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Abstract: In this paper, we study symmetry properties of stable solutions to the Lane-Emden equation

∆u + |u|p−1u = 0 in Rn

with n ≥ 11, p in a suitable range and the Liouville equation

∆u + eu = 0 in Rn

with n = 10.
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1. Introduction

In this paper, we consider the Lane-Emden equation

∆u + |u|p−1u = 0 in Rn. (1.1)

and the equation
∆u + eu = 0 in Rn. (1.2)

The structures of the positive solutions of (1.1) and (1.2) have been studied intensively in the last
several years. When n = 3, (1.1) arises in the stellar structure in astrophysics. When n = 4, (1.1) is
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relevant to the famous Yang-Mills equations. When n = 2, (1.2) is an interesting problem in differential
geometry and is known as the “Prescribing Gaussian Curvature” problem.

For Eq (1.1), the Sobolev exponent

ps(n) =
{
+∞ if 1 ≤ n ≤ 2,
n+2
n−2 if n ≥ 3

plays a central role in the solvability question. In the subcritical case 1 < p < ps(n), it was established
by Gidas and Spruck in their celebrated work [1] that (1.1) has no positive solution. If p = (n+2)/(n−2),
then (1.1) is a special case of the Yamabe problem in conformal geometry. In [2], using the asymptotic
symmetry technique, Caffarelli, Gidas and Spruck were able to classify all the positive solutions of
(1.1) for n ≥ 3. They showed that any positive solutions of (1.1) can be written in the form

ux0,λ(x) = (
λ
√

n(n − 2)
λ2 + |x − x0|

2 )
n−2

2 ,

where λ > 0 and x0 is some point in Rn. In [3], Chen and Li proved the same result for (1.1) by
applying the moving plane method. In n = 2, Eq (1.2) is also classified in [3] under the additional
assumption that ∫

R2
eudx < ∞. (1.3)

It is proved in [3] that if u is a solution of (1.2) such that (1.3) holds, then

u = ln
32λ2

(4 + λ2|x − x0|
2)2

for some λ > 0 and some point x0 ∈ R
2.

In the supercritical case p > ps(n), it is more difficult to classify the positive solutions of (1.1). The
first result in this direction was given by Zou in [4]. It was proved in [4] that if ps(n) < p < ps(n − 1)
and if u is a positive solution of (1.1) with algebraic decay rate 2/(p − 1) at infinity, then u is radially
symmetric about some point x0 ∈ R

n. In [5], Guo generalized Zou’s result to p ≥ ps(n−1) by assuming
that

lim
|x|→+∞

|x|
2

p−1 u(x) ≡ [
2

p − 1
(n − 2 −

2
p − 1

)]
1

p−1 . (1.4)

Moreover, it is showed in [5] that (1.4) is a necessary and sufficient condition for a positive solution of
(1.1) to be radially symmetric about some point. The analogous result for second order equation (1.2)
is considered in [6]. It is proved in [6] that if n ≥ 4 and if u ∈ C2(Rn) is an entire solution of (1.2), then
u is radially symmetric about some point x0 ∈ R

n if and only if

lim
|x|→∞

u(x) + 2 ln(|x|) − ln(16) = 0.

If we focus on radial solutions, then the structure of positive solutions of (1.1) has been completely
classified in [7]. They showed that for any a > 0, (1.1) admits a unique positive radial solution
u = ua(r) with ua(0) = a. Moreover, no two positive radial solutions of (1.1) can intersect each other
when p > pJL(n), where pJL(n) is the exponent given by

pJL(n) =

 ∞ if 3 ≤ n ≤ 10,
(n−2)2−4n+8

√
n−1

(n−2)(n−10) if n ≥ 11.
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Another important topic is the classification of stable solutions. In general, a solution of the semi-
linear equation

∆u + f (u) = 0 in Rn

with f be a Lipschitz function is called stable if∫
Rn
|∇ψ|2dx −

∫
Rn

f ′(u)ψ2dx ≥ 0 ∀ψ ∈ C∞0 (Rn).

One of the most interesting questions concerning stable solutions is the following De Giorgi’s con-
jecture.

Conjecture: Let u be a bounded solution of the equation

∆u + u − u3 = 0 in Rn

such that ∂u
∂xn

> 0. Then the level sets of u are hyperplanes, at least if n ≤ 8.
De Giorgi’s conjecture was proved in dimension n = 2 by Ghoussoub and Gui in [8]. For n = 3, this

is proved by Ambrosio and Cabré in [9]. Savin proved in [10] that for 4 ≤ n ≤ 8, the above conjecture
is true under the additional limit condition that

u(x1, ..., xn)→ ±1 as xn → ±∞. (1.5)

For n > 9, a counterexample is constructed in [11]. The conjecture is still open for dimensions 4 ≤ n ≤
8 without the additional assumption (1.5).

For Eq (1.1), there are also some results concerning stable solutions. In [12], Liouville type results
for solutions with finite Morse index were established. By making a delicate use of the classical Moser
iteration method, Farina was able to classify finite Morse index solutions in his seminal paper [13]. It
was proved in [13] that if u ∈ C2(Rn) is a stable solution of (1.1) with 1 < p < pJL(n), then u ≡ 0.
Moreover, (1.1) admits a smooth positive, bounded, stable and radial solution for n ≥ 11, p > pJL(n).
Actually, it was showed in [13] that the radial solutions considered in [7] are stable when n ≥ 11, p >
pJL(n). The results in [13] also have a lot of generalizations, we refer to [14, 15, 16, 17, 18, 19]. As
for the classification of the stable solutions of (1.2), it was proved in [20] that for 1 ≤ n ≤ 9, there is
no stable solution u ∈ C2(Rn) of (1.2).

In spite of the above mentioned results, there are some intriguing problems which are still open.
In [21], the authors proposed the following conjecture, which is a natural extension of De Giorgi type
conjecture:

Conjecture: Let n ≥ 11, pJL(n) < p < pJL(n − 1), then all stable solutions to (1.1) must be radially
symmetric around some point.

Remark 1.1. When p > pJL(n−1), (1.1) has a positive stable solution which is not radially symmetric.
Indeed, let u be a positive radial stable solution of the equation

∆u + |u|p−1u = 0 in Rn−1

for p > pJL(n − 1) (see [13]), then u can also be viewed as a stable solution of the equation

∆u + |u|p−1u = 0 in Rn.

But it is obvious that this solution is not radially symmetric in Rn.
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Our first objective in this paper is to give some partial results toward the above conjecture. To state
our results in a more precise way, let us first introduce some new exponents. Let γ be a constant such
that

1 ≤ γ < 2p + 2
√

p(p − 1) − 1,
(p + γ)/(p − 1) > (n − 1)/2,

we define

α(p, γ, n) = {
[ (n−2)2γ−(γ+1)2β

4pγ−(γ+1)2 ]
p+γ
p−1 (n − 1)πn−1

2n−2−(p+γ) }
2

2(p+γ)−(p−1)(n−1) . (1.6)

Let
β(p, n) = (

2n + β
p

)
1

p−1 (1.7)

and let

cs(p, n) =
ωn−1(

(n−2)2
4 −β

p−1 )
2

p−1

ωn−2
4 ( 2

π
)n−2(β(p, n) − β

1
p−1 )

n+3
2 (α(p, n))−

p(n−1)
2

. (1.8)

We consider

p − 1 = (
(n − 2)2

4
−

2p
p − 1

(n − 2 −
2

p − 1
))cs(p, n) (1.9)

as a function with respect to the variable p. Let S be the set

S = {p : p is a solution of (1.9) such that p > pJL(n)}

and let p∗ be the infimum of S . We define

pcs(n) =
{

pJL(n − 1) if p∗ ≥ pJL(n − 1),
p∗ if p∗ < pJL(n − 1).

(1.10)

With the help of these numbers, we can give the statement of our first result.

Theorem 1.2. Let n ≥ 11, pJL(n) < p < pcs(n), where pcs(n) is defined in (1.10). Let u be a positive
stable solution of (1.1) such that u is even symmetric with respect to the planes {xi = 0}, i = 1, 2, · · · n,
then u is radially symmetric with respect to the origin.

In Theorem 1.2, we need the assumption that u is a positive solution of (1.1). But under suitable
conditions, we can show that stable solutions of (1.1) do not change sign. For our purpose, we use
p1(n) ≤ p2(n) ≤ p3(n) to denote the three numbers such that

(n − 1)(p − 1) =
(n − 2)2

4
−

2p
p − 1

(n − 2 −
2

p − 1
). (1.11)

We define

psi(n) =


pJL(n − 1) if p3(n) ≤ pJL(n),
pJL(n − 1) if p2(n) ≥ pJL(n − 1),
p2(n) if p3(n) > pJL(n) and p2(n) < pJL(n − 1).

(1.12)

Theorem 1.3. Let n ≥ 11, pJL(n) < p < psi(n), where psi(n) is defined in (1.12). Let u be a stable
solution of Eq (1.1), then u does not change sign. If u is a axially symmetric stable solution of (1.1),
then u does not change sign when pJL(n) < p < pJL(n − 1).
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Remark 1.4. By using MATLAB, we can give some examples for pcs(n) and psi(n).

n pJL(n) pcs(n) psi(n) pJL(n − 1)
n=12 3.9266499161 4.1229824119 6.9220245868 6.9220245868
n=13 2.9306913006 3.0772258656 3.9266499161 3.9266499161
n=14 2.4342585459 2.5559714732 2.9306913006 2.9306913006
n=15 2.1374347552 2.2443064930 2.4342585459 2.4342585459

For Eq (1.2), we have the following result.

Theorem 1.5. Let u be a smooth stable solution of Eq (1.2) for n = 10, then u is radially symmetric
with respect to some point in Rn.

Remark 1.6. If n ≥ 11, then Eq (1.2) has a smooth stable solution which is not radially symmetric.
For more discussions, we refer to [22].

The rest of the paper will be organized as follows. In section 2, we consider rigidity results on
the unit sphere for some second order equations. Rigidity results on compact manifolds have been
considered by several authors, see for instance [1, 23, 24, 25, 26, 27]. We point out that in the above
papers, the proof of the rigidity results depends heavily on the classical Bochner formula. In section 3,
we first use a monotonicity formula to study the qualitative properties of solutions. Then, by combing
the rigidity results and the qualitative properties of solutions, we can verify the assumption of Theo-
rem 1.1 in [5] and obtain the symmetry properties of stable solutions. In section 4, we give the prove
of Theorem 1.5.

Notation. In some situations, we will write a point x ∈ Rn as x = (r, θ), where (r, θ) is the spherical
coordinates and S n−1 ⊂ Rn is the unit sphere. In the rest of the paper, c will denote a positive constant
which may vary from line to line.

2. A second order equation on the unit sphere

In this section, we consider the equation

∆S n−1ϕ − βϕ + |ϕ|p−1ϕ = 0, (2.1)

where
β =

2
p − 1

(n − 2 −
2

p − 1
)

and ∆S n−1 is the Laplace-Beltrimi operator on the unit sphere. In the rest of this section, we will always
assume that n ≥ 11. The main result in this section is the following.

Theorem 2.1. Let γ be a constant such that

1 ≤ γ < 2p + 2
√

p(p − 1) − 1,
(p + γ)/(p − 1) > (n − 1)/2.

If pJL(n) < p < pcs(n) with pcs(n) be the number defined in (1.9) and if ϕ is a positive solution of (2.1)
such that (2.2) holds. Suppose ∫

S n−1
ϕΦidθ = 0, i = 1, 2 · · · , n

Electronic Research Archive Volume 30, Issue 5, 1668–1690.



1673

where Φi, i = 1, 2, · · · , n are the eigenfunctions of the operator −∆S n−1 corresponding to the eigenvalue
n − 1, then ϕ is a constant solution of Eq (2.1). If {ϕ − β

1
p−1 } has at least three connected components,

then the same result holds.

In order to prove Theorem 2.1, we need several lemmas.

Lemma 2.2. Let pJL(n) < p < pJL(n − 1) and let ϕ ∈ H1(S n−1) be a weak solution of (2.1) such that∫
S n−1
|∇S n−1ψ|2dθ +

(n − 2)2

4

∫
S n−1

ψ2dθ ≥ p
∫

S n−1
|ϕ|p−1ψ2dθ (2.2)

for every ψ ∈ H1(S n−1), then ϕ ∈ C2(S n−1).

Proof. We take ψ = |ϕ|
γ−1

2 ϕ into (2.2), where γ is a positive constant which will be chosen later. Then

p
∫

S n−1
|ϕ|p+γdθ ≤

(n − 2)2

4

∫
S n−1
|ϕ|γ+1dθ +

∫
S n−1
|∇S n−1(|ϕ|

γ−1
2 ϕ)|2dθ. (2.3)

Multiplying the both sides of (2.1) by |ϕ|γ−1ϕ and integrating over S n−1, we can get that∫
S n−1
∇S n−1ϕ · ∇S n−1(|ϕ|γ−1ϕ)dθ + β

∫
S n−1
|ϕ|γ+1dθ =

∫
S n−1
|ϕ|p+γdθ. (2.4)

(2.4) is equivalent to

4γ
(γ + 1)2

∫
S n−1
|∇S n−1(|ϕ|

γ−1
2 ϕ)|2dθ + β

∫
S n−1
|ϕ|γ+1dθ =

∫
S n−1
|ϕ|p+γdθ. (2.5)

By combining (2.3) and (2.5) together, we can obtain that

[p −
(γ + 1)2

4γ
]
∫

S n−1
|ϕ|p+γdθ ≤ [

(n − 2)2

4
−

(γ + 1)2β

4γ
]
∫

S n−1
|ϕ|γ+1dθ. (2.6)

It is easy to check that

p −
(γ + 1)2

4γ
> 0

when 1 ≤ γ < 2p + 2
√

p(p − 1) − 1. By applying Hölder’s inequality, we have

[p −
(γ + 1)2

4γ
]
∫

S n−1
|ϕ|p+γdθ ≤ c(

∫
S n−1
|ϕ|p+γdθ)

γ+1
p+γ . (2.7)

It follows from (2.7) that
∫

S n−1 |ϕ|
p+γdθ is finite. By formula (5.10) in [13], we know that there exists a

constant γ such that (p + γ)/(p − 1) > (n − 1)/2. Therefore, |ϕ|p−1 ∈ Lq(S n−1) for some q > (n − 1)/2.
The standard regularity results in [28] imply that ϕ ∈ C2(S n−1). □

Lemma 2.3. Let pJL(n) < p < pJL(n− 1) and let ϕ ∈ C2(S n−1) be a positive solution of (2.1) such that
(2.2) holds, then

∥ϕ∥L∞(S n−1) ≤ α(p, γ, n), (2.8)

where γ is the constant used in the proof of Lemma 2.2 and α(p, γ, n) is the constant defined in (1.6).
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Proof. Let θ0 ∈ S n−1 be a point such that ϕ(θ0) = ∥ϕ∥L∞(S n−1) = η. By taking suitable orthogonal
transformation, we may assume that θ0 is the south pole. Let us introduce the following coordinates on
S n−1, 

θ1 = sin ξ sin ξn−2 · · · sin ξ2 sin ξ1,

θ2 = sin ξ sin ξn−2 · · · sin ξ2 cos ξ1,

θ3 = sin ξ sin ξn−2 · · · cos ξ2,

· · · ,

θn−1 = cos ξ,

where ξ ∈ [0, π), ξ1 ∈ [0, 2π), ξk ∈ [0, π) for k = 2, 3, · · · n − 2. The coordinate of the point θ0 is given
by (0, 0, · · · , 0). By (2.1), we know that ϕ satisfies the equation

1
sinn−2 ξ

d
dξ

(sinn−2 ξ
dϕ
dξ

(ξ)) +
1

sin2 ξ
∆S n−2ϕ − βϕ + ϕp = 0, (2.9)

where S n−2 is the unit sphere in Rn−1 and ∆S n−2 is the Laplace -Beltrami operator on S n−2. We define

ϕ̂(ξ) =
1

ωn−2

∫
S n−2

ϕ(ξ, θ′)dθ′,

where ωn−2 is the area of S n−2. It follows from (2.9) that ϕ̂ satisfies

1
sinn−2 ξ

d
dξ

(sinn−2 ξ
dϕ̂
dξ

(ξ)) − βϕ̂ +
1

ωn−2

∫
S n−2

ϕp(ξ, θ′)dθ′ = 0. (2.10)

By the Jensen’s inequality, we can get that

1
sinn−2 ξ

d
dξ

(sinn−2 ξ
dϕ̂
dξ

(ξ)) − βϕ̂ + ϕ̂p ≤ 0, in (0, π). (2.11)

Let ξ1 be the first point such that ϕ̂(ξ1) = η

2 . It follows from (2.11) that ϕ̂ is strictly decreasing in (0, ξ1).
We will focus on the case ξ1 <

π
2 since the case ξ1 ≥

π
2 can be dealt with similarly. Let γ be the constant

used in the proof of Lemma 2.2. By (2.10), we can obtain that

ϕ̂(ξ1) − ϕ̂(0) =
∫ ξ1

0

1
sinn−2 ξ

∫ ξ

0
sinn−2 τ[βϕ̂(τ) −

1
ωn−2

∫
S n−2

ϕp(τ, θ′)dθ′]dτdξ

≥ −ηp
∫ ξ1

0

1
sinn−2 ξ

∫ ξ

0
sinn−2 τdτdξ

≥ −
ξ2

1

2
ηp.

This implies ξ1 ≥ η
1−p

2 . By the above analysis, we can get that∫
{ξ≤ξ1}

ϕp+γdθ =
∫ ξ1

0

∫
S n−2

sinn−2 ξϕp+γ(ξ, θ′)dθ′dξ

≥ ωn−2

∫ ξ1

0
sinn−2 ξϕ̂p+γ(ξ)dξ

≥ ωn−2
2n−2−(p+γ)

(n − 1)πn−2η
p+γ+ (1−p)(n−1)

2 .

(2.12)

Electronic Research Archive Volume 30, Issue 5, 1668–1690.
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By Lemma 2.2, we know that ∫
S n−1

ϕp+γdθ ≤ [
(n−2)2

4 −
(γ+1)2

4γ β

p − (γ+1)2

4γ

]
p+γ
p−1ωn−1. (2.13)

We get from (2.12) and (2.13) that

η ≤ {

[
(n−2)2

4 −
(γ+1)2

4γ β

p− (γ+1)2
4γ

]
p+γ
p−1ωn−1(n − 1)πn−2

ωn−22n−2−(p+γ) }

1

p+γ+ (1−p)(n−1)
2

≤ {
[ (n−2)2γ−(γ+1)2β

4pγ−(γ+1)2 ]
p+γ
p−1 (n − 1)πn−1

2n−2−(p+γ) }
2

2(p+γ)−(p−1)(n−1) .

(2.14)

Hence (2.8) holds. □

Lemma 2.4. Let ϕ be a positive solution of (2.1) such that∫
S n−1

ϕΦidθ = 0 for i = 1, 2, · · · , n, (2.15)

where Φi, i = 1, 2, · · · , n are the eigenfunctions of the operator −∆S n−1 corresponding to the eigenvalue
n − 1, then

∥ϕ∥L∞(S n−1) ≥ (
2n + β

p
)

1
p−1 . (2.16)

Proof. We define
ϕ̃ = ϕ − ϕ,

where ϕ is given by

ϕ =
1

ωn−1

∫
S n−1

ϕdθ.

Then ϕ̃ satisfies the equation
∆S n−1 ϕ̃ − βϕ + ϕp = 0. (2.17)

Multiplying the both sides of (2.17) by ϕ̃ and using integration by part, we can get that∫
S n−1
|∇S n−1 ϕ̃|2dθ + β

∫
S n−1

ϕ̃2dθ −
∫

S n−1
(ϕp − ϕ

p
)(ϕ − ϕ)dθ = 0. (2.18)

By (2.15) and the definition of ϕ̃, we know that∫
S n−1

ϕ̃dθ = 0,∫
S n−1

ϕ̃Φidθ = 0, i = 1, 2 · · · , n.

By (2.18) and the Poincaré’s inequality, we have

2n
∫

S n−1
ϕ̃2dθ + β

∫
S n−1

ϕ̃2dθ − p∥ϕ∥p−1
L∞(S n−1)

∫
S n−1

ϕ̃2dθ ≤ 0. (2.19)
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If ϕ̃ , 0, then
2n + β − p∥ϕ∥p−1

L∞(S n−1) ≤ 0.

