Research article

New results of positive doubly periodic solutions to telegraph equations

  • Received: 05 October 2021 Revised: 03 December 2021 Accepted: 03 December 2021 Published: 11 March 2022
  • The paper is devoted to obtain new results of positive doubly periodic solutions to telegraph equations. One of the interesting features in our proof is that we give a new attempt to solve telegraph equation by using the theory of Hilbert's metric. Then we apply the eigenvalue theory to analyze the existence, multiplicity, nonexistence and asymptotic behavior of positive doubly periodic solutions. We also study a corresponding eigenvalue problem in a more general case.

    Citation: Nan Deng, Meiqiang Feng. New results of positive doubly periodic solutions to telegraph equations[J]. Electronic Research Archive, 2022, 30(3): 1104-1125. doi: 10.3934/era.2022059

    Related Papers:

  • The paper is devoted to obtain new results of positive doubly periodic solutions to telegraph equations. One of the interesting features in our proof is that we give a new attempt to solve telegraph equation by using the theory of Hilbert's metric. Then we apply the eigenvalue theory to analyze the existence, multiplicity, nonexistence and asymptotic behavior of positive doubly periodic solutions. We also study a corresponding eigenvalue problem in a more general case.



    加载中


    [1] V. Barbu, Nonlinear boundary value problems for a class of hyperbolic systems, Rev. Roum. Math. Pures Appl., 22 (1977), 155–168.
    [2] G. Roussy, J. A. Pearcy, Foundations and Industrial Applications of Microwaves and Radio Frequency Fields, Wiley, New York, 1995.
    [3] Y. Li, Maximum principles and the method of upper and lower solutions for time-periodic problems of the telegraph equations, J. Math. Anal. Appl., 327 (2007), 997–1009. https://doi.org/10.1016/j.jmaa.2006.04.066 doi: 10.1016/j.jmaa.2006.04.066
    [4] J. Mawhin, R. Ortega, A. M. Robles-Pérez, Maximum principles for bounded solutions of the telegraph equation in space dimensions two and three and applications, J. Differ. Equ., 208 (2005), 42–63. https://doi.org/10.1016/j.jde.2003.11.003 doi: 10.1016/j.jde.2003.11.003
    [5] J. Mawhin, R. Ortega, A. M. Robles-Pérez, A maximum principle for bounded solutions of the telegraph equation in space dimension three, C. R. Acad. Sci. Paris, Ser. I, 334 (2002), 1089–1094. https://doi.org/10.1016/S1631-073X(02)02406-8 doi: 10.1016/S1631-073X(02)02406-8
    [6] J. Mawhin, R. Ortega, A. M. Robles-Pérez, A maximum principle for bounded solutions of the telegraph equations and applications to nonlinear forcings, J. Math. Anal. Appl., 251 (2000), 695–709. https://doi.org/10.1006/jmaa.2000.7038 doi: 10.1006/jmaa.2000.7038
    [7] R. Ortega, A. M. Robles-Pérez, A maximum principle for periodic solutions of the telegraph equations, J. Math. Anal. Appl., 221 (1998), 625–651. https://doi.org/10.1006/jmaa.1998.5921 doi: 10.1006/jmaa.1998.5921
    [8] B. H. Gilding, R. Kersner, Wavefront solutions of a nonlinear telegraph equation, J. Differ. Equ., 254 (2013), 599–636. https://doi.org/10.1016/j.jde.2012.09.007 doi: 10.1016/j.jde.2012.09.007
    [9] Y. Li, Positive doubly periodic solutions of nonlinear telegraph equations, Nonlinear Anal., 55 (2003), 245–254. https://doi.org/10.1016/S0362-546X(03)00227-X doi: 10.1016/S0362-546X(03)00227-X
