Research article

Qualitative properties of stable solutions to some supercritical problems

Yong Liu ${ }^{1}$, Kelei Wang ${ }^{2}$, Juncheng Wei ${ }^{3, *}$ and Ke Wu ${ }^{4}$

${ }^{1}$ Department of Mathematics, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
${ }^{2}$ School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei Province, 430072, China
${ }^{3}$ Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada
${ }^{4}$ School of Mathematics and Statistics, Xian Jiaotong University, Xian, Shanxi Province, 710049, China

* Correspondence: Email: jcwei@math.ubc.ca.

Abstract: In this paper, we study symmetry properties of stable solutions to the Lane-Emden equation

$$
\Delta u+|u|^{p-1} u=0 \quad \text { in } \quad \mathbb{R}^{n}
$$

with $n \geq 11, p$ in a suitable range and the Liouville equation

$$
\Delta u+e^{u}=0 \quad \text { in } \quad \mathbb{R}^{n}
$$

with $n=10$.
Keywords: Lane-Emden equation; Liouville equation; stable solution; rigidity results; symmetry

1. Introduction

In this paper, we consider the Lane-Emden equation

$$
\begin{equation*}
\Delta u+|u|^{p-1} u=0 \quad \text { in } \quad \mathbb{R}^{n} . \tag{1.1}
\end{equation*}
$$

and the equation

$$
\begin{equation*}
\Delta u+e^{u}=0 \quad \text { in } \quad \mathbb{R}^{n} . \tag{1.2}
\end{equation*}
$$

The structures of the positive solutions of (1.1) and (1.2) have been studied intensively in the last several years. When $n=3$, (1.1) arises in the stellar structure in astrophysics. When $n=4$, (1.1) is
relevant to the famous Yang-Mills equations. When $n=2$, (1.2) is an interesting problem in differential geometry and is known as the "Prescribing Gaussian Curvature" problem.

For Eq (1.1), the Sobolev exponent

$$
p_{s}(n)=\left\{\begin{array}{lll}
+\infty & \text { if } & 1 \leq n \leq 2 \\
\frac{n+2}{n-2} & \text { if } & n \geq 3
\end{array}\right.
$$

plays a central role in the solvability question. In the subcritical case $1<p<p_{s}(n)$, it was established by Gidas and Spruck in their celebrated work [1] that (1.1) has no positive solution. If $p=(n+2) /(n-2)$, then (1.1) is a special case of the Yamabe problem in conformal geometry. In [2], using the asymptotic symmetry technique, Caffarelli, Gidas and Spruck were able to classify all the positive solutions of (1.1) for $n \geq 3$. They showed that any positive solutions of (1.1) can be written in the form

$$
u_{x_{0}, \lambda}(x)=\left(\frac{\lambda \sqrt{n(n-2)}}{\lambda^{2}+\left|x-x_{0}\right|^{2}}\right)^{\frac{n-2}{2}},
$$

where $\lambda>0$ and x_{0} is some point in \mathbb{R}^{n}. In [3], Chen and Li proved the same result for (1.1) by applying the moving plane method. In $n=2$, Eq (1.2) is also classified in [3] under the additional assumption that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} e^{u} d x<\infty . \tag{1.3}
\end{equation*}
$$

It is proved in [3] that if u is a solution of (1.2) such that (1.3) holds, then

$$
u=\ln \frac{32 \lambda^{2}}{\left(4+\lambda^{2}\left|x-x_{0}\right|^{2}\right)^{2}}
$$

for some $\lambda>0$ and some point $x_{0} \in \mathbb{R}^{2}$.
In the supercritical case $p>p_{s}(n)$, it is more difficult to classify the positive solutions of (1.1). The first result in this direction was given by Zou in [4]. It was proved in [4] that if $p_{s}(n)<p<p_{s}(n-1)$ and if u is a positive solution of (1.1) with algebraic decay rate $2 /(p-1)$ at infinity, then u is radially symmetric about some point $x_{0} \in \mathbb{R}^{n}$. In [5], Guo generalized Zou's result to $p \geq p_{s}(n-1)$ by assuming that

$$
\begin{equation*}
\lim _{|x| \rightarrow+\infty}|x|^{\frac{2}{p-1}} u(x) \equiv\left[\frac{2}{p-1}\left(n-2-\frac{2}{p-1}\right)\right]^{\frac{1}{p-1}} . \tag{1.4}
\end{equation*}
$$

Moreover, it is showed in [5] that (1.4) is a necessary and sufficient condition for a positive solution of (1.1) to be radially symmetric about some point. The analogous result for second order equation (1.2) is considered in [6]. It is proved in [6] that if $n \geq 4$ and if $u \in C^{2}\left(\mathbb{R}^{n}\right)$ is an entire solution of (1.2), then u is radially symmetric about some point $x_{0} \in \mathbb{R}^{n}$ if and only if

$$
\lim _{|x| \rightarrow \infty} u(x)+2 \ln (|x|)-\ln (16)=0 .
$$

If we focus on radial solutions, then the structure of positive solutions of (1.1) has been completely classified in [7]. They showed that for any $a>0$, (1.1) admits a unique positive radial solution $u=u_{a}(r)$ with $u_{a}(0)=a$. Moreover, no two positive radial solutions of (1.1) can intersect each other when $p>p_{J L}(n)$, where $p_{J L}(n)$ is the exponent given by

$$
p_{J L}(n)= \begin{cases}\infty & \text { if } \quad 3 \leq n \leq 10 \\ \frac{(n-2)^{2}-4 n+8 \sqrt{n-1}}{(n-2)(n-10)} & \text { if } n \geq 11\end{cases}
$$

Another important topic is the classification of stable solutions. In general, a solution of the semilinear equation

$$
\Delta u+f(u)=0 \quad \text { in } \quad \mathbb{R}^{n}
$$

with f be a Lipschitz function is called stable if

$$
\int_{\mathbb{R}^{n}}|\nabla \psi|^{2} d x-\int_{\mathbb{R}^{n}} f^{\prime}(u) \psi^{2} d x \geq 0 \quad \forall \psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

One of the most interesting questions concerning stable solutions is the following De Giorgi's conjecture.
Conjecture: Let u be a bounded solution of the equation

$$
\Delta u+u-u^{3}=0 \quad \text { in } \quad \mathbb{R}^{n}
$$

such that $\frac{\partial u}{\partial x_{n}}>0$. Then the level sets of u are hyperplanes, at least if $n \leq 8$.
De Giorgi's conjecture was proved in dimension $n=2$ by Ghoussoub and Gui in [8]. For $n=3$, this is proved by Ambrosio and Cabré in [9]. Savin proved in [10] that for $4 \leq n \leq 8$, the above conjecture is true under the additional limit condition that

$$
\begin{equation*}
u\left(x_{1}, \ldots, x_{n}\right) \rightarrow \pm 1 \quad \text { as } \quad x_{n} \rightarrow \pm \infty \tag{1.5}
\end{equation*}
$$

For $n>9$, a counterexample is constructed in [11]. The conjecture is still open for dimensions $4 \leq n \leq$ 8 without the additional assumption (1.5).

For Eq (1.1), there are also some results concerning stable solutions. In [12], Liouville type results for solutions with finite Morse index were established. By making a delicate use of the classical Moser iteration method, Farina was able to classify finite Morse index solutions in his seminal paper [13]. It was proved in [13] that if $u \in C^{2}\left(\mathbb{R}^{n}\right)$ is a stable solution of (1.1) with $1<p<p_{J L}(n)$, then $u \equiv 0$. Moreover, (1.1) admits a smooth positive, bounded, stable and radial solution for $n \geq 11, p>p_{J L}(n)$. Actually, it was showed in [13] that the radial solutions considered in [7] are stable when $n \geq 11, p>$ $p_{J L}(n)$. The results in [13] also have a lot of generalizations, we refer to [14, 15, 16, 17, 18, 19]. As for the classification of the stable solutions of (1.2), it was proved in [20] that for $1 \leq n \leq 9$, there is no stable solution $u \in C^{2}\left(\mathbb{R}^{n}\right)$ of (1.2).

In spite of the above mentioned results, there are some intriguing problems which are still open. In [21], the authors proposed the following conjecture, which is a natural extension of De Giorgi type conjecture:
Conjecture: Let $n \geq 11, p_{J L}(n)<p<p_{J L}(n-1)$, then all stable solutions to (1.1) must be radially symmetric around some point.
Remark 1.1. When $p>p_{J L}(n-1)$, (1.1) has a positive stable solution which is not radially symmetric. Indeed, let u be a positive radial stable solution of the equation

$$
\Delta u+|u|^{p-1} u=0 \quad \text { in } \quad \mathbb{R}^{n-1}
$$

for $p>p_{J L}(n-1)($ see [13]), then u can also be viewed as a stable solution of the equation

$$
\Delta u+|u|^{p-1} u=0 \quad \text { in } \quad \mathbb{R}^{n} .
$$

But it is obvious that this solution is not radially symmetric in \mathbb{R}^{n}.

Our first objective in this paper is to give some partial results toward the above conjecture. To state our results in a more precise way, let us first introduce some new exponents. Let γ be a constant such that

$$
\begin{aligned}
& 1 \leq \gamma<2 p+2 \sqrt{p(p-1)}-1 \\
& (p+\gamma) /(p-1)>(n-1) / 2
\end{aligned}
$$

we define

$$
\begin{equation*}
\alpha(p, \gamma, n)=\left\{\frac{\left[\frac{(n-2)^{2} \gamma-(\gamma+1)^{2} \beta}{4 p \gamma-(\gamma+1)^{2}}\right]^{\frac{p+\gamma}{p-1}}(n-1) \pi^{n-1}}{2^{n-2-(p+\gamma)}}\right\}^{\frac{2}{2(p+\gamma)-(p-1)(n-1)}} . \tag{1.6}
\end{equation*}
$$

Let

$$
\begin{equation*}
\beta(p, n)=\left(\frac{2 n+\beta}{p}\right)^{\frac{1}{p-1}} \tag{1.7}
\end{equation*}
$$

and let

$$
\begin{equation*}
c_{s}(p, n)=\frac{\omega_{n-1}\left(\frac{\left(\frac{(n-2)^{2}}{4}-\beta\right.}{p-1}\right)^{\frac{2}{p-1}}}{\frac{\omega_{n-2}}{4}\left(\frac{2}{\pi}\right)^{n-2}\left(\beta(p, n)-\beta^{\frac{1}{p-1}}\right)^{\frac{n+3}{2}}(\alpha(p, n))^{-\frac{p(n-1)}{2}}} . \tag{1.8}
\end{equation*}
$$

We consider

$$
\begin{equation*}
p-1=\left(\frac{(n-2)^{2}}{4}-\frac{2 p}{p-1}\left(n-2-\frac{2}{p-1}\right)\right) c_{s}(p, n) \tag{1.9}
\end{equation*}
$$

as a function with respect to the variable p. Let S be the set

$$
S=\left\{p: p \text { is a solution of }(1.9) \text { such that } p>p_{J L}(n)\right\}
$$

and let p_{*} be the infimum of S. We define

$$
p_{c s}(n)= \begin{cases}p_{J L}(n-1) & \text { if } p_{*} \geq p_{J L}(n-1), \tag{1.10}\\ p_{*} & \text { if } p_{*}<p_{J L}(n-1) .\end{cases}
$$

With the help of these numbers, we can give the statement of our first result.
Theorem 1.2. Let $n \geq 11, p_{J L}(n)<p<p_{c s}(n)$, where $p_{c s}(n)$ is defined in (1.10). Let u be a positive stable solution of (1.1) such that u is even symmetric with respect to the planes $\left\{x_{i}=0\right\}, i=1,2, \cdots n$, then u is radially symmetric with respect to the origin.

In Theorem 1.2, we need the assumption that u is a positive solution of (1.1). But under suitable conditions, we can show that stable solutions of (1.1) do not change sign. For our purpose, we use $p_{1}(n) \leq p_{2}(n) \leq p_{3}(n)$ to denote the three numbers such that

$$
\begin{equation*}
(n-1)(p-1)=\frac{(n-2)^{2}}{4}-\frac{2 p}{p-1}\left(n-2-\frac{2}{p-1}\right) . \tag{1.11}
\end{equation*}
$$

We define

$$
p_{s i}(n)= \begin{cases}p_{J L}(n-1) & \text { if } p_{3}(n) \leq p_{J L}(n) \tag{1.12}\\ p_{J L}(n-1) & \text { if } p_{2}(n) \geq p_{J L}(n-1) \\ p_{2}(n) & \text { if } p_{3}(n)>p_{J L}(n) \text { and } p_{2}(n)<p_{J L}(n-1)\end{cases}
$$

Theorem 1.3. Let $n \geq 11, p_{J L}(n)<p<p_{s i}(n)$, where $p_{s i}(n)$ is defined in (1.12). Let u be a stable solution of $E q$ (1.1), then u does not change sign. If u is a axially symmetric stable solution of (1.1), then u does not change sign when $p_{J L}(n)<p<p_{J L}(n-1)$.

Remark 1.4. By using MATLAB, we can give some examples for $p_{c s}(n)$ and $p_{s i}(n)$.

n	$p_{J L}(n)$	$p_{c s}(n)$	$p_{s i}(n)$	$p_{J L}(n-1)$
$n=12$	3.9266499161	4.1229824119	6.9220245868	6.9220245868
$n=13$	2.9306913006	3.0772258656	3.9266499161	3.9266499161
$n=14$	2.4342585459	2.5559714732	2.9306913006	2.9306913006
$n=15$	2.1374347552	2.2443064930	2.4342585459	2.4342585459

For Eq (1.2), we have the following result.
Theorem 1.5. Let u be a smooth stable solution of $E q$ (1.2) for $n=10$, then u is radially symmetric with respect to some point in \mathbb{R}^{n}.
Remark 1.6. If $n \geq 11$, then $E q$ (1.2) has a smooth stable solution which is not radially symmetric. For more discussions, we refer to [22].

The rest of the paper will be organized as follows. In section 2, we consider rigidity results on the unit sphere for some second order equations. Rigidity results on compact manifolds have been considered by several authors, see for instance [1, 23, 24, 25, 26, 27]. We point out that in the above papers, the proof of the rigidity results depends heavily on the classical Bochner formula. In section 3, we first use a monotonicity formula to study the qualitative properties of solutions. Then, by combing the rigidity results and the qualitative properties of solutions, we can verify the assumption of Theorem 1.1 in [5] and obtain the symmetry properties of stable solutions. In section 4, we give the prove of Theorem 1.5.

Notation. In some situations, we will write a point $x \in \mathbb{R}^{n}$ as $x=(r, \theta)$, where (r, θ) is the spherical coordinates and $S^{n-1} \subset \mathbb{R}^{n}$ is the unit sphere. In the rest of the paper, c will denote a positive constant which may vary from line to line.

2. A second order equation on the unit sphere

In this section, we consider the equation

$$
\begin{equation*}
\Delta_{S^{n-1}} \phi-\beta \phi+|\phi|^{p-1} \phi=0, \tag{2.1}
\end{equation*}
$$

where

$$
\beta=\frac{2}{p-1}\left(n-2-\frac{2}{p-1}\right)
$$

and $\Delta_{S^{n-1}}$ is the Laplace-Beltrimi operator on the unit sphere. In the rest of this section, we will always assume that $n \geq 11$. The main result in this section is the following.
Theorem 2.1. Let γ be a constant such that

$$
\begin{aligned}
& 1 \leq \gamma<2 p+2 \sqrt{p(p-1)}-1 \\
& (p+\gamma) /(p-1)>(n-1) / 2
\end{aligned}
$$

If $p_{J L}(n)<p<p_{c s}(n)$ with $p_{c s}(n)$ be the number defined in (1.9) and if ϕ is a positive solution of (2.1) such that (2.2) holds. Suppose

$$
\int_{S^{n-1}} \phi \Phi_{i} d \theta=0, \quad i=1,2 \cdots, n
$$

where $\Phi_{i}, i=1,2, \cdots, n$ are the eigenfunctions of the operator $-\Delta_{S^{n-1}}$ corresponding to the eigenvalue $n-1$, then ϕ is a constant solution of $E q$ (2.1). If $\left\{\phi-\beta^{\frac{1}{p-1}}\right\}$ has at least three connected components, then the same result holds.

In order to prove Theorem 2.1, we need several lemmas.
Lemma 2.2. Let $p_{J L}(n)<p<p_{J L}(n-1)$ and let $\phi \in H^{1}\left(S^{n-1}\right)$ be a weak solution of (2.1) such that

$$
\begin{equation*}
\int_{S^{n-1}}\left|\nabla_{S^{n-1}} \psi\right|^{2} d \theta+\frac{(n-2)^{2}}{4} \int_{S^{n-1}} \psi^{2} d \theta \geq p \int_{S^{n-1}}|\phi|^{p-1} \psi^{2} d \theta \tag{2.2}
\end{equation*}
$$

for every $\psi \in H^{1}\left(S^{n-1}\right)$, then $\phi \in C^{2}\left(S^{n-1}\right)$.
Proof. We take $\psi=|\phi|^{\frac{\gamma-1}{2}} \phi$ into (2.2), where γ is a positive constant which will be chosen later. Then

$$
\begin{equation*}
p \int_{S^{n-1}}|\phi|^{p+\gamma} d \theta \leq \frac{(n-2)^{2}}{4} \int_{S^{n-1}}|\phi|^{\gamma+1} d \theta+\int_{S^{n-1}}\left|\nabla_{S^{n-1}}\left(|\phi|^{\frac{\gamma-1}{2}} \phi\right)\right|^{2} d \theta \tag{2.3}
\end{equation*}
$$

Multiplying the both sides of (2.1) by $|\phi|^{\gamma-1} \phi$ and integrating over S^{n-1}, we can get that

$$
\begin{equation*}
\int_{S^{n-1}} \nabla_{S^{n-1}} \phi \cdot \nabla_{S^{n-1}}\left(|\phi|^{\gamma-1} \phi\right) d \theta+\beta \int_{S^{n-1}}|\phi|^{\gamma+1} d \theta=\int_{S^{n-1}}|\phi|^{p+\gamma} d \theta \tag{2.4}
\end{equation*}
$$

(2.4) is equivalent to

$$
\begin{equation*}
\frac{4 \gamma}{(\gamma+1)^{2}} \int_{S^{n-1}}\left|\nabla_{S^{n-1}}\left(|\phi|^{\frac{\gamma-1}{2}} \phi\right)\right|^{2} d \theta+\beta \int_{S^{n-1}}|\phi|^{\gamma+1} d \theta=\int_{S^{n-1}}|\phi|^{p+\gamma} d \theta \tag{2.5}
\end{equation*}
$$

By combining (2.3) and (2.5) together, we can obtain that

$$
\begin{equation*}
\left[p-\frac{(\gamma+1) 2}{4 \gamma}\right] \int_{S^{n-1}}|\phi|^{p+\gamma} d \theta \leq\left[\frac{(n-2)^{2}}{4}-\frac{(\gamma+1)^{2} \beta}{4 \gamma}\right] \int_{S^{n-1}}|\phi|^{\gamma+1} d \theta \tag{2.6}
\end{equation*}
$$

It is easy to check that

$$
p-\frac{(\gamma+1)^{2}}{4 \gamma}>0
$$

when $1 \leq \gamma<2 p+2 \sqrt{p(p-1)}-1$. By applying Hölder's inequality, we have

$$
\begin{equation*}
\left[p-\frac{(\gamma+1)^{2}}{4 \gamma}\right] \int_{S^{n-1}}|\phi|^{p+\gamma} d \theta \leq c\left(\int_{S^{n-1}}|\phi|^{p+\gamma} d \theta\right)^{\frac{\gamma+1}{p+\gamma}} \tag{2.7}
\end{equation*}
$$

It follows from (2.7) that $\int_{S^{n-1}}|\phi|^{p+\gamma} d \theta$ is finite. By formula (5.10) in [13], we know that there exists a constant γ such that $(p+\gamma) /(p-1)>(n-1) / 2$. Therefore, $|\phi|^{p-1} \in L^{q}\left(S^{n-1}\right)$ for some $q>(n-1) / 2$. The standard regularity results in [28] imply that $\phi \in C^{2}\left(S^{n-1}\right)$.

Lemma 2.3. Let $p_{J L}(n)<p<p_{J L}(n-1)$ and let $\phi \in C^{2}\left(S^{n-1}\right)$ be a positive solution of (2.1) such that (2.2) holds, then

$$
\begin{equation*}
\|\phi\|_{L^{\infty}\left(S^{n-1}\right)} \leq \alpha(p, \gamma, n), \tag{2.8}
\end{equation*}
$$

where γ is the constant used in the proof of Lemma 2.2 and $\alpha(p, \gamma, n)$ is the constant defined in (1.6).

Proof. Let $\theta_{0} \in S^{n-1}$ be a point such that $\phi\left(\theta_{0}\right)=\|\phi\|_{L^{\infty}\left(S^{n-1}\right)}=\eta$. By taking suitable orthogonal transformation, we may assume that θ_{0} is the south pole. Let us introduce the following coordinates on S^{n-1},

$$
\left\{\begin{array}{l}
\theta_{1}=\sin \xi \sin \xi_{n-2} \cdots \sin \xi_{2} \sin \xi_{1} \\
\theta_{2}=\sin \xi \sin \xi_{n-2} \cdots \sin \xi_{2} \cos \xi_{1} \\
\theta_{3}=\sin \xi \sin \xi_{n-2} \cdots \cos \xi_{2} \\
\quad \cdots \\
\theta_{n-1}=\cos \xi
\end{array}\right.
$$

where $\xi \in[0, \pi), \xi_{1} \in[0,2 \pi), \xi_{k} \in[0, \pi)$ for $k=2,3, \cdots n-2$. The coordinate of the point θ_{0} is given by $(0,0, \cdots, 0)$. By (2.1), we know that ϕ satisfies the equation

$$
\begin{equation*}
\frac{1}{\sin ^{n-2} \xi} \frac{d}{d \xi}\left(\sin ^{n-2} \xi \frac{d \phi}{d \xi}(\xi)\right)+\frac{1}{\sin ^{2} \xi} \Delta_{S^{n-2}} \phi-\beta \phi+\phi^{p}=0 \tag{2.9}
\end{equation*}
$$

where S^{n-2} is the unit sphere in \mathbb{R}^{n-1} and $\Delta_{S^{n-2}}$ is the Laplace -Beltrami operator on S^{n-2}. We define

$$
\hat{\phi}(\xi)=\frac{1}{\omega_{n-2}} \int_{S^{n-2}} \phi\left(\xi, \theta^{\prime}\right) d \theta^{\prime}
$$

where ω_{n-2} is the area of S^{n-2}. It follows from (2.9) that $\hat{\phi}$ satisfies

$$
\begin{equation*}
\frac{1}{\sin ^{n-2} \xi} \frac{d}{d \xi}\left(\sin ^{n-2} \xi \frac{d \hat{\phi}}{d \xi}(\xi)\right)-\beta \hat{\phi}+\frac{1}{\omega_{n-2}} \int_{S^{n-2}} \phi^{p}\left(\xi, \theta^{\prime}\right) d \theta^{\prime}=0 \tag{2.10}
\end{equation*}
$$

By the Jensen's inequality, we can get that

$$
\begin{equation*}
\frac{1}{\sin ^{n-2} \xi} \frac{d}{d \xi}\left(\sin ^{n-2} \xi \frac{d \hat{\phi}}{d \xi}(\xi)\right)-\beta \hat{\phi}+\hat{\phi}^{p} \leq 0, \quad \text { in } \quad(0, \pi) \tag{2.11}
\end{equation*}
$$

Let ξ_{1} be the first point such that $\hat{\phi}\left(\xi_{1}\right)=\frac{\eta}{2}$. It follows from (2.11) that $\hat{\phi}$ is strictly decreasing in $\left(0, \xi_{1}\right)$. We will focus on the case $\xi_{1}<\frac{\pi}{2}$ since the case $\xi_{1} \geq \frac{\pi}{2}$ can be dealt with similarly. Let γ be the constant used in the proof of Lemma 2.2. By (2.10), we can obtain that

$$
\begin{aligned}
\hat{\phi}\left(\xi_{1}\right)-\hat{\phi}(0) & =\int_{0}^{\xi_{1}} \frac{1}{\sin ^{n-2} \xi} \int_{0}^{\xi} \sin ^{n-2} \tau\left[\beta \hat{\phi}(\tau)-\frac{1}{\omega_{n-2}} \int_{S^{n-2}} \phi^{p}\left(\tau, \theta^{\prime}\right) d \theta^{\prime}\right] d \tau d \xi \\
& \geq-\eta^{p} \int_{0}^{\xi_{1}} \frac{1}{\sin ^{n-2} \xi} \int_{0}^{\xi} \sin ^{n-2} \tau d \tau d \xi \\
& \geq-\frac{\xi_{1}^{2}}{2} \eta^{p} .
\end{aligned}
$$

This implies $\xi_{1} \geq \eta^{\frac{1-p}{2}}$. By the above analysis, we can get that

$$
\begin{align*}
\int_{\left\{\xi \leq \xi_{1}\right\}} \phi^{p+\gamma} d \theta & =\int_{0}^{\xi_{1}} \int_{S^{n-2}} \sin ^{n-2} \xi \phi^{p+\gamma}\left(\xi, \theta^{\prime}\right) d \theta^{\prime} d \xi \\
& \geq \omega_{n-2} \int_{0}^{\xi_{1}} \sin ^{n-2} \xi \hat{\phi}^{p+\gamma}(\xi) d \xi \tag{2.12}\\
& \geq \omega_{n-2} \frac{2^{n-2-(p+\gamma)}}{(n-1) \pi^{n-2}} \eta^{p+\gamma+\frac{(1-p)(n-1)}{2}}
\end{align*}
$$

By Lemma 2.2, we know that

$$
\begin{equation*}
\int_{S^{n-1}} \phi^{p+\gamma} d \theta \leq\left[\frac{\frac{(n-2)^{2}}{4}-\frac{(\gamma+1)^{2}}{4 \gamma} \beta}{p-\frac{(\gamma+1)^{2}}{4 \gamma}}\right]^{\frac{p+\gamma}{p-1}} \omega_{n-1} . \tag{2.13}
\end{equation*}
$$

We get from (2.12) and (2.13) that

$$
\begin{align*}
\eta & \leq\left\{\frac{\left[\frac{\left(\frac{n-2)^{2}}{4}-\frac{(\gamma+1)^{2}}{4)^{2}} \beta\right.}{p-\frac{(\gamma+1)^{2}}{4 \gamma}}\right]^{\frac{p+\gamma}{p-1}} \omega_{n-1}(n-1) \pi^{n-2}}{\omega_{n-2} 2^{n-2-(p+\gamma)}}\right\}^{\frac{1}{p+\gamma+\frac{(1-p)(n-1)}{2}}} \tag{2.14}\\
& \leq\left\{\frac{\left[\frac{(n-2)^{2} \gamma-(\gamma+1)^{2} \beta}{4 p \gamma-(\gamma+1)^{2}}\right]^{\frac{p+\gamma}{p-1}}(n-1) \pi^{n-1}}{2^{n-2-(p+\gamma)}}\right\}^{\frac{2(p+\gamma)-(p-1)(n-1)}{2}} .
\end{align*}
$$

Hence (2.8) holds.
Lemma 2.4. Let ϕ be a positive solution of (2.1) such that

$$
\begin{equation*}
\int_{S^{n-1}} \phi \Phi_{i} d \theta=0 \quad \text { for } \quad i=1,2, \cdots, n \tag{2.15}
\end{equation*}
$$

where $\Phi_{i}, i=1,2, \cdots, n$ are the eigenfunctions of the operator $-\Delta_{S^{n-1}}$ corresponding to the eigenvalue $n-1$, then

$$
\begin{equation*}
\|\phi\|_{L^{\infty}\left(S^{n-1}\right)} \geq\left(\frac{2 n+\beta}{p}\right)^{\frac{1}{p-1}} \tag{2.16}
\end{equation*}
$$

Proof. We define

$$
\tilde{\phi}=\phi-\bar{\phi},
$$

where $\bar{\phi}$ is given by

$$
\bar{\phi}=\frac{1}{\omega_{n-1}} \int_{S^{n-1}} \phi d \theta
$$

Then $\tilde{\phi}$ satisfies the equation

$$
\begin{equation*}
\Delta_{S^{n-1}} \tilde{\phi}-\beta \phi+\phi^{p}=0 . \tag{2.17}
\end{equation*}
$$

Multiplying the both sides of (2.17) by $\tilde{\phi}$ and using integration by part, we can get that

$$
\begin{equation*}
\int_{S^{n-1}} \mid \nabla_{S^{n-1}} \tilde{\phi}^{2} d \theta+\beta \int_{S^{n-1}} \tilde{\phi}^{2} d \theta-\int_{S^{n-1}}\left(\phi^{p}-\bar{\phi}^{p}\right)(\phi-\bar{\phi}) d \theta=0 . \tag{2.18}
\end{equation*}
$$

By (2.15) and the definition of $\tilde{\phi}$, we know that

$$
\begin{aligned}
& \int_{S^{n-1}} \tilde{\phi} d \theta=0 \\
& \int_{S^{n-1}} \tilde{\phi} \Phi_{i} d \theta=0, \quad i=1,2 \cdots, n
\end{aligned}
$$

By (2.18) and the Poincaré's inequality, we have

$$
\begin{equation*}
2 n \int_{S^{n-1}} \tilde{\phi}^{2} d \theta+\beta \int_{S^{n-1}} \tilde{\phi}^{2} d \theta-p\|\phi\|_{L^{\infty}\left(S^{n-1}\right)}^{p-1} \int_{S^{n-1}} \tilde{\phi}^{2} d \theta \leq 0 . \tag{2.19}
\end{equation*}
$$

If $\tilde{\phi} \neq 0$, then

$$
2 n+\beta-p\|\phi\|_{L^{\infty}\left(S^{n-1}\right)}^{p-1} \leq 0 .
$$

It follows that

$$
\begin{equation*}
\|\phi\|_{L^{\infty}\left(S^{n-1}\right)} \geq\left(\frac{2 n+\beta}{p}\right)^{\frac{1}{p-1}} \tag{2.20}
\end{equation*}
$$

Hence (2.16) holds.
Lemma 2.5. If ϕ is a positive solution of (2.1) such that $\left\{\phi-\beta^{\frac{1}{p-1}} \neq 0\right\}$ has at least three connected components, then

$$
\begin{equation*}
\|\phi\|_{L^{\infty}\left(S^{n-1}\right)} \geq\left(\frac{2 n+\beta}{p}\right)^{\frac{1}{p-1}} . \tag{2.21}
\end{equation*}
$$

Proof. The equation (2.1) can be written as

$$
\begin{equation*}
\Delta_{S^{n-1}} \phi-\beta\left(\phi-\beta^{\frac{1}{p-1}}\right)+\phi^{p}-\beta^{\frac{p}{p-1}}=0 . \tag{2.22}
\end{equation*}
$$

Since $\left\{\phi-\beta^{\frac{1}{p-1}} \neq 0\right\}$ has at least three connected components, then there is a connected component Ω_{0} of $\left\{\phi-\beta^{\frac{1}{p-1}} \neq 0\right\}$ such that the area of Ω_{0} is less than $\frac{1}{3} \omega_{n-1}$. let $1_{\Omega_{0}}$ be the function defined by

$$
1_{\Omega_{0}}= \begin{cases}1 & \text { in } \quad \Omega_{0}, \\ 0 & \text { on } \\ S^{n-1} \backslash \Omega_{0}\end{cases}
$$

Multiplying the both sides of (2.22) by ($\left.\phi-\beta^{\frac{1}{p-1}}\right) 1_{\Omega_{0}}$ and using integration by part, we can get that

$$
\begin{equation*}
-\int_{\Omega_{1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta-\beta \int_{\Omega_{1}}\left(\phi-\beta^{\frac{1}{p-1}}\right)^{2} d \theta+\int_{\Omega_{1}}\left(\phi^{p}-\beta^{\frac{p}{p-1}}\right)\left(\phi-\beta^{\frac{1}{p-1}}\right) d \theta=0 . \tag{2.23}
\end{equation*}
$$

Let $\lambda_{1}\left(\Omega_{0}\right)$ be the first eigenvalue of the eigenvalue problem

$$
\begin{cases}\Delta_{S^{n-1}} \Phi+\lambda \Phi=0 & \text { in } \quad \Omega_{0} \\ \Phi=0 & \text { on } \quad \partial \Omega_{0}\end{cases}
$$

By (2.23) and the mean value theorem, we can get that

$$
\begin{equation*}
\left(-\lambda_{1}\left(\Omega_{0}\right)-\beta+p\|\phi\|_{L^{\infty}\left(S^{n-1)}\right)}^{p-1}\right) \int_{\Omega_{1}}\left(\phi-\beta^{\frac{1}{p-1}}\right)^{2} d \theta \geq 0 \tag{2.24}
\end{equation*}
$$

It follows from (2.24) that

$$
\begin{equation*}
-\lambda_{1}\left(\Omega_{0}\right)-\beta+p\|\phi\|_{L^{\infty}\left(S^{n-1}\right)}^{p-1} \geq 0 . \tag{2.25}
\end{equation*}
$$

Since the area of Ω_{0} is less than $\frac{1}{3} \omega_{n-1}$, where ω_{n-1} is the area of the unit sphere in \mathbb{R}^{n}. By using Schwartz symmetrization, we can get that

$$
\begin{equation*}
\lambda_{1}\left(\Omega_{0}\right) \geq 2 n . \tag{2.26}
\end{equation*}
$$

It follows from (2.25) and (2.26) that

$$
\begin{equation*}
\|\phi\|_{L^{\infty}\left(S^{n-1}\right)} \geq\left(\frac{2 n+\beta}{p}\right)^{\frac{1}{p-1}} \tag{2.27}
\end{equation*}
$$

Hence (2.21) holds.

Remark 2.6. We notice that

$$
(p-1) \beta=2\left(n-2-\frac{2}{p-1}\right)<2 n,
$$

then

$$
\|\phi\|_{L^{\infty}\left(S^{n-1}\right)} \geq\left(\frac{2 n+\beta}{p}\right)^{\frac{1}{p-1}}>\beta^{\frac{1}{p-1}} .
$$

Lemma 2.7. Let \bar{p} be a constant such that $p_{J L}(n)<\bar{p}<p_{J L}(n-1)$. There exists a positive constant c such that if $\phi \in C^{2}\left(S^{n-1}\right)$ is a nonconstant solution of (2.1) for $p_{J L}(n)<p<\bar{p}$, then

$$
\begin{equation*}
\int_{S^{n-1}} \phi^{2} d \theta \leq c \int_{S^{n-1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta \tag{2.28}
\end{equation*}
$$

Proof. Suppose (2.28) does not hold, then there exists a sequence $\left\{\phi_{m}\right\}$ such that ϕ_{m} satisfies

$$
\begin{equation*}
\Delta_{S^{n-1}} \phi_{m}-\frac{2}{p_{m}-1}\left(n-2-\frac{2}{p_{m}-1}\right) \phi_{m}+|\phi|^{p_{m}-1} \phi_{m}=0 \tag{2.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{S_{n-1}} \phi_{m}^{2} d \theta \geq m \int_{S^{n-1}}\left|\nabla_{S^{n-1}} \phi_{m}\right|^{2} d \theta \tag{2.30}
\end{equation*}
$$

Since $-\phi_{m}$ is also a solution of (2.29), without loss of generality, we can assume that

$$
\begin{equation*}
\phi_{m}\left(\theta_{m}\right)=\max _{\theta \in S S^{n-1}} \phi_{m}(\theta)>0 . \tag{2.31}
\end{equation*}
$$

It follows from the proof of Lemma 2.2 that $\int_{S^{n-1}} \phi_{m}^{2} d \theta$ remains bounded. So (2.30) implies

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} \int_{S^{n-1}}\left|\nabla_{S^{n-1}} \phi_{m}\right|^{2} d \theta=0 \tag{2.32}
\end{equation*}
$$

By (2.8) and (2.32), we can get that there exist two constants p_{0} and c_{0} such that

$$
\lim _{m \rightarrow+\infty} p_{m}=p_{0}, \quad \lim _{m \rightarrow+\infty} \phi_{m}=c_{0} .
$$

Moreover, c_{0} is a constant solution of (2.1) for $p=p_{0}$. Therefore,

$$
c_{0}=0 \quad \text { or } \quad c_{0}=\left[\frac{1}{p_{0}-1}\left(n-2-\frac{2}{p_{0}-1}\right)\right]^{\frac{1}{p_{0}-1}} .
$$

We get from (2.31) that

$$
\begin{equation*}
\Delta \phi_{m}\left(\theta_{m}\right)=\left(\beta_{m}-\phi_{m}^{p_{m}-1}\left(\theta_{m}\right)\right) \phi_{m}\left(\theta_{m}\right) \leq 0 . \tag{2.33}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\phi_{m}\left(\theta_{m}\right) \geq\left(\beta_{m}\right)^{\frac{1}{p_{m}-1}} . \tag{2.34}
\end{equation*}
$$

It follows from (2.34) that c_{0} is not zero. Let

$$
\phi_{m}=\beta_{m}^{\frac{1}{p-1}}+\psi_{m},
$$

then $\lim _{m \rightarrow+\infty} \psi_{m}=0$ and ψ_{m} satisfies the equation

$$
\begin{equation*}
\Delta_{S^{n-1}} \psi_{m}+\left(p_{m}-1\right) \beta_{m} \psi_{m}+\left(\psi_{m}+\beta_{m}^{\frac{1}{p_{m}-1}}\right)^{p_{m}}-\beta_{m}^{\frac{p_{m}}{p_{m}-1}}-p_{m} \beta_{m} \psi_{m}=0 . \tag{2.35}
\end{equation*}
$$

It is easy to verify that

$$
\left(\psi_{m}+\beta_{m}^{\frac{1}{p_{m}-1}}\right)^{p_{m}}-\beta_{m}^{\frac{p_{m}}{p_{m}-1}}-p_{m} \beta_{m} \psi_{m} \leq c\left\|\psi_{m}\right\|_{L^{\infty}\left(S^{n-1}\right)}^{2}
$$

for some positive constant c independent of m. We define

$$
v_{m}=\frac{\psi_{m}}{\left\|\psi_{m}\right\|_{L^{\infty}\left(S^{n-1}\right)}},
$$

then v_{m} satisfies

$$
\begin{equation*}
\Delta_{S^{n-1}} v_{m}+\left(p_{m}-1\right) \beta_{m} v_{m}+\frac{\left(\psi_{m}+\beta_{m}^{\frac{1}{p_{m-1}}}\right)^{p_{m}}-\beta_{m}^{\frac{p_{m}}{p_{m-1}}}-p_{m} \beta_{m} \psi_{m}}{\left\|\psi_{m}\right\|_{L^{\infty}\left(S^{n-1}\right)}}=0 \tag{2.36}
\end{equation*}
$$

Since

$$
\left\|v_{m}\right\|_{L^{\infty}\left(S^{n-1}\right)}=1
$$

and

By standard elliptic estimates, we know that there exists a nontrivial function v_{∞} such that $v_{m} \rightarrow v_{\infty}$ in $H^{1}\left(S^{n-1}\right)$. Moreover, v_{∞} satisfies the equation

$$
\begin{equation*}
\Delta_{S^{n-1}} v_{\infty}+\left(p_{0}-1\right) \beta_{0} v_{\infty}=0 \tag{2.37}
\end{equation*}
$$

Then we deduce that v_{∞} is a nontrivial eigenfunction of $-\Delta_{S^{n-1}}$ corresponding to the eigenvalue ($p_{0}-$ 1) β_{0}. On the other hand, it is easy to see that

$$
\left(p_{0}-1\right) \beta_{0}=2\left(n-2-\frac{2}{p_{0}-1}\right)<2 n
$$

and $p_{J L}(n)>(n+1) /(n-3)$ when $n \geq 11$. Therefore, $\left(p_{0}-1\right) \beta_{0}$ can not be an eigenvalue of $-\Delta_{S^{n-1}}$. By combining these two facts together, we obtain a contradiction.

Next, we can give some estimates about the constant c in Lemma 2.7.
Lemma 2.8. Let $p_{J L}(n)<p<p_{J L}(n-1)$ and let ϕ be a positive solution of (2.1) such that

$$
\|\phi\|_{L^{\infty}\left(S^{n-1}\right)} \geq\left(\frac{2 n+\beta}{p}\right)^{\frac{1}{p-1}}
$$

then the constant c in Lemma 2.7 can be estimated by $c_{s}(p, n)$, where $c_{s}(p, n)$ is defined by (1.8).

Proof. Multiplying the both sides of (2.1) by ϕ and integrating over S^{n-1}, we can get that

$$
\begin{equation*}
\int_{S^{n-1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta+\beta \int_{S^{n-1}} \phi^{2} d \theta=\int_{S^{n-1}}|\phi|^{p+1} d \theta \tag{2.38}
\end{equation*}
$$

We take $\psi=\phi$ into (2.2), then

$$
\begin{equation*}
\int_{S^{n-1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta+\frac{(n-2)^{2}}{4} \int_{S^{n-1}} \phi^{2} d \theta \geq p \int_{S^{n-1}}|\phi|^{p+1} d \theta \tag{2.39}
\end{equation*}
$$

By (2.38) and (2.39), we can get that

$$
\begin{equation*}
\int_{S^{n-1}} \phi^{p+1} d \theta \leq \frac{\frac{(n-2)^{2}}{4}-\beta}{p-1} \int_{S^{n-1}} \phi^{2} d \theta \tag{2.40}
\end{equation*}
$$

By the Poincaré's inequality, we know that

$$
\begin{equation*}
\int_{S^{n-1}} \phi^{2} d \theta \leq \omega_{n-1}^{\frac{p-1}{p+1}}\left(\int_{S^{n-1}} \phi^{p+1} d \theta\right)^{\frac{2}{p+1}} \tag{2.41}
\end{equation*}
$$

It follows from (2.40) and (2.41) that

$$
\begin{equation*}
\int_{S^{n-1}} \phi^{2} d \theta \leq \omega_{n-1}\left(\frac{\frac{(n-2)^{2}}{4}-\beta}{p-1}\right)^{\frac{2}{p-1}} . \tag{2.42}
\end{equation*}
$$

In order to estimate the constant c in Lemma 2.7, we need to give a lower bound for $\int_{S^{n-1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta$. Since we have assumed that

$$
\|\phi\|_{L^{\infty}\left(S^{n-1}\right)} \geq\left(\frac{2 n+\beta}{p}\right)^{\frac{1}{p-1}}=\beta(p, n),
$$

then there exists a point θ_{0} such that $\phi\left(\theta_{0}\right)=\beta(p, n)$. By taking suitable orthogonal transformation, we may assume that θ_{0} is the south pole. We use the coordinates used in the proof of Lemma 2.2. By (2.1), we know that ϕ satisfies Eq (2.9). We define

$$
\hat{\phi}(\xi)=\frac{1}{\omega_{n-2}} \int_{S^{n-2}} \phi\left(\xi, \theta^{\prime}\right) d \theta^{\prime}
$$

then $\hat{\phi}$ satisfies (2.10) and (2.11). Let ξ_{1} be the first point such that

$$
\hat{\phi}\left(\xi_{1}\right)=\frac{\beta(p, n)+\beta^{\frac{1}{p-1}}}{2}
$$

We know from (2.11) that

$$
\hat{\phi}(\xi)>\frac{\beta(p, n)+\beta^{\frac{1}{p-1}}}{2} \text { in }\left(0, \xi_{1}\right)
$$

We will assume that $\xi_{1}<\frac{\pi}{2}$ since the case $\xi_{1}<\frac{\pi}{2}$ can be dealt with similarly. By (2.10), we can get that

$$
\begin{aligned}
\hat{\phi}\left(\xi_{1}\right)-\hat{\phi}(0) & =\int_{0}^{\xi_{1}} \frac{1}{\sin ^{n-2} \xi} \int_{0}^{\xi} \sin ^{n-2} \tau\left[\beta \hat{\phi}(\tau)-\frac{1}{\omega_{n-2}} \int_{S^{n-2}} \phi^{p}\left(\tau, \theta^{\prime}\right) d \theta^{\prime}\right] d \tau d \xi \\
& \geq-(\alpha(p, n))^{p} \int_{0}^{\xi_{1}} \frac{1}{\sin ^{n-2} \xi} \int_{0}^{\xi} \sin ^{n-2} \tau d \tau d \xi \\
& \geq-\frac{\xi_{1}^{2}}{2}(\alpha(p, n))^{p} .
\end{aligned}
$$

We deduce that

$$
\begin{equation*}
\xi_{1}>\left(\beta(p, n)-\beta^{\frac{1}{p-1}}\right)^{\frac{1}{2}}(\alpha(p, n))^{-\frac{p}{2}} . \tag{2.43}
\end{equation*}
$$

Let

$$
\bar{\phi}=\frac{1}{\omega_{n-1}} \int_{S^{n-1}} \phi d \theta .
$$

By (2.1) and the Jensen's inequality, we can get that $\bar{\phi} \leq \beta^{\frac{1}{p-1}}$. Therefore,

$$
\begin{align*}
& \int_{S^{n-1}}(\phi-\bar{\phi})^{2} d \theta \\
= & \int_{0}^{\pi} \int_{S^{n-2}} \sin ^{n-2} \xi(\phi-\bar{\phi})^{2} d \theta^{\prime} d \xi \\
\geq & \omega_{n-2} \int_{0}^{\xi_{1}} \sin ^{n-2} \xi(\hat{\phi}-\bar{\phi})^{2} d \xi \tag{2.44}\\
\geq & \frac{\omega_{n-2}}{4(n-1)}\left(\frac{2}{\pi}\right)^{n-2}\left(\beta(p, n)-\beta^{\frac{1}{p-1}}\right)^{\frac{n+3}{2}}(\alpha(p, n))^{-\frac{p(n-1)}{2}} .
\end{align*}
$$

It follows from the Poincaré's inequality that

$$
\int_{S^{n-1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta \geq \frac{\omega_{n-2}}{4}\left(\frac{2}{\pi}\right)^{n-2}\left(\beta(p, n)-\beta^{\frac{1}{p-1}}\right)^{\frac{n+3}{2}}(\alpha(p, n))^{-\frac{p(n-1)}{2}} .
$$

Therefore,

$$
\frac{\int_{S^{n-1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta}{\int_{S^{n-1}} \phi^{2} d \theta} \geq \frac{\omega_{n-1}\left(\frac{\left(\frac{(n-2)^{2}}{4}-\beta\right.}{p-1}\right)^{\frac{2}{p-1}}}{\frac{\omega_{n-2}}{4}\left(\frac{2}{\pi}\right)^{n-2}\left(\beta(p, n)-\beta^{\frac{1}{p-1}}\right)^{\frac{n+3}{2}}(\alpha(p, n))^{-\frac{p(n-1}{2}}} .
$$

By the above analysis, we know that (1.8) holds.
Lemma 2.9. Let ϕ be a positive solution of (2.1) such that (2.2) holds. If

$$
\|\phi\|_{L^{\infty}\left(S^{n-1}\right)} \geq\left(\frac{2 n+\beta}{p}\right)^{\frac{1}{p-1}}
$$

then ϕ is a constant when $p_{J L}(n)<p<p_{c s}(n)$, where $p_{c s}(n)$ is defined by (1.9).
Proof. By (2.38) and (2.39), we have

$$
\begin{equation*}
(p-1) \int_{S^{n-1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta \leq \int_{S^{n-1}}\left(\frac{(n-2)^{2}}{4}-p \beta\right) \phi^{2} d \theta . \tag{2.45}
\end{equation*}
$$

Let ϕ be a nonconstant solution of (2.1) satisfying (2.2), we know from Lemma 2.7 that ϕ satisfies (2.28). By combining (2.28) and (2.45) together, we can get that

$$
\begin{equation*}
(p-1) \int_{S^{n-1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta \leq\left(\frac{(n-2)^{2}}{4}-p \beta\right) c_{s}(p, n) \int_{S^{n-1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta \tag{2.46}
\end{equation*}
$$

It follows from (2.46) that

$$
\int_{S^{n-1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta=0
$$

when $p_{J L}(n)<p<p_{c s}(n)$. Since we have assumed that ϕ is a nonconstant solution of (2.1), this is a contradiction.

Proof of Theorem 2.1: This result follows from Lemma 2.4, Lemma 2.5 and Lemma 2.9.
Remark 2.10. In this section, we always assume that ϕ is positive. But we can prove that if ϕ is a solution of (2.1) depends only on the variable ξ, then ϕ does not change sign. The proof of this fact will be given in the appendix.

Remark 2.11. It is proved in [29] that if $n \geq 4$ and $(n+1) /(n-3)<p<p_{J L}(n-1)$, then (2.1) has a nonconstant positive solution.

Remark 2.12. By Lemma 1 in [30], we have the following Hardy type inequality,

$$
\begin{equation*}
\int_{S^{n-1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta+\frac{(n-2)^{2}}{4} \int_{S^{n-1}} \phi^{2} d \theta \geq \frac{(n-3)^{2}}{4} \int_{S^{n-1}} \frac{\phi^{2}}{\sin ^{2} \xi} d \theta \tag{2.47}
\end{equation*}
$$

The equation (2.1) has a singular solution which is given by

$$
\phi_{*}(\xi)=\left[\frac{2}{p-1}\left(n-3-\frac{2}{p-1}\right)\right]^{\frac{1}{p-1}}(\sin \xi)^{-\frac{2}{p-1}}=\beta_{*}(\sin \xi)^{-\frac{2}{p-1}} .
$$

Suppose ϕ_{*} satisfies (2.2), then

$$
\begin{equation*}
\int_{S^{n-1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta+\frac{(n-2)^{2}}{4} \int_{S^{n-1}} \phi^{2} d \theta \geq p \beta_{*}^{p-1} \int_{S^{n-1}} \frac{\phi^{2}}{\sin ^{2} \xi} d \theta . \tag{2.48}
\end{equation*}
$$

If $p=p_{J L}(n-1)$, then

$$
\frac{2 p}{p-1}\left(n-3-\frac{2}{p-1}\right)=\frac{(n-3)^{2}}{4}
$$

Let us define

$$
g(p)=\frac{2 p}{p-1}\left(n-3-\frac{2}{p-1}\right),
$$

then

$$
g^{\prime}(p)=\frac{-2}{(p-1)^{2}}\left(n-5-\frac{4}{p-1}\right) .
$$

If $p>(n-1) /(n-5)$, then $g^{\prime}(p)<0$. Therefore, the singular solution ϕ_{*} satisfies (2.2) if $p \geq p_{J L}(n-1)$.

3. Qualitative properties of stable solutions

In this section, we give the proof of Theorem 1.2 and Theorem 1.3.
Lemma 3.1. Let $n \geq 11, p_{J L}(n)<p<p_{s i}(n)$, where $p_{s i}(n)$ is defined in (1.12). If ϕ is a nontrivial solution of (2.1) such that (2.2) holds, then ϕ does not change sign.

Proof. We assume that ϕ change sign. Without loss of generality, we can assume that there exists a connected component Ω_{1} of $\{\phi>0\}$ such that $\lambda_{1}\left(\Omega_{1}\right) \geq n-1$, where $\lambda_{1}\left(\Omega_{1}\right)$ is the first eigenvalue of the eigenvalue problem

$$
\begin{cases}\Delta_{S^{n-1}} \Phi+\lambda \Phi=0 & \text { in } \quad \Omega_{1} \\ \Phi=0 & \text { on } \quad \partial \Omega_{1}\end{cases}
$$

Multiplying the both sides of (2.1) by ϕ and integrating over Ω_{1}, we can get that

$$
\begin{equation*}
\int_{\Omega_{1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta+\beta \int_{\Omega_{1}} \phi^{2} d \theta=\int_{\Omega_{1}}|\phi|^{p+1} d \theta \tag{3.1}
\end{equation*}
$$

We take $\psi=u 1_{\Omega_{1}}$ into (2.2), where $1_{\Omega_{1}}$ is the function defined by

$$
1_{\Omega_{1}}=\left\{\begin{array}{lll}
1 & \text { in } & \Omega_{1} \\
0 & \text { on } & S^{n-1} \backslash \Omega_{1}
\end{array}\right.
$$

Then

$$
\begin{equation*}
\int_{\Omega_{1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta+\frac{(n-2)^{2}}{4} \int_{\Omega_{1}} \phi^{2} d \theta \geq p \int_{\Omega_{1}}|\phi|^{p+1} d \theta . \tag{3.2}
\end{equation*}
$$

By (3.1) and (3.2), we know that

$$
\begin{equation*}
(p-1) \int_{\Omega_{1}}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta \leq \frac{1}{\lambda_{1}\left(\Omega_{1}\right)} \int_{\Omega_{1}}\left(\frac{(n-2)^{2}}{4}-p \beta\right)\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta . \tag{3.3}
\end{equation*}
$$

It follows that if $p_{J L}(n)<p<p_{s i}(n)$, then ϕ vanishes identically on Ω_{1}. Since we have assumed that $\phi>0$ on Ω_{1}, this is a contradiction.