It follows that
∥ϕ∥L∞(S n−1) ≥ (

2n + β
p

)
1

p−1 , (2.20)

Hence (2.16) holds. □

Lemma 2.5. If ϕ is a positive solution of (2.1) such that {ϕ − β
1

p−1 , 0} has at least three connected
components, then

∥ϕ∥L∞(S n−1) ≥ (
2n + β

p
)

1
p−1 . (2.21)

Proof. The equation (2.1) can be written as

∆S n−1ϕ − β(ϕ − β
1

p−1 ) + ϕp − β
p

p−1 = 0. (2.22)

Since {ϕ − β
1

p−1 , 0} has at least three connected components, then there is a connected component Ω0

of {ϕ − β
1

p−1 , 0} such that the area of Ω0 is less than 1
3ωn−1. let 1Ω0 be the function defined by

1Ω0 =

{
1 in Ω0,

0 on S n−1\Ω0.

Multiplying the both sides of (2.22) by (ϕ − β
1

p−1 )1Ω0 and using integration by part, we can get that

−

∫
Ω1

|∇S n−1ϕ|2dθ − β
∫
Ω1

(ϕ − β
1

p−1 )2dθ +
∫
Ω1

(ϕp − β
p

p−1 )(ϕ − β
1

p−1 )dθ = 0. (2.23)

Let λ1(Ω0) be the first eigenvalue of the eigenvalue problem{
∆S n−1Φ + λΦ = 0 in Ω0,

Φ = 0 on ∂Ω0.

By (2.23) and the mean value theorem, we can get that

(−λ1(Ω0) − β + p∥ϕ∥p−1
L∞(S n−1))

∫
Ω1

(ϕ − β
1

p−1 )2dθ ≥ 0. (2.24)

It follows from (2.24) that
− λ1(Ω0) − β + p∥ϕ∥p−1

L∞(S n−1) ≥ 0. (2.25)

Since the area of Ω0 is less than 1
3ωn−1, where ωn−1 is the area of the unit sphere in Rn. By using

Schwartz symmetrization, we can get that

λ1(Ω0) ≥ 2n. (2.26)

It follows from (2.25) and (2.26) that

∥ϕ∥L∞(S n−1) ≥ (
2n + β

p
)

1
p−1 , (2.27)

Hence (2.21) holds. □
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Remark 2.6. We notice that
(p − 1)β = 2(n − 2 −

2
p − 1

) < 2n,

then
∥ϕ∥L∞(S n−1) ≥ (

2n + β
p

)
1

p−1 > β
1

p−1 .

Lemma 2.7. Let p be a constant such that pJL(n) < p < pJL(n − 1). There exists a positive constant c
such that if ϕ ∈ C2(S n−1) is a nonconstant solution of (2.1) for pJL(n) < p < p, then∫

S n−1
ϕ2dθ ≤ c

∫
S n−1
|∇S n−1ϕ|2dθ. (2.28)

Proof. Suppose (2.28) does not hold, then there exists a sequence {ϕm} such that ϕm satisfies

∆S n−1ϕm −
2

pm − 1
(n − 2 −

2
pm − 1

)ϕm + |ϕ|
pm−1ϕm = 0 (2.29)

and ∫
S n−1

ϕ2
mdθ ≥ m

∫
S n−1
|∇S n−1ϕm|

2dθ. (2.30)

Since −ϕm is also a solution of (2.29), without loss of generality, we can assume that

ϕm(θm) = max
θ∈S n−1

ϕm(θ) > 0. (2.31)

It follows from the proof of Lemma 2.2 that
∫

S n−1 ϕ
2
mdθ remains bounded. So (2.30) implies

lim
m→+∞

∫
S n−1
|∇S n−1ϕm|

2dθ = 0. (2.32)

By (2.8) and (2.32), we can get that there exist two constants p0 and c0 such that

lim
m→+∞

pm = p0, lim
m→+∞

ϕm = c0.

Moreover, c0 is a constant solution of (2.1) for p = p0. Therefore,

c0 = 0 or c0 = [
1

p0 − 1
(n − 2 −

2
p0 − 1

)]
1

p0−1 .

We get from (2.31) that
∆ϕm(θm) = (βm − ϕ

pm−1
m (θm))ϕm(θm) ≤ 0. (2.33)

Therefore,
ϕm(θm) ≥ (βm)

1
pm−1 . (2.34)

It follows from (2.34) that c0 is not zero. Let

ϕm = β
1

pm−1
m + ψm,
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then limm→+∞ ψm = 0 and ψm satisfies the equation

∆S n−1ψm + (pm − 1)βmψm + (ψm + β
1

pm−1
m )pm − β

pm
pm−1
m − pmβmψm = 0. (2.35)

It is easy to verify that

(ψm + β
1

pm−1
m )pm − β

pm
pm−1
m − pmβmψm ≤ c∥ψm∥

2
L∞(S n−1)

for some positive constant c independent of m. We define

vm =
ψm

∥ψm∥L∞(S n−1)
,

then vm satisfies

∆S n−1vm + (pm − 1)βmvm +
(ψm + β

1
pm−1
m )pm − β

pm
pm−1
m − pmβmψm

∥ψm∥L∞(S n−1)
= 0. (2.36)

Since
∥vm∥L∞(S n−1) = 1

and

lim
m→+∞

∥
(ψm + β

1
pm−1
m )pm − β

pm
pm−1
m − pmβmψm

∥ψm∥L∞(S n−1)
∥L∞(S n−1) = 0.

By standard elliptic estimates, we know that there exists a nontrivial function v∞ such that vm → v∞ in
H1(S n−1). Moreover, v∞ satisfies the equation

∆S n−1v∞ + (p0 − 1)β0v∞ = 0. (2.37)

Then we deduce that v∞ is a nontrivial eigenfunction of −∆S n−1 corresponding to the eigenvalue (p0 −

1)β0. On the other hand, it is easy to see that

(p0 − 1)β0 = 2(n − 2 −
2

p0 − 1
) < 2n

and pJL(n) > (n + 1)/(n − 3) when n ≥ 11. Therefore, (p0 − 1)β0 can not be an eigenvalue of −∆S n−1 .
By combining these two facts together, we obtain a contradiction. □

Next, we can give some estimates about the constant c in Lemma 2.7.

Lemma 2.8. Let pJL(n) < p < pJL(n − 1) and let ϕ be a positive solution of (2.1) such that

∥ϕ∥L∞(S n−1) ≥ (
2n + β

p
)

1
p−1 ,

then the constant c in Lemma 2.7 can be estimated by cs(p, n), where cs(p, n) is defined by (1.8).
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Proof. Multiplying the both sides of (2.1) by ϕ and integrating over S n−1, we can get that∫
S n−1
|∇S n−1ϕ|2dθ + β

∫
S n−1

ϕ2dθ =
∫

S n−1
|ϕ|p+1dθ. (2.38)

We take ψ = ϕ into (2.2), then∫
S n−1
|∇S n−1ϕ|2dθ +

(n − 2)2

4

∫
S n−1

ϕ2dθ ≥ p
∫

S n−1
|ϕ|p+1dθ. (2.39)

By (2.38) and (2.39), we can get that∫
S n−1

ϕp+1dθ ≤
(n−2)2

4 − β

p − 1

∫
S n−1

ϕ2dθ. (2.40)

By the Poincaré’s inequality, we know that∫
S n−1

ϕ2dθ ≤ ω
p−1
p+1

n−1(
∫

S n−1
ϕp+1dθ)

2
p+1 (2.41)

It follows from (2.40) and (2.41) that∫
S n−1

ϕ2dθ ≤ ωn−1(
(n−2)2

4 − β

p − 1
)

2
p−1 . (2.42)

In order to estimate the constant c in Lemma 2.7, we need to give a lower bound for
∫

S n−1 |∇S n−1ϕ|2dθ.
Since we have assumed that

∥ϕ∥L∞(S n−1) ≥ (
2n + β

p
)

1
p−1 = β(p, n),

then there exists a point θ0 such that ϕ(θ0) = β(p, n). By taking suitable orthogonal transformation, we
may assume that θ0 is the south pole. We use the coordinates used in the proof of Lemma 2.2. By (2.1),
we know that ϕ satisfies Eq (2.9). We define

ϕ̂(ξ) =
1

ωn−2

∫
S n−2

ϕ(ξ, θ′)dθ′,

then ϕ̂ satisfies (2.10) and (2.11). Let ξ1 be the first point such that

ϕ̂(ξ1) =
β(p, n) + β

1
p−1

2
.

We know from (2.11) that

ϕ̂(ξ) >
β(p, n) + β

1
p−1

2
in (0, ξ1).

We will assume that ξ1 <
π
2 since the case ξ1 <

π
2 can be dealt with similarly. By (2.10), we can get that

ϕ̂(ξ1) − ϕ̂(0) =
∫ ξ1

0

1
sinn−2 ξ

∫ ξ

0
sinn−2 τ[βϕ̂(τ) −

1
ωn−2

∫
S n−2

ϕp(τ, θ′)dθ′]dτdξ

≥ −(α(p, n))p
∫ ξ1

0

1
sinn−2 ξ

∫ ξ

0
sinn−2 τdτdξ

≥ −
ξ2

1

2
(α(p, n))p.
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We deduce that
ξ1 > (β(p, n) − β

1
p−1 )

1
2 (α(p, n))−

p
2 . (2.43)

Let
ϕ =

1
ωn−1

∫
S n−1

ϕdθ.

By (2.1) and the Jensen’s inequality, we can get that ϕ ≤ β
1

p−1 . Therefore,∫
S n−1

(ϕ − ϕ)2dθ

=

∫ π

0

∫
S n−2

sinn−2 ξ(ϕ − ϕ)2dθ′dξ

≥ ωn−2

∫ ξ1

0
sinn−2 ξ(ϕ̂ − ϕ)2dξ

≥
ωn−2

4(n − 1)
(
2
π

)n−2(β(p, n) − β
1

p−1 )
n+3

2 (α(p, n))−
p(n−1)

2 .

(2.44)

It follows from the Poincaré’s inequality that∫
S n−1
|∇S n−1ϕ|2dθ ≥

ωn−2

4
(
2
π

)n−2(β(p, n) − β
1

p−1 )
n+3

2 (α(p, n))−
p(n−1)

2 .

Therefore, ∫
S n−1 |∇S n−1ϕ|2dθ∫

S n−1 ϕ
2dθ

≥
ωn−1(

(n−2)2
4 −β

p−1 )
2

p−1

ωn−2
4 ( 2

π
)n−2(β(p, n) − β

1
p−1 )

n+3
2 (α(p, n))−

p(n−1)
2

.

By the above analysis, we know that (1.8) holds. □

Lemma 2.9. Let ϕ be a positive solution of (2.1) such that (2.2) holds. If

∥ϕ∥L∞(S n−1) ≥ (
2n + β

p
)

1
p−1 ,

then ϕ is a constant when pJL(n) < p < pcs(n), where pcs(n) is defined by (1.9).

Proof. By (2.38) and (2.39), we have

(p − 1)
∫

S n−1
|∇S n−1ϕ|2dθ ≤

∫
S n−1

(
(n − 2)2

4
− pβ)ϕ2dθ. (2.45)

Let ϕ be a nonconstant solution of (2.1) satisfying (2.2), we know from Lemma 2.7 that ϕ satisfies
(2.28). By combining (2.28) and (2.45) together, we can get that

(p − 1)
∫

S n−1
|∇S n−1ϕ|2dθ ≤ (

(n − 2)2

4
− pβ)cs(p, n)

∫
S n−1
|∇S n−1ϕ|2dθ. (2.46)

It follows from (2.46) that ∫
S n−1
|∇S n−1ϕ|2dθ = 0

when pJL(n) < p < pcs(n). Since we have assumed that ϕ is a nonconstant solution of (2.1), this is a
contradiction. □

Electronic Research Archive Volume 30, Issue 5, 1668–1690.



1681

Proof of Theorem 2.1: This result follows from Lemma 2.4, Lemma 2.5 and Lemma 2.9. □

Remark 2.10. In this section, we always assume that ϕ is positive. But we can prove that if ϕ is a
solution of (2.1) depends only on the variable ξ, then ϕ does not change sign. The proof of this fact
will be given in the appendix.

Remark 2.11. It is proved in [29] that if n ≥ 4 and (n + 1)/(n − 3) < p < pJL(n − 1), then (2.1) has a
nonconstant positive solution.

Remark 2.12. By Lemma 1 in [30], we have the following Hardy type inequality,∫
S n−1
|∇S n−1ϕ|2dθ +

(n − 2)2

4

∫
S n−1

ϕ2dθ ≥
(n − 3)2

4

∫
S n−1

ϕ2

sin2 ξ
dθ. (2.47)

The equation (2.1) has a singular solution which is given by

ϕ∗(ξ) = [
2

p − 1
(n − 3 −

2
p − 1

)]
1

p−1 (sin ξ)−
2

p−1 = β∗(sin ξ)−
2

p−1 .

Suppose ϕ∗ satisfies (2.2), then∫
S n−1
|∇S n−1ϕ|2dθ +

(n − 2)2

4

∫
S n−1

ϕ2dθ ≥ pβp−1
∗

∫
S n−1

ϕ2

sin2 ξ
dθ. (2.48)

If p = pJL(n − 1), then
2p

p − 1
(n − 3 −

2
p − 1

) =
(n − 3)2

4
.

Let us define

g(p) =
2p

p − 1
(n − 3 −

2
p − 1

),

then
g′(p) =

−2
(p − 1)2 (n − 5 −

4
p − 1

).

If p > (n−1)/(n−5), then g′(p) < 0. Therefore, the singular solution ϕ∗ satisfies (2.2) if p ≥ pJL(n−1).

3. Qualitative properties of stable solutions

In this section, we give the proof of Theorem 1.2 and Theorem 1.3.

Lemma 3.1. Let n ≥ 11, pJL(n) < p < psi(n), where psi(n) is defined in (1.12). If ϕ is a nontrivial
solution of (2.1) such that (2.2) holds, then ϕ does not change sign.

Proof. We assume that ϕ change sign. Without loss of generality, we can assume that there exists a
connected component Ω1 of {ϕ > 0} such that λ1(Ω1) ≥ n − 1, where λ1(Ω1) is the first eigenvalue of
the eigenvalue problem {

∆S n−1Φ + λΦ = 0 in Ω1,

Φ = 0 on ∂Ω1.
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Multiplying the both sides of (2.1) by ϕ and integrating over Ω1, we can get that∫
Ω1

|∇S n−1ϕ|2dθ + β
∫
Ω1

ϕ2dθ =
∫
Ω1

|ϕ|p+1dθ. (3.1)

We take ψ = u1Ω1 into (2.2), where 1Ω1 is the function defined by

1Ω1 =

{
1 in Ω1

0 on S n−1\Ω1.

Then ∫
Ω1

|∇S n−1ϕ|2dθ +
(n − 2)2

4

∫
Ω1

ϕ2dθ ≥ p
∫
Ω1

|ϕ|p+1dθ. (3.2)

By (3.1) and (3.2), we know that

(p − 1)
∫
Ω1

|∇S n−1ϕ|2dθ ≤
1

λ1(Ω1)

∫
Ω1

(
(n − 2)2

4
− pβ)|∇S n−1ϕ|2dθ. (3.3)

It follows that if pJL(n) < p < psi(n), then ϕ vanishes identically on Ω1. Since we have assumed that
ϕ > 0 on Ω1, this is a contradiction. □

Proof of Theorem 1.3: We consider the transform

u(r, θ) = r−
2

p−1 w(t, θ), t = ln r.

Since u satisfies (1.1), then w is a bounded solution of the equation

∂ttw + (n − 2 −
4

p − 1
)∂tw + ∆S n−1w −

2
p − 1

(n − 2 −
2

p − 1
)w + |w|p−1w = 0. (3.4)

We set
A = n − 2 −

4
p − 1

,

B = −
2

p − 1
(n − 2 −

2
p − 1

),

E(w) =
∫

S n−1

1
2
|∇S n−1w|2 −

B
2

w2 −
1

p + 1
|w|p+1dθ.

(3.5)

By (3.4), we get that

A
∫

S n−1
(∂tw)2dθ =

d
dt

[E(w)(t) −
1
2

∫
S n−1

(∂tw)2dθ]. (3.6)

By the estimates in [19], we can get that ∂tw, ∂ttw, |∇S n−1 | are uniformly bounded. Integrating (3.6) from
−s to s, we find

A
∫ s

−s

∫
S n−1

(∂tw)2dθdt < c (3.7)

for some constant c independent of s. Let s tend to +∞ in (3.7), then

A
∫ +∞

−∞

∫
S n−1

(∂tw)2dθdt = 0.
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Similar to the proof of Theorem 1.4 in [1], we can obtain that

lim
t→+∞

∫
S n−1

(∂tw)2dθ = 0. (3.8)

For any sequence {tk} such that tk → ∞ as k → ∞, we consider the translation of w defined by
wk(t, θ) = w(t + tk, θ). Then there exist a subsequence {wlk(t, θ)} and a function w∞(t, θ) such that
wlk(t, θ) → w∞(t, θ) in C2([−1, 1] × S n−1). By (3.8) and the dominated convergence theorem, we know
that there exists a function ϕ(θ) such that w∞(t, θ) = ϕ(θ). Moreover, ϕ is a solution of (2.1) such that
(2.2) holds. If ϕ = 0, then limt→+∞ E(w)(t) = 0. But we also have limt→−∞ E(w)(t) = 0 since u is
regular at the origin. It follows easily that w ≡ 0. Since we have assumed that u is a nontrivial solution,
this is a contradiction. Therefore ϕ is not zero. If ϕ , 0, we know from Lemma 3.1 that ϕ does not
change sign. Suppose there exist two sequences {tk} and {t̃k} such that

lim
k→∞

w(tk, θ) < 0

and
lim
k→∞

w(t̃k, θ) > 0,

then {u , 0} has a bounded connected component. Without loss of generality, we can assume there
exists a bounded connected component Ω− such that u < 0 on Ω−. Then u satisfies the equation{

∆u + |u|p−1u = 0 in Ω−,

u = 0 on ∂Ω−.
(3.9)

Since u is a stable solution of (1.1), then L = ∆ + p|u|p−1 satisfies the refined maximum principle
(see [31]). Since {

Lu = (p − 1)|u|p−1u ≤ 0 in Ω−,

u = 0 on ∂Ω−,
(3.10)

we get from the refined maximum principle that u ≥ 0 on Ω−. In view of the definition of Ω−, we get
a contradiction. By the above arguments, we know that there exits a positive constant R0 such that u
doesn’t change sign on Rn\BR0 . By applying the refined maximum principle again, we know that u
does not change sign.

If u is axially symmetric, then the proof is essentially the same as the arguments above. The only
difference is that we need to use remark 2.10 rather than Lemma 3.1 to show that there exits a positive
constant R0 such that u doesn’t change sign on Rn\BR0 . □

Proof of Theorem 1.2. Let n ≥ 11, pJL(n) < p < pcs(n) and let u be a positive stable solution of (1.1).
Let us consider the transform

u(r, θ) = r−
2

p−1 w(t, θ), t = ln r.

Since u satisfies (1.1), then w is a bounded solution of Eq (3.4). Let {tk} be a sequence such that tk → ∞

as k → ∞. Similar to the arguments used in the proof of Theorem 1.3, we know that there exists a
function ϕ ∈ H1(S n−1) such that

lim
|k|→∞

w(tk, θ) = ϕ.
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Moreover, ϕ is a solution of (2.1) such that (2.2) holds. By Lemma 2.2, we have ϕ ∈ C2(S n−1). If u is
even symmetric with respect to the {xi = 0}, i = 1, 2, · · · n, then∫

S n−1
ϕΦidθ = 0 for i = 1, 2, · · · , n.

Since pJL(n) < p < pcs(n), we know from Theorem 2.1 that ϕ is a constant function. In particular, we
have

ϕ = [
2

p − 1
(n − 2 −

2
p − 1

)]
1

p−1 .

Since the sequence {tk} can be arbitrary, we conclude that

lim
|x|→∞
|x|

2
p−1 u(x) = [

2
p − 1

(n − 2 −
2

p − 1
)]

1
p−1 .

Since p > pJL(n), then p > n/(n − 4). By Theorem 4.4 in [5], we can get that

u(x) = r−
2

p−1 ((−B)
1

p−1 + ξ(r) +
ν(r, θ)

r
), (3.11)

where
ξ(r) = r

2
p−1 u(r) − (−B)

1
p−1 (3.12)

and
u(r) =

1
ωn−1

∫
S n−1

u(r, θ)dθ.

Moreover, for any integer τ ≥ 0, we have ν(r, θ) satisfies

ν(r, θ)→ V(θ) as r → 0 (3.13)

uniformly in Cτ(S n−1), where V equals either zero or a first eigenfunctions of the operator −∆S n−1 . Since
we have obtained the asymptotic expansion (3.11) which is good enough to apply the moving plane
method, then the rest of the proof is essentially the same as the proof of Theorem 1.1 in [4]. □

4. The proof of Theorem 1.5

In this section, we give the proof of Theorem 1.5, the proof is mainly based on the following
observation.

Proposition 4.1. Let n = 10 and let u be a smooth stable solution of Eq (1.2), then

lim
|x|→∞

u(x) + 2 ln(|x|) − ln(16) = 0. (4.1)

In order to prove Proposition 4.1, we first recall a monotonicity formula.

Lemma 4.2. If u is a solution of the equation (1.2), then

dE
dρ
= ρ2−n

∫
∂Bρ

(
∂u
∂ρ
+

2
ρ

)2dθ, (4.2)
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where

E(ρ, u) = ρ2−n
∫

Bρ
(
1
2
|∇u|2 − eu)dx − 2ρ1−n

∫
∂Bρ

(u + 2 ln(ρ))dθ.

Moreover, if u is a smooth stable solution of (1.1), then

lim
ρ→+∞

E(ρ, u) < +∞. (4.3)

Proof. The proof of (4.2) follows from a scaling argument which is similar to the proof Proposition 5.1
in [32]. The proof of (4.3) follows easily from the capacity estimates in [33]. □

With the help of Lemma 4.2, we can give the proof of Proposition 4.1.

proof of Proposition 4.1. The proof of Proposition 4.1 will consist of the following four steps.
Step 1: Let {λk} be a sequence such that limk→+∞ λk = +∞. For any λk, we define uλk(x) = u(λkx) +

2 ln(λk). It is easy to check that uλk(x) is also a stable solution of (1.1). By the capacity estimates (see
for instance [33]), we know that uλk → u∞ for some function u∞ ∈ H1

loc(R
n). Moreover, u∞ is a stable

solution of (1.1).
Step 2: For any 0 < R1 < R2 < +∞, by Lemma 4.2,

lim
k→+∞

E(λkR2; 0, u) − E(λkR1; 0, u) = 0. (4.4)

By the scaling invariance of E, we have

lim
k→+∞

E(R2; 0, uλk) − E(R1; 0, uλk) = 0. (4.5)

We use Lemma 4.2 again, then

0 = lim
k→+∞

E(R2; 0, uλk) − E(R1; 0, uλk)

= lim
k→+∞

∫
BR2\BR1

|x|2−n(
∂uλk

∂r
+

2
|x|

)2dx

≥

∫
BR2\BR1

|x|2−n(
∂uλ∞

∂r
+

2
|x|

)2dx.

(4.6)

Therefore,
2
r
+
∂u∞

∂r
= 0 a.e. in RN . (4.7)

It follows that there exists a function ϕ ∈ H1(S n−1) such that u∞ = ϕ− 2 ln(r). Moreover, ϕ satisfies the
equation

∆S n−1ϕ − 2(n − 2) + eϕ = 0. (4.8)

Step 3: For every δ > 0, we choose a function ηδ ∈ C∞0 (( δ2 ,
2
δ
)) such that ηδ ≡ 1 in (δ, 1

δ
), and r|η′δ(r)| ≤ 4.

For every ψ ∈ H1(S n−1), we define ψδ = r−
n−2

2 ψ(θ)ηδ(r). For every ψ ∈ H1(S n−1), we define ψδ =
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r−
n−2

2 ψ(θ)ηδ(r). Since u∞ is stable, we have∫
S n−1

eϕψ2dθ
∫ +∞

0
r−1η2

δdr

≤

∫
S n−1

ψ2dθ
∫ ∞

0
rn−1(η′δr

− n−2
2 −

n − 2
2

r−
n
2ηδ)2dr

+

∫
S n−1
|∇S n−1ψ|2dθ

∫ ∞

0
rn−1(ηδr−

n
2 )2dr

Therefore, ϕ satisfies ∫
S n−1
|∇S n−1ψ|2dθ +

(n − 2)2

4

∫
S n−1

ψ2dθ ≥
∫

S n−1
eϕψ2dθ (4.9)

for every ψ ∈ H1(S n−1).
Step 4: We take ψ = e

ϕ
2 into (4.9), then

1
4

∫
S n−1

eϕ|∇S n−1ϕ|2dθ +
(n − 2)2

4

∫
S n−1

eϕdθ ≥
∫

S n−1
e2ϕdθ. (4.10)

Multiplying the both sides of (4.8) by eϕ and using integration by part, we have

1
2

∫
S n−1

eϕ|∇S n−1ϕ|2dθ + 2(n − 2)
∫

S n−1
eϕdθ =

∫
S n−1

e2ϕdθ. (4.11)

If n = 10, then (n − 2)2/4 = 2(n − 2). By (4.10) and (4.11), we can get that∫
S n−1

eϕ|∇S n−1ϕ|2dθ ≤ 0. (4.12)

It follows from (4.12) that ϕ = ln(16) is a constant. Since {λk} can be arbitrary, we can obtain that
proposition 4.1 holds. □

Proof of Theorem 1.5. It follows from proposition 4.1 and Theorem 1.3 in [6]. □

Appendix 1: A Liouville type result

In this appendix, we prove the claim in remark 2.10. The proof is based on the the following result.

Proposition 4.3. Let p ≥ n+1
n−3 and (p − 1)µ ≥ n − 1. If ϕ is a solution of the equation ( 1+|x|2

2 )n−1div(( 2
1+|x|2 )n−3∇ϕ) − µϕ + |ϕ|p−1ϕ = 0 in Br,

ϕ = 0 on ∂Br,
(4.13)

where Br ⊂ R
n−1 is a ball and 0 < r < 1, then ϕ = 0.
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Proof. Multiplying the both sides of (4.13) by ( 2
1+|x|2 )n−1ϕ and using integration by part, we can get that∫

Br

|∇ϕ|2(
2

1 + |x|2
)n−3 + µ

∫
Br

ϕ2(
2

1 + |x|2
)n−1 =

∫
Br

|ϕ|p+1(
2

1 + |x|2
)n−1. (4.14)

Multiplying the both sides of (4.13) by ( 2
1+|x|2 )n−1(x · ∇ϕ) and using integration by part, we can get that

h(r)
∫
∂Br

|∇ϕ|2 =

∫
Br

(
2

1 + |x|2
)n−3∇ϕ∇(x · ∇ϕ) + µ

∫
Br

(
2

1 + |x|2
)n−1ϕ(x · ∇ϕ)

−

∫
Br

(
2

1 + |x|2
)n−1|ϕ|p−1ϕ(x · ∇ϕ)

=
h(r)

2

∫
∂Br

|∇ϕ|2 +
3 − n

2

∫
Br

(
2

1 + |x|2
)n−3|∇ϕ|2

−
(n − 1)µ

2

∫
Br

(
2

1 + |x|2
)n−1ϕ2 +

n − 1
p + 1

∫
Br

(
2

1 + |x|2
)n−1|ϕ|p+1

−
1
2

∫
Br

x · ∇(
2

1 + |x|2
)n−3|∇ϕ|2 −

µ

2

∫
Br

x · ∇(
2

1 + |x|2
)n−1ϕ2

+
1

p + 1

∫
Br

x · ∇(
2

1 + |x|2
)n−1|ϕ|p+1,

where

h(r) = r(
2

1 + r2 )n−3.

It follows that
3 − n

2

∫
Br

(
2

1 + |x|2
)n−3|∇ϕ|2 −

(n − 1)µ
2

∫
Br

(
2

1 + |x|2
)n−1ϕ2

+
n − 1
p + 1

∫
Br

(
2

1 + |x|2
)n−1|ϕ|p+1 −

1
2

∫
Br

x · ∇(
2

1 + |x|2
)n−3|∇ϕ|2

−
µ

2

∫
Br

x · ∇(
2

1 + |x|2
)n−1ϕ2 +

1
p + 1

∫
Br

x · ∇(
2

1 + |x|2
)n−1|ϕ|p+1

=
h(r)

2

∫
∂Br

|∇ϕ|2.

(4.15)

Multiplying the both sides of (4.13) by x · ∇( 2
1+|x|2 )n−1ϕ and using integration by part, we can get that

0 = −(n − 1)
∫

Br

(
1 + |x|2

2
)n−1div((

2
1 + |x|2

)n−3∇ϕ)(|x|2(
2

1 + |x|2
)n)

− µ

∫
Br

x · ∇(
2

1 + |x|2
)n−1ϕ2 +

∫
Br

x · ∇(
2

1 + |x|2
)n−1|ϕ|p+1

= −(n − 1)
∫

Br

2|x|2

1 + |x|2
ϕdiv((

2
1 + |x|2

)n−3∇ϕ)

− µ

∫
Br

x · ∇(
2

1 + |x|2
)n−1ϕ2 +

∫
Br

x · ∇(
2

1 + |x|2
)n−1|ϕ|p+1.

(4.16)
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By some computations, we can get that

− (n − 1)
∫

Br

2|x|2

1 + |x|2
ϕdiv((

2
1 + |x|2

)n−3∇ϕ)

= (n − 1)
∫

Br

(
2

1 + |x|2
)n−3(∇(

2|x|2

1 + |x|2
ϕ))∇ϕ

= −
n − 1
n − 3

∫
Br

x · ∇(
2

1 + |x|2
)n−3|∇ϕ|2 +

n − 1
2(n − 2)

∫
Br

∆(
2

1 + |x|2
)n−2ϕ2,

(4.17)

By (4.16) and (4.17), we have

0 = −
n − 1

2

∫
Br

[x · ∇(
2

1 + |x|2
)n−1 + (n − 1)(

2
1 + |x|2

)n−1]ϕ2

− µ

∫
Br

x · ∇(
2

1 + |x|2
)n−1ϕ2 +

∫
Br

x · ∇(
2

1 + |x|2
)n−1|ϕ|p+1

−
n − 1
n − 3

∫
Br

x · ∇(
2

1 + |x|2
)n−3|∇ϕ|2.

(4.18)

We combine (4.14), (4.15) and (4.18) in the following way:

(4.14) ×
n − 1
p + 1

+ (4.15) −
1

p + 1
× (4.18),

then
h(r)

2

∫
∂Br

|∇ϕ|2 = (
n − 1
p + 1

−
n − 3

2
)
∫

Br

(
2

1 + |x|2
)n−3 1 − |x|2

1 + |x|2
|∇ϕ|2

+
n − 1

2(p + 1)
(n − 1 − (p − 1)µ)

∫
Br

(
2

1 + |x|2
)n−1 1 − |x|2

1 + |x|2
ϕ2.

If p ≥ n+1
n−3 and (p − 1)µ ≥ (n − 1), then the left hand side of the last identity will become non-positive,

therefore, Eq (4.13) has only trivial solution. □

Corollary 4.4. If p ≥ n+1
n−3 and if ϕ is a nontrivial solution of Eq (2.1) depends only on the variable ξ,

here we use the coordinates in the proof of Lemma 2.3, then ϕ does not change sign.

Proof. If ϕ change sign, then there exists 0 < r < 1 such that (4.13) has a nontrivial solution, this is a
contradiction. □

Acknowledgments

The research of J. Wei is partially supported by NSERC of Canada.

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations
that can inappropriately influence our work.

Electronic Research Archive Volume 30, Issue 5, 1668–1690.



1689

References

1. B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,
Comm. Pure. Appl. Math., 34 (1981), 525–598. https://doi.org/10.1002/cpa.3160340406

2. L. Caffarelli, B. Gidas, J. Spruck, Asymptotic symmetry and local behavior of semilinear el-
liptic equations with critical Sobolev growth, Comm. Pure. Appl. Math., 42 (1989), 271–297.
https://doi.org/10.1002/cpa.3160420304

3. W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63
(1991), 615–622. https://doi.org/10.1215/s0012-7094-91-06325-8

4. H. Zou, Symmetry of positive solutions of ∆u + up = 0 in Rn, J. Differ. Equ., 120 (1995), 46–88.
https://doi.org/10.1006/jdeq.1995.1105

5. Z. Guo, On the symmetry of positive solutions of the Lane Emden equation with supercritical
exponent, Adv. Differ. Equ., 7 (2002), 641–666.

6. Z. Guo, X. Huang, F. Zhou, Radial symmetry of entire solutions of a bi-harmonic
equation with exponential nonlinearity, J. Funct. Anal., 268 (2015), 1972–2004.
https://doi.org/10.1016/j.jfa.2014.12.010

7. C. Gui, W.-M. Ni, X. Wang, On the stability and instability of positive steady states
of a semilinear heat equation in Rn, Comm. Pure. Appl. Math., 45 (1992), 1153–1181.
https://doi.org/10.1002/cpa.3160450906

8. N. Ghoussoub, C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311
(1998), 481–499. https://doi.org/10.1007/s002080050196
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