions of elliptic partial differential equations, Monographs and Surveys in Pure and Applied Mathematics Vol. 143, Chapman and Hall, 2011. https://doi.org/10.1201/b10802 |
[18] | J. D$\acute{a}$vila, L. Dupaigne, K. Wang, J. Wei, A monotonicity formula and a Liouville type theorem for a fourth order supercritical problem, Adv. Math., 258 (2014), 240–285. https://doi.org/10.1016/j.aim.2014.02.034 doi: 10.1016/j.aim.2014.02.034 |
[19] | K. Wang, Partial regularity of stable solutions to the supercritical equations and its applications, Nonlinear Anal., 75 (2012), 5238–5260. https://doi.org/10.1016/j.na.2012.04.041 doi: 10.1016/j.na.2012.04.041 |
[20] | A. Farina, Stable solutions of $-\Delta u = e^{u}$ on $\mathbb{R}{n}$, C. R. Math. Acad. Sci. Paris, 345 (2007), 63–66. https://doi.org/10.1016/j.crma.2007.05.021 doi: 10.1016/j.crma.2007.05.021 |
[21] | H. Chan, J. Wei, On De Giorgi's conjecture: Recent progress and open problems, Sci. China Math., 61 (2018), 1926–1946. https://doi.org/10.1007/s11425-017-9307-4 doi: 10.1007/s11425-017-9307-4 |
[22] | E. N. Dancer, A. Farina, On the classification of solutions of $-\Delta u = e^u$ on $\mathbb{R}^N$: stability outside a compact set and applications, Proc. Amer. Math. Soc., 137 (2009), 1333–1338. https://doi.org/10.1090/S0002-9939-08-09772-4 doi: 10.1090/S0002-9939-08-09772-4 |
[23] | M.-F. Bidaut-Véron, L. Véron, Nonliner elliptic equations on compact Riemannian manifolds and asymptoticss of Emden equations, Invent. Math., 106 (1991), 489–539. https://doi.org/10.1007/BF01232442 doi: 10.1007/BF01232442 |
[24] | J. R. Licois, L. Véron, A class of nonlinear conservative elliptic equations in cylinders, Ann. Sc. Norm. Super. Pisa Cl Sci., 26 (1998), 249–283. |
[25] | A. Farina, L. Mari, E. Valdinoci, Splitting theorems, symmetry results and overdetermined problems for Riemannian manifolds, Comm. Partial Differ. Equ., 38 (2013), 1818–1862. https://doi.org/10.1080/03605302.2013.795969 doi: 10.1080/03605302.2013.795969 |
[26] | A. Farina, Y. Sire, E. Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds, J. Geom. Anal., 23 (2013), 1158–1172. https://doi.org/10.1007/s12220-011-9278-9 doi: 10.1007/s12220-011-9278-9 |
[27] | J. Dolbeault, M. J. Esteban, M. Loss, Nonlinear flows and rigidity results on compact manifolds, J. Funct. Anal., 267 (2014), 1338–1363. https://doi.org/10.1016/j.jfa.2014.05.021 doi: 10.1016/j.jfa.2014.05.021 |
[28] | D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, 1983. https://doi.org/10.1201/b10802 |
[29] | E. N. Dancer, Z. Guo, J. Wei, Non-radial singular solutions of the Lane-Emden equation in $\mathbb{R}^{n}$, Indiana Univ. Math. J., 61 (2012), 1971–1996. https://doi.org/10.1512/iumj.2012.61.4749 doi: 10.1512/iumj.2012.61.4749 |
[30] | Y. Xiao, Some Hardy inequalities on the sphere, J. Math. Inequal., 10 (2016), 793–805. https://doi.org/10.7153/jmi-10-64 doi: 10.7153/jmi-10-64 |
[31] | H. Berestycki, L. Nirenberg, S. R. S. Varadhan, The principal eigenvalue and maximum principle for second order elliptic operators in general domain, Commun. Pure. Appl. Math., 47 (1994), 47–92. https://doi.org/10.1002/cpa.3160470105 doi: 10.1002/cpa.3160470105 |
[32] | K. Wang, Stable and finite Morse index solutions of Toda system, J. Differ. Equ., 268 (2019), 60–79. https://doi.org/10.1016/j.jde.2019.08.006 doi: 10.1016/j.jde.2019.08.006 |
[33] | K. Wang, Partial regularity of stable solutions to the Emden equation, Calc. Var. Partial Differ. Equ., 44 (2012), 601–610. https://doi.org/10.1007/s00526-011-0446-3 doi: 10.1007/s00526-011-0446-3 |