Proof of Theorem 1.3: We consider the transform

$$
u(r, \theta)=r^{-\frac{2}{p-1}} w(t, \theta), \quad t=\ln r .
$$

Since u satisfies (1.1), then w is a bounded solution of the equation

$$
\begin{equation*}
\partial_{t t} w+\left(n-2-\frac{4}{p-1}\right) \partial_{t} w+\Delta_{S^{n-1}} w-\frac{2}{p-1}\left(n-2-\frac{2}{p-1}\right) w+|w|^{p-1} w=0 . \tag{3.4}
\end{equation*}
$$

We set

$$
\begin{align*}
A & =n-2-\frac{4}{p-1}, \\
B & =-\frac{2}{p-1}\left(n-2-\frac{2}{p-1}\right), \tag{3.5}\\
E(w) & =\int_{S^{n-1}} \frac{1}{2}\left|\nabla_{S^{n-1}} w\right|^{2}-\frac{B}{2} w^{2}-\frac{1}{p+1}|w|^{p+1} d \theta .
\end{align*}
$$

By (3.4), we get that

$$
\begin{equation*}
A \int_{S^{n-1}}\left(\partial_{t} w\right)^{2} d \theta=\frac{d}{d t}\left[E(w)(t)-\frac{1}{2} \int_{S^{n-1}}\left(\partial_{t} w\right)^{2} d \theta\right] . \tag{3.6}
\end{equation*}
$$

By the estimates in [19], we can get that $\partial_{t} w, \partial_{t t} w,\left|\nabla_{S^{n-1}}\right|$ are uniformly bounded. Integrating (3.6) from $-s$ to s, we find

$$
\begin{equation*}
A \int_{-s}^{s} \int_{S^{n-1}}\left(\partial_{t} w\right)^{2} d \theta d t<c \tag{3.7}
\end{equation*}
$$

for some constant c independent of s. Let s tend to $+\infty$ in (3.7), then

$$
A \int_{-\infty}^{+\infty} \int_{S^{n-1}}\left(\partial_{t} w\right)^{2} d \theta d t=0
$$

Similar to the proof of Theorem 1.4 in [1], we can obtain that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \int_{S^{n-1}}\left(\partial_{t} w\right)^{2} d \theta=0 \tag{3.8}
\end{equation*}
$$

For any sequence $\left\{t_{k}\right\}$ such that $t_{k} \rightarrow \infty$ as $k \rightarrow \infty$, we consider the translation of w defined by $w_{k}(t, \theta)=w\left(t+t_{k}, \theta\right)$. Then there exist a subsequence $\left\{w_{l_{k}}(t, \theta)\right\}$ and a function $w_{\infty}(t, \theta)$ such that $w_{l_{k}}(t, \theta) \rightarrow w_{\infty}(t, \theta)$ in $C^{2}\left([-1,1] \times S^{n-1}\right)$. By (3.8) and the dominated convergence theorem, we know that there exists a function $\phi(\theta)$ such that $w_{\infty}(t, \theta)=\phi(\theta)$. Moreover, ϕ is a solution of (2.1) such that (2.2) holds. If $\phi=0$, then $\lim _{t \rightarrow+\infty} E(w)(t)=0$. But we also have $\lim _{t \rightarrow-\infty} E(w)(t)=0$ since u is regular at the origin. It follows easily that $w \equiv 0$. Since we have assumed that u is a nontrivial solution, this is a contradiction. Therefore ϕ is not zero. If $\phi \neq 0$, we know from Lemma 3.1 that ϕ does not change sign. Suppose there exist two sequences $\left\{t_{k}\right\}$ and $\left\{\tilde{t}_{k}\right\}$ such that

$$
\lim _{k \rightarrow \infty} w\left(t_{k}, \theta\right)<0
$$

and

$$
\lim _{k \rightarrow \infty} w\left(\tilde{t}_{k}, \theta\right)>0,
$$

then $\{u \neq 0\}$ has a bounded connected component. Without loss of generality, we can assume there exists a bounded connected component $\Omega_{\text {_ }}$ such that $u<0$ on $\Omega_{\text {_. }}$. Then u satisfies the equation

$$
\begin{cases}\Delta u+|u|^{p-1} u=0 & \text { in } \quad \Omega_{-}, \tag{3.9}\\ u=0 & \text { on } \partial \Omega_{-} .\end{cases}
$$

Since u is a stable solution of (1.1), then $L=\Delta+p|u|^{p-1}$ satisfies the refined maximum principle (see [31]). Since

$$
\begin{cases}L u=(p-1)|u|^{p-1} u \leq 0 & \text { in } \Omega_{-}, \tag{3.10}\\ u=0 & \text { on } \partial \Omega_{-},\end{cases}
$$

we get from the refined maximum principle that $u \geq 0$ on $\Omega_{\text {_. }}$. In view of the definition of Ω_{-}, we get a contradiction. By the above arguments, we know that there exits a positive constant R_{0} such that u doesn't change sign on $\mathbb{R}^{n} \backslash B_{R_{0}}$. By applying the refined maximum principle again, we know that u does not change sign.

If u is axially symmetric, then the proof is essentially the same as the arguments above. The only difference is that we need to use remark 2.10 rather than Lemma 3.1 to show that there exits a positive constant R_{0} such that u doesn't change sign on $\mathbb{R}^{n} \backslash B_{R_{0}}$.

Proof of Theorem 1.2. Let $n \geq 11, p_{J L}(n)<p<p_{c s}(n)$ and let u be a positive stable solution of (1.1). Let us consider the transform

$$
u(r, \theta)=r^{-\frac{2}{p-1}} w(t, \theta), \quad t=\ln r .
$$

Since u satisfies (1.1), then w is a bounded solution of Eq (3.4). Let $\left\{t_{k}\right\}$ be a sequence such that $t_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Similar to the arguments used in the proof of Theorem 1.3, we know that there exists a function $\phi \in H^{1}\left(S^{n-1}\right)$ such that

$$
\lim _{|k| \rightarrow \infty} w\left(t_{k}, \theta\right)=\phi .
$$

Moreover, ϕ is a solution of (2.1) such that (2.2) holds. By Lemma 2.2, we have $\phi \in C^{2}\left(S^{n-1}\right)$. If u is even symmetric with respect to the $\left\{x_{i}=0\right\}, i=1,2, \cdots n$, then

$$
\int_{S^{n-1}} \phi \Phi_{i} d \theta=0 \quad \text { for } \quad i=1,2, \cdots, n
$$

Since $p_{J L}(n)<p<p_{c s}(n)$, we know from Theorem 2.1 that ϕ is a constant function. In particular, we have

$$
\phi=\left[\frac{2}{p-1}\left(n-2-\frac{2}{p-1}\right)\right]^{\frac{1}{p-1}} .
$$

Since the sequence $\left\{t_{k}\right\}$ can be arbitrary, we conclude that

$$
\lim _{|x| \rightarrow \infty}|x|^{\frac{2}{p-1}} u(x)=\left[\frac{2}{p-1}\left(n-2-\frac{2}{p-1}\right)\right]^{\frac{1}{p-1}} .
$$

Since $p>p_{J L}(n)$, then $p>n /(n-4)$. By Theorem 4.4 in [5], we can get that

$$
\begin{equation*}
u(x)=r^{-\frac{2}{p-1}}\left((-B)^{\frac{1}{p-1}}+\xi(r)+\frac{v(r, \theta)}{r}\right), \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi(r)=r^{\frac{2}{p-1}} \bar{u}(r)-(-B)^{\frac{1}{p-1}} \tag{3.12}
\end{equation*}
$$

and

$$
\bar{u}(r)=\frac{1}{\omega_{n-1}} \int_{S^{n-1}} u(r, \theta) d \theta
$$

Moreover, for any integer $\tau \geq 0$, we have $v(r, \theta)$ satisfies

$$
\begin{equation*}
v(r, \theta) \rightarrow V(\theta) \quad \text { as } \quad r \rightarrow 0 \tag{3.13}
\end{equation*}
$$

uniformly in $C^{\tau}\left(S^{n-1}\right)$, where V equals either zero or a first eigenfunctions of the operator $-\Delta_{S^{n-1}}$. Since we have obtained the asymptotic expansion (3.11) which is good enough to apply the moving plane method, then the rest of the proof is essentially the same as the proof of Theorem 1.1 in [4].

4. The proof of Theorem 1.5

In this section, we give the proof of Theorem 1.5, the proof is mainly based on the following observation.

Proposition 4.1. Let $n=10$ and let u be a smooth stable solution of Eq (1.2), then

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} u(x)+2 \ln (|x|)-\ln (16)=0 . \tag{4.1}
\end{equation*}
$$

In order to prove Proposition 4.1, we first recall a monotonicity formula.
Lemma 4.2. If u is a solution of the equation (1.2), then

$$
\begin{equation*}
\frac{d E}{d \rho}=\rho^{2-n} \int_{\partial B_{\rho}}\left(\frac{\partial u}{\partial \rho}+\frac{2}{\rho}\right)^{2} d \theta \tag{4.2}
\end{equation*}
$$

where

$$
E(\rho, u)=\rho^{2-n} \int_{B_{\rho}}\left(\frac{1}{2}|\nabla u|^{2}-e^{u}\right) d x-2 \rho^{1-n} \int_{\partial B_{\rho}}(u+2 \ln (\rho)) d \theta .
$$

Moreover, if u is a smooth stable solution of (1.1), then

$$
\begin{equation*}
\lim _{\rho \rightarrow+\infty} E(\rho, u)<+\infty \tag{4.3}
\end{equation*}
$$

Proof. The proof of (4.2) follows from a scaling argument which is similar to the proof Proposition 5.1 in [32]. The proof of (4.3) follows easily from the capacity estimates in [33].

With the help of Lemma 4.2, we can give the proof of Proposition 4.1.
proof of Proposition 4.1. The proof of Proposition 4.1 will consist of the following four steps.
Step 1: Let $\left\{\lambda_{k}\right\}$ be a sequence such that $\lim _{k \rightarrow+\infty} \lambda_{k}=+\infty$. For any λ_{k}, we define $u^{\lambda_{k}}(x)=u\left(\lambda_{k} x\right)+$ $2 \ln \left(\lambda_{k}\right)$. It is easy to check that $u^{\lambda_{k}}(x)$ is also a stable solution of (1.1). By the capacity estimates (see for instance [33]), we know that $u^{\lambda_{k}} \rightarrow u^{\infty}$ for some function $u^{\infty} \in H_{l o c}^{1}\left(\mathbb{R}^{n}\right)$. Moreover, u^{∞} is a stable solution of (1.1).

Step 2: For any $0<R_{1}<R_{2}<+\infty$, by Lemma 4.2,

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} E\left(\lambda_{k} R_{2} ; 0, u\right)-E\left(\lambda_{k} R_{1} ; 0, u\right)=0 . \tag{4.4}
\end{equation*}
$$

By the scaling invariance of E, we have

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} E\left(R_{2} ; 0, u^{\lambda_{k}}\right)-E\left(R_{1} ; 0, u^{\lambda_{k}}\right)=0 \tag{4.5}
\end{equation*}
$$

We use Lemma 4.2 again, then

$$
\begin{align*}
0 & =\lim _{k \rightarrow+\infty} E\left(R_{2} ; 0, u^{\lambda_{k}}\right)-E\left(R_{1} ; 0, u^{\lambda_{k}}\right) \\
& =\lim _{k \rightarrow+\infty} \int_{B_{R_{2}} \backslash B_{R_{1}}}|x|^{2-n}\left(\frac{\partial u^{\lambda_{k}}}{\partial r}+\frac{2}{\mid x)^{2}} d x\right. \tag{4.6}\\
& \geq \int_{B_{R_{2} \backslash B_{R_{1}}}|x|^{2-n}\left(\frac{\partial u^{\lambda_{\infty}}}{\partial r}+\frac{2}{|x|}\right)^{2} d x .} .
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\frac{2}{r}+\frac{\partial u^{\infty}}{\partial r}=0 \quad \text { a.e. } \quad \text { in } \quad \mathbb{R}^{N} . \tag{4.7}
\end{equation*}
$$

It follows that there exists a function $\phi \in H^{1}\left(S^{n-1}\right)$ such that $u^{\infty}=\phi-2 \ln (r)$. Moreover, ϕ satisfies the equation

$$
\begin{equation*}
\Delta_{S^{n-1}} \phi-2(n-2)+e^{\phi}=0 . \tag{4.8}
\end{equation*}
$$

Step 3: For every $\delta>0$, we choose a function $\eta_{\delta} \in C_{0}^{\infty}\left(\left(\frac{\delta}{2}, \frac{2}{\delta}\right)\right)$ such that $\eta_{\delta} \equiv 1$ in $\left(\delta, \frac{1}{\delta}\right)$, and $r\left|\eta_{\delta}^{\prime}(r)\right| \leq 4$. For every $\psi \in H^{1}\left(S^{n-1}\right)$, we define $\psi_{\delta}=r^{-\frac{n-2}{2}} \psi(\theta) \eta_{\delta}(r)$. For every $\psi \in H^{1}\left(S^{n-1}\right)$, we define $\psi_{\delta}=$
$r^{-\frac{n-2}{2}} \psi(\theta) \eta_{\delta}(r)$. Since u^{∞} is stable, we have

$$
\begin{aligned}
& \int_{S^{n-1}} e^{\phi} \psi^{2} d \theta \int_{0}^{+\infty} r^{-1} \eta_{\delta}^{2} d r \\
\leq & \int_{S^{n-1}} \psi^{2} d \theta \int_{0}^{\infty} r^{n-1}\left(\eta_{\delta}^{\prime} r^{-\frac{n-2}{2}}-\frac{n-2}{2} r^{-\frac{n}{2}} \eta_{\delta}\right)^{2} d r \\
& +\int_{S^{n-1}}\left|\nabla_{S^{n-1}} \psi\right|^{2} d \theta \int_{0}^{\infty} r^{n-1}\left(\eta_{\delta} r^{-\frac{n}{2}}\right)^{2} d r
\end{aligned}
$$

Therefore, ϕ satisfies

$$
\begin{equation*}
\int_{S^{n-1}}\left|\nabla_{S^{n-1}} \psi\right|^{2} d \theta+\frac{(n-2)^{2}}{4} \int_{S^{n-1}} \psi^{2} d \theta \geq \int_{S^{n-1}} e^{\phi} \psi^{2} d \theta \tag{4.9}
\end{equation*}
$$

for every $\psi \in H^{1}\left(S^{n-1}\right)$.
Step 4: We take $\psi=e^{\frac{\phi}{2}}$ into (4.9), then

$$
\begin{equation*}
\frac{1}{4} \int_{S^{n-1}} e^{\phi}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta+\frac{(n-2)^{2}}{4} \int_{S^{n-1}} e^{\phi} d \theta \geq \int_{S^{n-1}} e^{2 \phi} d \theta \tag{4.10}
\end{equation*}
$$

Multiplying the both sides of (4.8) by e^{ϕ} and using integration by part, we have

$$
\begin{equation*}
\frac{1}{2} \int_{S^{n-1}} e^{\phi}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta+2(n-2) \int_{S^{n-1}} e^{\phi} d \theta=\int_{S^{n-1}} e^{2 \phi} d \theta \tag{4.11}
\end{equation*}
$$

If $n=10$, then $(n-2)^{2} / 4=2(n-2)$. By (4.10) and (4.11), we can get that

$$
\begin{equation*}
\int_{S^{n-1}} e^{\phi}\left|\nabla_{S^{n-1}} \phi\right|^{2} d \theta \leq 0 \tag{4.12}
\end{equation*}
$$

It follows from (4.12) that $\phi=\ln (16)$ is a constant. Since $\left\{\lambda_{k}\right\}$ can be arbitrary, we can obtain that proposition 4.1 holds.

Proof of Theorem 1.5. It follows from proposition 4.1 and Theorem 1.3 in [6].

Appendix 1: A Liouville type result

In this appendix, we prove the claim in remark 2.10. The proof is based on the the following result. Proposition 4.3. Let $p \geq \frac{n+1}{n-3}$ and $(p-1) \mu \geq n-1$. If ϕ is a solution of the equation

$$
\begin{cases}\left(\frac{1+|x|^{2}}{2}\right)^{n-1} \operatorname{div}\left(\left(\frac{2}{1+|x|^{2}}\right)^{n-3} \nabla \phi\right)-\mu \phi+|\phi|^{p-1} \phi=0 & \text { in } B_{r} \tag{4.13}\\ \phi=0 & \text { on } \partial B_{r}\end{cases}
$$

where $B_{r} \subset \mathbb{R}^{n-1}$ is a ball and $0<r<1$, then $\phi=0$.

Proof. Multiplying the both sides of (4.13) by $\left(\frac{2}{1+|x|^{2}}\right)^{n-1} \phi$ and using integration by part, we can get that

$$
\begin{equation*}
\int_{B_{r}}|\nabla \phi|^{2}\left(\frac{2}{1+|x|^{2}}\right)^{n-3}+\mu \int_{B_{r}} \phi^{2}\left(\frac{2}{1+|x|^{2}}\right)^{n-1}=\int_{B_{r}}|\phi|^{p+1}\left(\frac{2}{1+|x|^{2}}\right)^{n-1} . \tag{4.14}
\end{equation*}
$$

Multiplying the both sides of (4.13) by $\left(\frac{2}{1+|x|^{2}}\right)^{n-1}(x \cdot \nabla \phi)$ and using integration by part, we can get that

$$
\begin{aligned}
h(r) \int_{\partial_{B_{r}}}|\nabla \phi|^{2}= & \int_{B_{r}}\left(\frac{2}{1+|x|^{2}}\right)^{n-3} \nabla \phi \nabla(x \cdot \nabla \phi)+\mu \int_{B_{r}}\left(\frac{2}{1+|x|^{2}}\right)^{n-1} \phi(x \cdot \nabla \phi) \\
& -\int_{B_{r}}\left(\frac{2}{1+|x|^{2}}\right)^{n-1}|\phi|^{p-1} \phi(x \cdot \nabla \phi) \\
= & \frac{h(r)}{2} \int_{\partial B_{r}}|\nabla \phi|^{2}+\frac{3-n}{2} \int_{B_{r}}\left(\frac{2}{1+|x|^{2}}\right)^{n-3}|\nabla \phi|^{2} \\
& -\frac{(n-1) \mu}{2} \int_{B_{r}}\left(\frac{2}{1+|x|^{2}}\right)^{n-1} \phi^{2}+\frac{n-1}{p+1} \int_{B_{r}}\left(\frac{2}{1+|x|^{2}}\right)^{n-1}|\phi|^{p+1} \\
& -\frac{1}{2} \int_{B_{r}} x \cdot \nabla\left(\frac{2}{1+|x|^{2}}\right)^{n-3}|\nabla \phi|^{2}-\frac{\mu}{2} \int_{B_{r}} x \cdot \nabla\left(\frac{2}{1+|x|^{2}}\right)^{n-1} \phi^{2} \\
& +\frac{1}{p+1} \int_{B_{r}} x \cdot \nabla\left(\frac{2}{1+|x|^{2}}\right)^{n-1}|\phi|^{p+1},
\end{aligned}
$$

where

$$
h(r)=r\left(\frac{2}{1+r^{2}}\right)^{n-3} .
$$

It follows that

$$
\begin{align*}
& \frac{3-n}{2} \int_{B_{r}}\left(\frac{2}{1+|x|^{2}}\right)^{n-3}|\nabla \phi|^{2}-\frac{(n-1) \mu}{2} \int_{B_{r}}\left(\frac{2}{1+|x|^{2}}\right)^{n-1} \phi^{2} \\
+ & \frac{n-1}{p+1} \int_{B_{r}}\left(\frac{2}{1+|x|^{2}}\right)^{n-1}|\phi|^{p+1}-\frac{1}{2} \int_{B_{r}} x \cdot \nabla\left(\frac{2}{1+|x|^{2}}\right)^{n-3}|\nabla \phi|^{2} \\
- & \frac{\mu}{2} \int_{B_{r}} x \cdot \nabla\left(\frac{2}{1+|x|^{2}}\right)^{n-1} \phi^{2}+\frac{1}{p+1} \int_{B_{r}} x \cdot \nabla\left(\frac{2}{1+|x|^{2}}\right)^{n-1}|\phi|^{p+1} \tag{4.15}\\
= & \frac{h(r)}{2} \int_{\partial_{B_{r}}}|\nabla \phi|^{2} .
\end{align*}
$$

Multiplying the both sides of (4.13) by $x \cdot \nabla\left(\frac{2}{1+\mid x x^{2}}\right)^{n-1} \phi$ and using integration by part, we can get that

$$
\begin{align*}
0= & -(n-1) \int_{B_{r}}\left(\frac{1+|x|^{2}}{2}\right)^{n-1} \operatorname{div}\left(\left(\frac{2}{1+|x|^{2}}\right)^{n-3} \nabla \phi\right)\left(|x|^{2}\left(\frac{2}{1+|x|^{2}}\right)^{n}\right) \\
& -\mu \int_{B_{r}} x \cdot \nabla\left(\frac{2}{1+|x|^{2}}\right)^{n-1} \phi^{2}+\int_{B_{r}} x \cdot \nabla\left(\frac{2}{1+|x|^{2}}\right)^{n-1}|\phi|^{p+1} \tag{4.16}\\
= & -(n-1) \int_{B_{r}} \frac{2|x|^{2}}{1+|x|^{2}} \phi \operatorname{div}\left(\left(\frac{2}{1+|x|^{2}}\right)^{n-3} \nabla \phi\right) \\
& -\mu \int_{B_{r}} x \cdot \nabla\left(\frac{2}{1+|x|^{2}}\right)^{n-1} \phi^{2}+\int_{B_{r}} x \cdot \nabla\left(\frac{2}{1+|x|^{2}}\right)^{n-1}|\phi|^{p+1} .
\end{align*}
$$

By some computations, we can get that

$$
\begin{align*}
& -(n-1) \int_{B_{r}} \frac{2|x|^{2}}{1+|x|^{2}} \phi \operatorname{div}\left(\left(\frac{2}{1+|x|^{2}}\right)^{n-3} \nabla \phi\right) \\
= & (n-1) \int_{B_{r}}\left(\frac{2}{1+|x|^{2}}\right)^{n-3}\left(\nabla\left(\frac{2|x|^{2}}{1+|x|^{2}} \phi\right)\right) \nabla \phi \tag{4.17}\\
= & -\frac{n-1}{n-3} \int_{B_{r}} x \cdot \nabla\left(\frac{2}{1+|x|^{2}}\right)^{n-3}|\nabla \phi|^{2}+\frac{n-1}{2(n-2)} \int_{B_{r}} \Delta\left(\frac{2}{1+|x|^{2}}\right)^{n-2} \phi^{2},
\end{align*}
$$

By (4.16) and (4.17), we have

$$
\begin{align*}
0= & -\frac{n-1}{2} \int_{B_{r}}\left[x \cdot \nabla\left(\frac{2}{1+|x|^{2}}\right)^{n-1}+(n-1)\left(\frac{2}{1+|x|^{2}}\right)^{n-1}\right] \phi^{2} \\
& -\mu \int_{B_{r}} x \cdot \nabla\left(\frac{2}{1+|x|^{2}}\right)^{n-1} \phi^{2}+\int_{B_{r}} x \cdot \nabla\left(\frac{2}{1+|x|^{2}}\right)^{n-1}|\phi|^{p+1} \tag{4.18}\\
& -\frac{n-1}{n-3} \int_{B_{r}} x \cdot \nabla\left(\frac{2}{1+|x|^{2}}\right)^{n-3}|\nabla \phi|^{2} .
\end{align*}
$$

We combine (4.14), (4.15) and (4.18) in the following way:

$$
(4.14) \times \frac{n-1}{p+1}+(4.15)-\frac{1}{p+1} \times(4.18)
$$

then

$$
\begin{aligned}
\frac{h(r)}{2} \int_{\partial B_{r}}|\nabla \phi|^{2} & =\left(\frac{n-1}{p+1}-\frac{n-3}{2}\right) \int_{B_{r}}\left(\frac{2}{1+|x|^{2}}\right)^{n-3} \frac{1-|x|^{2}}{1+|x|^{2}}|\nabla \phi|^{2} \\
& +\frac{n-1}{2(p+1)}(n-1-(p-1) \mu) \int_{B_{r}}\left(\frac{2}{1+|x|^{2}}\right)^{n-1} \frac{1-|x|^{2}}{1+|x|^{2}} \phi^{2} .
\end{aligned}
$$

If $p \geq \frac{n+1}{n-3}$ and $(p-1) \mu \geq(n-1)$, then the left hand side of the last identity will become non-positive, therefore, Eq (4.13) has only trivial solution.
Corollary 4.4. If $p \geq \frac{n+1}{n-3}$ and if ϕ is a nontrivial solution of $E q$ (2.1) depends only on the variable ξ, here we use the coordinates in the proof of Lemma 2.3, then ϕ does not change sign.

Proof. If ϕ change sign, then there exists $0<r<1$ such that (4.13) has a nontrivial solution, this is a contradiction.

Acknowledgments

The research of J. Wei is partially supported by NSERC of Canada.

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

References

1. B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure. Appl. Math., 34 (1981), 525-598. https://doi.org/10.1002/cpa. 3160340406
2. L. Caffarelli, B. Gidas, J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure. Appl. Math., 42 (1989), 271-297. https://doi.org/10.1002/cpa. 3160420304
3. W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. https://doi.org/10.1215/s0012-7094-91-06325-8
4. H. Zou, Symmetry of positive solutions of $\Delta u+u^{p}=0$ in \mathbb{R}^{n}, J. Differ. Equ., 120 (1995), 46-88. https://doi.org/10.1006/jdeq.1995.1105
5. Z. Guo, On the symmetry of positive solutions of the Lane Emden equation with supercritical exponent, Adv. Differ. Equ., 7 (2002), 641-666.
6. Z. Guo, X. Huang, F. Zhou, Radial symmetry of entire solutions of a bi-harmonic equation with exponential nonlinearity, J. Funct. Anal., 268 (2015), 1972-2004. https://doi.org/10.1016/j.jfa.2014.12.010
7. C. Gui, W.-M. Ni, X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in \mathbb{R}^{n}, Comm. Pure. Appl. Math., 45 (1992), 1153-1181. https://doi.org/10.1002/cpa. 3160450906
8. N. Ghoussoub, C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-499. https://doi.org/10.1007/s002080050196
9. L. Ambrosio, X. Cabré, Entire solutions of semilinear elliptic equations in \mathbb{R}^{3} and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739. https://doi.org/10.1090/S0894-0347-00-00345-3
10. O. Savin, Regularity of flat level sets in phase transitions, Ann. Math., 169 (2009), 41-78. https://doi.org/10.4007/annals.2009.169.41
11. M. Del Pino, M. Kowalczyk, J. Wei, On De Giorgi's conjecture in dimension $n \geq 9$. Ann. of Math., 174 (2011), 1485-1569. http://doi.org/10.4007/annals.2011.174.3.3
12. A. Bahri, P.-L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure. Appl. Math., 45 (1992), 1505-1215. https://doi.org/10.1002/cpa.3160450908
13. A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of \mathbb{R}^{n}, J. Math. Pures Appl., 87 (2007), 537-561. https://doi.org/10.1016/j.matpur.2007.03.001
14. L. Damascelli, A. Farina, B. Sciunzi, E. Valdinoci, Liouville results for m-Laplace equations of Lane-Emden-Fowler type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1099-1119. https://doi.org/10.1016/J.ANIHPC.2008.06.001
15. L. Dupaigne, A. Farina, Stable solutions of $-\Delta u=f(u)$ in \mathbb{R}^{n}, J. Eur. Math. Soc., 12 (2010), 855-882. https://doi.org/10.4171/JEMS/217
16. A. Farina, Some symmetry results and Liouville-type theorems for solutions to semilinear equations, Nonlinear Anal., 121 (2015), 223-229. https://doi.org/10.1016/j.na.2015.02.004
17. L. Dupaigne, Stable solutions of elliptic partial differential equations, Monographs and Surveys in Pure and Applied Mathematics Vol. 143, Chapman and Hall, 2011. https://doi.org/10.1201/b10802
18. J. Dávila, L. Dupaigne, K. Wang, J. Wei, A monotonicity formula and a Liouville type theorem for a fourth order supercritical problem, Adv. Math., 258 (2014), 240-285. https://doi.org/10.1016/j.aim.2014.02.034
19. K. Wang, Partial regularity of stable solutions to the supercritical equations and its applications, Nonlinear Anal., 75 (2012), 5238-5260. https://doi.org/10.1016/j.na.2012.04.041
20. A. Farina, Stable solutions of $-\Delta u=e^{u}$ on $\mathbb{R} n$, C. R. Math. Acad. Sci. Paris, 345 (2007), 63-66. https://doi.org/10.1016/j.crma.2007.05.021
21. H. Chan, J. Wei, On De Giorgi's conjecture: Recent progress and open problems, Sci. China Math., 61 (2018), 1926-1946. https://doi.org/10.1007/s11425-017-9307-4
22. E. N. Dancer, A. Farina, On the classification of solutions of $-\Delta u=e^{u}$ on \mathbb{R}^{N} : stability outside a compact set and applications, Proc. Amer. Math. Soc., 137 (2009), 1333-1338. https://doi.org/10.1090/S0002-9939-08-09772-4
23. M.-F. Bidaut-Véron, L. Véron, Nonliner elliptic equations on compact Riemannian manifolds and asymptoticss of Emden equations, Invent. Math., 106 (1991), 489-539. https://doi.org/10.1007/BF01232442
24. J. R. Licois, L. Véron, A class of nonlinear conservative elliptic equations in cylinders, Ann. Sc. Norm. Super. Pisa Cl Sci., 26 (1998), 249-283.
25. A. Farina, L. Mari, E. Valdinoci, Splitting theorems, symmetry results and overdetermined problems for Riemannian manifolds, Comm. Partial Differ. Equ., 38 (2013), 1818-1862. https://doi.org/10.1080/03605302.2013.795969
26. A. Farina, Y. Sire, E. Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds, J. Geom. Anal., 23 (2013), 1158-1172. https://doi.org/10.1007/s12220-011-9278-9
27. J. Dolbeault, M. J. Esteban, M. Loss, Nonlinear flows and rigidity results on compact manifolds, J. Funct. Anal., 267 (2014), 1338-1363. https://doi.org/10.1016/j.jfa.2014.05.021
28. D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, 1983. https://doi.org/10.1201/b10802
29. E. N. Dancer, Z. Guo, J. Wei, Non-radial singular solutions of the Lane-Emden equation in \mathbb{R}^{n}, Indiana Univ. Math. J., 61 (2012), 1971-1996. https://doi.org/10.1512/iumj.2012.61.4749
30. Y. Xiao, Some Hardy inequalities on the sphere, J. Math. Inequal., 10 (2016), 793-805. https://doi.org/10.7153/jmi-10-64
31. H. Berestycki, L. Nirenberg, S. R. S. Varadhan, The principal eigenvalue and maximum principle for second order elliptic operators in general domain, Commun. Pure. Appl. Math., 47 (1994), 47-92.https://doi.org/10.1002/cpa. 3160470105
32. K. Wang, Stable and finite Morse index solutions of Toda system, J. Differ. Equ., 268 (2019), 60-79. https://doi.org/10.1016/j.jde.2019.08.006
33. K. Wang, Partial regularity of stable solutions to the Emden equation, Calc. Var. Partial Differ. Equ., 44 (2012), 601-610. https://doi.org/10.1007/s00526-011-0446-3
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