    [10] F. Wang, Y. An, Existence and multiplicity results of positive doubly periodic solutions for nonlinear telegraph system, J. Math. Anal. Appl., 349 (2009), 30–42. https://doi.org/10.1016/j.jmaa.2008.08.003 doi: 10.1016/j.jmaa.2008.08.003
    [11] F. Wang, Y. An, , Doubly periodic solutions to a coupled telegraph system, Nonlinear Anal., 75 (2012), 1887–1894. https://doi.org/10.1016/j.na.2011.09.039 doi: 10.1016/j.na.2011.09.039
    [12] D. Hilbert, Über die gerade Linie als küzeste Verbindung zweier Punkte, Math. Ann., 46 (1895), 91–96. https://doi.org/10.1007/BF02096204 doi: 10.1007/BF02096204
    [13] G. Birkhoff, Extensions of Jentzch's Theorem, Trans. Amer. Math. Soc., 85 (1957), 219–227. https://doi.org/10.1090/S0002-9947-1957-0087058-6 doi: 10.1090/S0002-9947-1957-0087058-6
    [14] P. J. Bushell, Hilbert's metric and positive contraction mappings in a Banach space, Arch. Rational Mech. Anal., 52 (1973), 330–338. https://doi.org/10.1007/BF00247467 doi: 10.1007/BF00247467
    [15] P. Aviles, On isolated singularities in some nonlinear partial differential equations, Indiana Univ. Math. J., 32 (1983), 773–791. https://doi.org/10.1512/iumj.1983.32.32051 doi: 10.1512/iumj.1983.32.32051
    [16] M. Feng, X. Zhang, On a $k$-Hessian equation with a weakly superlinear nonlinearity and singular weights, Nonlinear Anal., 190 (2020), 111601. https://doi.org/10.1016/j.na.2019.111601 doi: 10.1016/j.na.2019.111601
    [17] B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525–598. https://doi.org/10.1002/cpa.3160340406 doi: 10.1002/cpa.3160340406
    [18] X. Zhang, M. Feng, The existence and asymptotic behavior of boundary blow-up solutions to the $k$-Hessian equation, J. Differ. Equ., 267 (2019), 4626–4672. https://doi.org/10.1016/j.jde.2019.05.004 doi: 10.1016/j.jde.2019.05.004
    [19] X. Zhang, M. Feng, Boundary blow-up solutions to the Monge-Ampère equation: Sharp conditions and asymptotic behavior, Adv. Nonlinear Anal., 9 (2020), 729–744. https://doi.org/10.1515/anona-2020-0023 doi: 10.1515/anona-2020-0023
    [20] M. Feng, Convex solutions of Monge-Ampère equations and systems: Existence, uniqueness and asymptotic behavior, Adv. Nonlinear Anal., 10 (2021), 371–399. https://doi.org/10.1515/anona-2020-0139 doi: 10.1515/anona-2020-0139
    [21] S. Hu, H. Wang, Convex solutions of boundary value problems arising from Monge-Ampère equations, Discrete Contin. Dyn. Syst., 16 (2006), 705–720. https://doi.org/10.3934/dcds.2006.16.705 doi: 10.3934/dcds.2006.16.705
    [22] X. Zhang, Existence and uniqueness of nontrivial radial solutions for $k$-Hessian equations, J. Math. Anal. Appl., 492 (2020), 124439. https://doi.org/10.1016/j.jmaa.2020.124439 doi: 10.1016/j.jmaa.2020.124439
    [23] A. J. B. Botter, Exislence theorem for a nonlinear integral equation, J. London Math. So., 11 (1975), 7–10. https://doi.org/10.1112/jlms/s2-11.1.7 doi: 10.1112/jlms/s2-11.1.7
    [24] P. J. Bushell, On a class of Volterra and Fredholm nonlinear integral equations, Math. Proc. Camb. Phil. Soc., 79 (1976), 329–335. https://doi.org/10.1017/S0305004100052324 doi: 10.1017/S0305004100052324
    [25] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985. https://doi.org/10.1007/978-3-662-00547-7
    [26] D. J. Guo, Eigenvalue and eigenvectors of nonlinear operators, Chin. Ann. Math., 2 (1981), 65–80.
    [27] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1269) PDF downloads(58) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog