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Abstract: The paper is devoted to obtain new results of positive doubly periodic solutions to telegraph
equations. One of the interesting features in our proof is that we give a new attempt to solve telegraph
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1. Introduction

Consider the following telegraph equation

utt − uxx + cut + a(t, x)u = ω(t, x)uγ (1.1)

with doubly periodic boundary conditions

u(t + 2π, x) = u(t, x + 2π) = u(t, x), (t, x) ∈ R2, (1.2)

where c > 0 is a constant, a, ω ∈ C(R2,R+) is 2π-periodic in t and x and γ satisfies 0 < |γ| < 1.
Telegraph equation is a typical partial differential equation, and there are important applications

in the propagation of electromagnetic waves in an electrically conducting medium, the motion of a
viscoelastic fluid under the Maxwell body theory, the motion of a string or membrane with external
damping and the damped wave equation in a thermally conducting medium. For details and explana-
tions, we refer the readers to Barbu [1] and Roussy-Pearcy [2].

Many authors have demonstrated increasing interest in the subject of telegraph equations with var-
ious boundary conditions by different methods: maximum principles and the method of upper and
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lower solutions, see Li [3], Mawhin-Ortega-Robles-Pérez [4–6] and Ortega-Robles-Pérez [7]; an inte-
gral equation approach, see Gilding-Kersner [8], and the fixed point theorem in a cone, see Li [9], and
Wang and An [10, 11].

In this paper, we choose different strategy of proof which relies essentially on the theory of Hilbert’s
metric, the eigenvalue theory, the fixed point index in a cone and the theory of α-concave operator.

On the one hand, we notice that Hilbert introduced the Hilbert’s metric in 1895 in an early pa-
per [12] which is on the foundations of geometry. Birkhoff [13] made clear the usefulness of Hilbert’s
metric in algebra and analysis in 1957. In suitable metric spaces, Birkhoff proved that the Jentzch’s
theorem for integral operators with positive kernel and Perron-Frobenius theorem for non-negative
matrices could both be verified by an application of the Banach contraction mapping theorem. Appli-
cations of Hilbert’s metric to positive integral operators and ordinary differential equations are given
by Bushell [14].

But many important kernels are not positive kernel, which plays an important role in Birkhoff [13].
For example, Green’s functions of some boundary value problems are nonnegative, not positive; for
instance, when n = 3, the Green’s function G1(x, y) for the elliptic boundary value problem{

−∆u = 0 in Ω,
u = 0 on ∂Ω

satisfies that
0 ≤ G1(x, y) ≤

1
4πr
,

where
r =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

For the case of one-dimension, it is well known that the Green’s function G2(t, s) for the following
boundary value problem {

−x′′ = 0 in (0, 1),
x(0) = x(1) = 0

is that

G2(t, s) =
{

s(1 − t), 0 ≤ s ≤ t ≤ 1,
t(1 − s), 0 ≤ t ≤ s ≤ 1,

(1.3)

It so follows from (1.3) that

0 ≤ G2(t, s) ≤
1
4
.

Therefore, the theory of Hilbert’s metric has been somewhat neglected, perhaps because the Green’s
function is lack of the strictly positivity for many boundary value problems. In this paper, we give a
new attempt to consider the existence and uniqueness of positive solution for problem (1.1) with (1.2)
by using the theory of Hilbert’s metric.

Let Z,R, and R+ denote the set of all integers, real numbers and nonnegative real numbers, respec-
tively and let

T2 = (R/2πZ) × (R/2πZ)

denote the the torus.
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Throughout this paper, a doubly 2π-periodic function will be identified to be a function defined on
T2. We also let

Lp(T2), C(T2), Cα(T2), D(T2) = C∞(T2), . . .

respectively denote the spaces of doubly periodic functions with the indicated degree of regularity.
AndD′(T2) is the space of distributions on T2.

We call a function u ∈ L1(T2) being a doubly periodic solution to (1.1) with (1.2), if u satisfies (1.1)
and (1.2) in the distribution sense, that is∫

T2
u(ϕtt − ϕxx + cϕt + a(t, x)ϕ)dtdx =

∫
T2
ω(t, x)uγ(t, x)dtdx, ∀ϕ ∈ D(T2).

For convenience, we assume that a and ω satisfy
(H1) a ∈ C(T2), 0 ≤ a(t, x) ≤ c2

4 for (t, x) ∈ R2, and
∫
T2 a(t, x)dtdx > 0;

(H2) ω ∈ C(T2), ω(t, x) ≥ 0 for (t, x) ∈ R2, and
∫
T2 ω(t, x)dtdx > 0.

Theorem 1.1. If (H1) and (H2) hold and 0 < |γ| < 1, then problem (1.1) with (1.2) admits a unique
positive doubly periodic solution.

It is not difficult to see that if γ = −1, then the approach to prove Theorem 1.1 is invalid. We
hence need introduce some different techniques, such as contraction ratio R(A) and projective diameter
D(A) for some positive operator A, to prove the existence and uniqueness of positive doubly periodic
solution for the following problem

utt − uxx + cut + a(t, x)u = ω(t, x)u−1. (1.4)

Theorem 1.2. If (H1) and (H2) hold, then problem (1.4) with (1.2) admits a unique positive doubly
periodic solution.

Remark 1.1. The method used in the proof of Theorem 1.1 and Theorem 1.2 is invalid when we
consider the case γ > 1. Therefore we need to introduce a different technique to approach this case.

On the other hand, we notice that the study of asymptotic behavior of solutions for various partial
differential equations is also a hot topic, see Aviles [15], Feng-Zhang [16], Gidas-Spruck [17], Zhang-
Feng [18, 19] and the references therein. Recently, Feng [20] employs the fixed point theorem of cone
expansion and compression of norm type to analyze the existence and asymptotic behavior of nontrivial
radial convex solutions for a Monge-Ampère system. Comparing with the fixed point theorem used
in [20], the eigenvalue theory is often a very effective approach to analyze the existence and asymptotic
behavior of positive solutions for various boundary value problems.

Next, we employ the eigenvalue theory to analyze the existence and asymptotic behavior of positive
doubly periodic solutions for

utt − uxx + cut + a(t, x)u = λω(t, x)uγ (1.5)

with (1.2), where λ > 0 is a parameter.
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Theorem 1.3. Suppose that (H1) and (H2) hold. Then, for γ > 0, we have the following conclusions:
(i) If γ > 1, then for any λ > 0, problem (1.5) with (1.2) admits a positive doubly periodic solution

uλ ∈ C(T2) with uλ . 0, and

lim
λ→0+
∥uλ∥ = +∞, lim

λ→+∞
∥uλ∥ = 0. (1.6)

(ii) If 0 < γ < 1, then for any λ > 0, problem (1.5) with (1.2) admits a positive doubly periodic
solution uλ ∈ C(T2) with uλ . 0, and

lim
λ→0+
∥uλ∥ = 0. (1.7)

(iii) If γ = 1, then there exits λ∗ > 0 such that problem (1.5) with (1.2) admits no positive doubly
periodic solution for 0 < λ < λ∗.

We also consider the more general equation

utt − uxx + cut + a(t, x)u = λω(t, x) f (u), (1.8)

where λ > 0 is a parameter.
We first give new results of existence, nonexistence and asymptotic behavior of positive doubly

periodic solutions for problem (1.8) with (1.2) in Theorems 3.1–3.3. We will use the eigenvalue theory
again to prove these assertions.

Then we consider the multiplicity of positive doubly periodic solutions for problem (1.8) with (1.2)
by employing the fixed point index in a cone, which is used in Hu and Wang [21] and Zhang [22].

We obtain the following theorem:

Theorem 1.4. Suppose that (H1) and (H2) hold. In addition, if f : [0,+∞) → [0,+∞) is continuous
and satisfies the following conditions:

(H3) lim
u→0+

f (u)
u = 0;

(H4) lim
u→+∞

f (u)
u = 0;

(H5) 0 < lim
u→+∞

f (u) ≤ +∞.

Then, for any given τ > 0, there exists δ > 0 such that, for λ > δ, problem (1.8) with (1.2) admits at
least two positive doubly periodic solutions u(1)

λ (t, x), u(2)
λ (t, x) ∈ C(T2) and max

(t,x)∈T2
u(1)
λ (t, x) > τ.

Next, we apply the theory of α-concave operator to analyze the uniqueness and continuity of positive
doubly periodic solution on the parameter λ for problem (1.8) with (1.2).

More precisely, we have:

Theorem 1.5. Suppose that (H1), (H2) and f (u) : [0,+∞) → [0,+∞) is a nondecreasing function
with f (u) > 0 for u > 0, and satisfies f (ρu) ≥ ρα f (u), for any 0 < ρ < 1, where 0 ≤ α < 1. Then,
for any λ ∈ (0,∞), problem (1.8) with (1.2) admits a unique positive doubly periodic solution uλ(t).
Furthermore, such a solution uλ(t) satisfies the following properties:

(i) uλ(t) is strong increasing in λ. That is, λ1 > λ2 > 0 implies uλ1(t) ≫ uλ2(t) for t ∈ J.
(ii) lim

λ→0+
∥uλ∥ = 0, lim

λ→+∞
∥uλ∥ = +∞.

(iii) uλ(t) is continuous with respect to λ. That is, λ→ λ0 > 0 implies ∥uλ − uλ0∥ → 0.

Electronic Research Archive Volume 30, Issue 3, 1104–1125.
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Remark 1.2. We only need f to be monotonic, but not continuous in Theorem 1.5.
The rest of the paper is organized as follows. In Section 2, we shall recall some necessary defi-

nitions, lemmas and theorems about Hilbert’s metric, which will be used to prove Theorem 1.1 and
1.2. Section 3 is devoted to proving the existence, nonexistence and asymptotic behavior of positive
doubly periodic solutions by using the eigenvalue theory and the inequality technique. The multiplicity
of positive doubly periodic solutions for (1.8) with (1.2) is discussed in Section 4 and we will prove
Theorem 1.4 there. In Section 5, we will give the proof of Theorem 1.5.

2. Hilbert’s metric and positive doubly periodic solution

In this section, we will give a new attempt to solve problem (1.1) with (1.2) by using Hilbert’s
metric. As Bushell [14] pointed out that Hilbert’s original definition of the projective metric is the
logarithm of the cross-ratio for certain points in the interior of a convex cone in Rn. Let us begin with
the definition of the Hilbert metric in a general setting.

Let E be a real Banach space with a closed solid cone K0 ( K0 denotes the interior of K ). Then for
u, v ∈ K0 we define

M
(u
v
)
= min{ξ : u ≤ ξv},

m
(u
v
)
= max{ζ : ζu ≤ v}.

It is shown in Bushell [14] that

0 < m
(u
v
)
≤ M
(u
v
)
, m
(u
v
)
v ≤ u ≤ M

(u
v
)
v.

Definition 2.1. (Definition 2.2, Bushell [14]) If A : K → K we say that A is non-negative, and if
A : K0 → K0 we say that A is positive.
Definition 2.2. (Definition 2.2, Bushell [14]) Hilbert’s projective metric d(·, ·) is defined in K0 by

d(u, v) = ln
{
M
(u
v
)/

m
(u
v
}}
.

Lemma 2.1. (Theorem 2.1, Bushell [14]) {K0, d} is a pseudo-metric space and X = {K0 ∩ B, d} is a
metric space, where B is the unit sphere in E.

Lemma 2.2. (Lemma 2.2, Bushell [14]) If u, v ∈ K0, then d(ξu, ζv) = d(u, v) for all ξ, ζ > 0.

Moreover, Bushell [24] proved that if the norm is monotone with respect to P (i.e. 0 ≤ u ≤ v ⇒
∥u∥ ≤ ∥v∥), then X is complete.
Definition 2.3. (Definition 1, Botter [23]) If A(ξu) = ξγAu for all u ∈ K0, ξ > 0, we say that A is
positive homogeneous of degree γ in K0.
Definition 2.4. (Definition 3, Botter [23]) If A : E → E, then A is said to be monotone decreasing
(increasing) if u ≤ v implies Au ≤ Av(Au ≥ Av).

We first consider the linear equation

utt − uxx + cut − λu = h(t, x) inD′(T2), (2.1)
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where λ ∈ R, and h(t, x) ∈ L1(T2).
Let Lλ denote the differential operator

Lλ = utt − uxx + cut − λu,

acting on functions on T2. It follows from Lemma 1 in [9] that if λ < 0, then Lλ admits the resolvent
Rλ defined by

Rλ : L1(T2)→ C(T2), h 7→ u,

where u is the unique solution of (2.1). Moreover, if we restrict Rλ on Lp(T2) or C(T2), then Rλ is
compact. Specifically, Rλ : C(T2)→ C(T2) is completely continuous.

Letting µ = − c2

4 , then the Green’s function G(t, x) of Lµ can be explicitly expressed, which was
obtained in Lemma 5.2 of [7]. Thus, it follows from Lemma 5.1 in [7] that the unique solution of (2.1)
can be defined by convolution product

u(t, x) = (Rµh)(t, x) =
∫
T2

G(t − s, x − y)h(s, y)dsdy. (2.2)

By the definition of G(t, x), one can get

G ≤ G(t, s) ≤ G, (2.3)

where

G := ess inf G(t, x) =
e
−3cπ

2

(1 − e−cπ)2 ,

G := ess sup G(t, x) =
1 + e−cπ

2(1 − e−cπ)2 .

Letting h ∈ L1(T2) with h(t, x) ≥ 0 for a.e. (t, x) ∈ T2, then it follows from (2.2) that

G∥h∥L1(T2) ≤ (Rµh)(t, x) ≤ G∥h∥L1(T2). (2.4)

Now take the Banach space to be C(T2) := E with supremum norm.
Let K ⊂ E by

K =
{
u ∈ E : u(t, x) ≥ 0, ∀(t, x) ∈ T2

}
. (2.5)

Then

K0 =

{
u ∈ E : u(t, x) > 0, ∀(t, x) ∈ T2

}
.

Thus, E is an ordered Banach space with K.
For convenience, we denote the norm in Banach E by ∥ · ∥, and in Lp(T2) by ∥ · ∥p hereafter.
Next, we consider (2.1) with (1.2) when −λ is replaced by a(t, x). In [9], the author obtained the

following conclusions.
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Lemma 2.3. (Lemma 2, Li [9]) Suppose that h(t, x) ∈ L2(T2). Then (2.1) with (1.2) admits a unique
solution u := Ph, and P : L1(T2)→ C(T2) is a linear bounded operator with the following properties.

(i) P : C(T2)→ C(T2) is a completely continuous operator.
(ii) If h(t, x) > 0 for a.e. (t, x) ∈ T2, then

G∥h∥1 ≤ (Ph)(t, x) ≤
G

G∥a∥1
∥h∥1, ∀(t, x) ∈ T2. (2.6)

Let T : K → E be defined by

(Tu)(t, x) = P(ω(t, x)uγ(t, x)), ∀u ∈ E. (2.7)

It follows from Lemma 2.3 that T : K → E is completely continuous, and the doubly periodic
solution of (1.1) with (1.2) is equivalent to the fixed point of T .
Proof of Theorem 1.1. Let u ∈ K and

h(t, x) = ω(t, x)uγ(t, x) (2.8)

for (t, x) ∈ R2. Then h ∈ E and Tu = Ph, and it follows from the proof of Lemma 2 in [9] that

(Ph)(t, x) ≥ (Rµh)(t, x). (2.9)

Set u ∈ K0, and define
l = min

(t,x)∈T2
u(t, x), L = max

(t,x)∈T2
u(t, x).

Then it follows from (H2), (2.2), (2.7) and (2.9) that

(Tu)(t, x) = (Ph)(t, x)
≥ (Rµh)(t, x)
=
∫
T2 G(t − s, x − y)ω(s, y)uγ(s, y)dsdy

≥


lγG
∫
T2 ω(s, y)dsdy > 0 for 0 < γ < 1,

LγG
∫
T2 ω(s, y)dsdy > 0 for − 1 < γ < 0,

which shows that Tu ∈ K0. Further T : K0 → K0.
Plainly T is monotone increasing (decreasing) and positive homogeneous of degree γ when 0 < γ <

1 (−1 < γ < 0). Next we analyze the existence and uniqueness of positive fixed point of T in K0.
Case 1) 0 < γ < 1
Since 0 < γ < 1, one can prove

d(Tu,Tv) ≤ γd(u, v), ∀u, v ∈ K0. (2.10)

In fact, it follows from
m
(u
v
)
v ≤ u ≤ M

(u
v
)
v

Electronic Research Archive Volume 30, Issue 3, 1104–1125.
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and T is monotone increasing and positive homogeneous of degree γ that[
m
(u
v
)]γ

Tv ≤ Tu ≤
[
M
(u
v
)]γ

Tv,

which shows that
M
(Tu
Tv

)
≤

[
M
(u
v
)]γ
, m
(Tu
Tv

)
≥

[
m
(u
v
)]γ
.

Thus
d(Tu,Tv) = ln

{
M
(

Tu
Tv

)
m
(

Tu
Tv

) }
≤ γ ln

{
M
(

u
v

)
m
(

u
v

) }
= γd(u, v).

Consider the mapping T̂ : E → E defined by

T̂ u =
Tu
∥Tu∥

, u ∈ E.

We hence get from Lemma 2.2 that

d(T̂ u, T̂ v) = d( Tu
∥Tu∥ ,

Tv
∥Tv∥ )

= d(Tu,Tv)
≤ γd(u, v).

It is not difficult to see that the norm is monotone with respect to K, so E is complete. Thus T̂ is a
contraction in Hilbert’s metric and so admits a unique fixed point in E; call it v∗.

Let
u∗ = ∥Tv∗∥

1
1−γ v∗.

Next we prove that T possesses a unique fixed point in K0. In fact, obviously u∗ ∈ K0, and

Tu∗ = ∥Tv∗∥
γ

1−γTv∗ = ∥Tv∗∥
γ

1−γ+1T̂ v∗ = u∗.

Moreover, suppose there exists another point u1 ∈ K0 such that Tu1 = x1. Then it follows from
(2.10) that

d(u∗, u1) = d(Tu∗,Tu1) ≤ γd(u∗, u1).

This shows that d(u∗, u1) = 0. So we get u∗ = ςu1 for ς > 0, and hence

u∗ = Tu∗ = T (ςu1) = ςγT (u1) = ςγu1,

which shows ς = 1, u∗ = u1.
Case 2) Let −1 < γ < 0. Then for u, v ∈ K0, it follows from

m
(u
v
)
v ≤ u ≤ M

(u
v
)
v

and T is monotone decreasing and positive homogeneous of degree γ that[
M
(u
v
)]γ

Tv ≤ Tu ≤
[
m
(u
v
)]γ

Tv,
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which shows that

M
(Tu
Tv

)
≤

[
m
(u
v
)]γ
, m
(Tu
Tv

)
≥

[
M
(u
v
)]γ
.

Thus

d(Tu,Tv) = ln
{

M
(

Tu
Tv

)
m
(

Tu
Tv

) }
≤ γ ln

{
m
(

u
v

)
M
(

u
v

)}
≤ (−γ) ln

{
M
(

u
v

)
m
(

u
v

) }
= |γ|d(u, v).

Let

T̂ u =
Tu
∥Tu∥

, u ∈ E.

Then one can prove T̂ : E → E, and

d(T̂ u, T̂ v) ≤ |γ|d(u, v), ∀u, v ∈ E.

So T̂ admits a unique fixed point v∗ in E by using Banach’s contraction mapping theorem. Let

u∗ = ∥Tv∗∥
1

1−γ v∗.

One can prove that u∗ is the unique fixed point of T in K0. □

It is not difficult to see that if γ = −1, then the Banach’s contraction mapping theorem is invalid in
the proof of Theorem 1.1. We hence need introduce some different techniques to prove the existence
and uniqueness of positive doubly periodic solution for problem (1.1) with (1.2).
Definition 2.5. (Definition 2, Botter [23]) The contraction ratio, R(A), of A is defined by

R(A) = inf{ξ : d(Au, Av) ≤ ξd(u, v) for all u, v ∈ K0}.

Definition 2.6. (Definition 3.3, Bushell [14]) If A is positive, the projective diameter D(A) of A is
defined by

D(A) = sup{d(Au, Av) : u, v ∈ K0}.

Lemma 2.4. (Corollary, Bushell [14]) Let A be a positive linear mapping. Then

R(A) ≤ 1.

Lemma 2.5. (Theorem 3.2, Bushell [14]) Let A be a positive linear mapping in X. Then

R(A) = tanh
1
4

D(A)

Lemma 2.6. (Theorem 1, Botter [23]) Let A be a monotone decreasing mapping which is positive
homogeneous of degree −α(α > 0). Then the contraction ratio, R(A), does not exceed α

Electronic Research Archive Volume 30, Issue 3, 1104–1125.
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Proof of Theorem 1.2. Define B : K0 → K0 by

B =
1

u(t, x)
.

Then one can verify that B is a monotone decreasing and positive homogeneous of degree −1.
Lemma 2.6 tells us that

R(B) ≤ 1.

Let T ∗ : K0 → K0 be defined by

(T ∗u)(t, x) = P(ω(t, x)u(t, x)).

Plainly T ∗ is a positive linear mapping of E into E. And then it follows from Lemma 2.5 that

R(T ∗) ≤ tanh
D(T )

4
.

But T ∗ admits finite projective diameter, so we get R(T ∗) < 1.
Define T : K0 → K0 by

Tu = T ∗Bu, u ∈ K0.

As in the proof of Theorem 1.1 one can define T̂ : E → E defined by

T̂ u =
Tu
∥Tu∥

, u ∈ E.

We hence get from Lemma 2.2 that

d(T̂ u, T̂ v) = d( Tu
∥Tu∥ ,

Tv
∥Tv∥ )

= d(Tu,Tv)
≤ γd(T ∗Bu,T ∗Bv)
≤ R(T ∗)d(Bu,Bv)
≤ R(T ∗)R(B)d(u, v).

But R(T ∗)R(B) < 1 and hence T̂ is a contraction. Therefore it follows from E is complete that T̂
possesses a unique point in E. From this we can construct (as in Theorem 1.1) an element u of K0 such
that

(Tu)(t, x) = u(t, x) = P(ω(t, x)u−1(t, x)).

This finishes the proof of Theorem 1.2 □
Remark 2.1. One of the contributions of this section is to give the application of Hilbert’s projective
metric to boundary value problems.
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3. Existence and asymptotic behavior of positive doubly periodic solution

In this section, we apply the eigenvalue theory to study the existence and asymptotic behavior of
positive continuous solutions to problem (1.5) with (1.2). So we first collect some known results of
the eigenvalue theory, which will be used in the subsequent proofs.

Lemma 3.1. (Corollary of Theorem 1, Guo [26]) Let A : E → E be completely continuous. Suppose
that Aθ = θ,

lim
∥x∥→0

∥Ax∥
∥x∥
= 0

and
lim
∥x∥→+∞

∥Ax∥
∥x∥
= +∞.

Then the following two conclusions hold:
i) Every µ , 0 is an eigenvalue of A, i.e., there exists xµ ∈ E, xµ , 0 such that Axµ = µxµ;
ii) lim
µ→∞
∥xµ∥ = +∞.

Lemma 3.2. (Corollary of Theorem 2, Guo [26]) Let A : E → E be completely continuous. Suppose
that Aθ = θ,

lim
∥x∥→0

∥Ax∥
∥x∥
= +∞

and
lim
∥x∥→+∞

∥Ax∥
∥x∥
= 0.

Then the following two conclusions hold:
i) Every µ , 0 is an eigenvalue of A, i.e., there exists xµ ∈ E, xµ , 0 such that Axµ = µxµ;
ii) lim
µ→∞

xµ = 0.

Proof of Theorem 1.3. Here we only prove the conclusion (i) holds since the proof is similar when we
verify (ii). Let

K∗ = {u ∈ K : u(t, x) ≥ σ∥u∥, ∀(t, x) ∈ T2}, (3.1)

where

σ =
G2∥a∥1

G
=

2e−3cπ∥a∥1
(1 − e−cπ)2(1 + e−cπ)

.

Then, it is easy to verify that T is completely continuous from K∗ to K∗.
Moreover, it follows from (H1) and the the definitions of G and G that 0 < σ < 1.
Next, we prove that all the conditions of the Lemma 3.1 and Lemma 3.2 are satisfied.
On the one hand, for u ∈ K∗, it follows from (2.7) and (2.8) that

∥Tu∥ = ∥Ph∥ ≤
G

G∥a∥1
∥h∥1 ≤

G
G∥a∥1

∥ω∥1∥u∥γ. (3.2)
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It hence follows from (3.2) that: for γ > 1, we get

lim
∥u∥→0

∥Tu∥
∥u∥

= 0; (3.3)

for 0 < γ < 1, we have

lim
∥u∥→0

∥Tu∥
∥u∥

= +∞. (3.4)

On the other hand, for any u ∈ K∗, we deduce from (2.7), (2.8) and (2.9) that

∥Tu∥ = ∥Ph∥ ≥ G∥h∥1 ≥ Gσγ∥u∥γ∥ω∥1. (3.5)

Thus, for γ > 1, we get

lim
∥u∥→+∞

∥Tu∥
∥u∥

= +∞. (3.6)

For 0 < γ < 1, we get

lim
∥u∥→+∞

∥Tu∥
∥u∥

= 0. (3.7)

Then from (3.3) and (3.6) or (3.4) and (3.7), together with Lemma 3.1 and Lemma 3.2, we respec-
tively get that: for any λ∗ > 0, there exists uλ∗ ∈ E with uλ∗ , θ such that Tuλ∗ = λ∗uλ∗; and

lim
λ∗→+∞

∥uλ∗∥ = +∞ or lim
λ∗→+∞

uλ∗ = 0. (3.8)

Moreover, we obtain from (3.5) that

λ∗∥uλ∗∥ = ∥Tuλ∗∥ ≥ G∥h∥1 ≥ Gσγ∥uλ∗∥γ∥ω∥1,

which shows that

∥uλ∗∥ ≤ (λ∗)
1
γ−1 (Gσγ∥ω∥1)

1
1−γ . (3.9)

But ∣∣∣∣∣λ∗uλ∗ ∣∣∣∣∣ ≤ G
G∥a∥1

∥ω∥1∥uλ∗∥γ.

It so follows from (3.9) that

∥uλ∗∥ ≤ (λ∗)−1 G
G∥a∥1
∥ω∥1∥uλ∗∥γ

≤ (λ∗)
1
γ−1 G
∥a∥1

(
∥ω∥1G2γ−1σγ

2
) 1

1−γ

.
(3.10)

Thus, when γ > 1, we have
lim
λ∗→0+

∥uλ∗∥ = 0.
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Similarly, when 0 < γ < 1, we get from (3.10) that

lim
λ∗→+∞

∥uλ∗∥ = 0.

Let λ = 1
λ∗

. Thus, we finish the proof of (i) and (ii) in Theorem 1.3.
Next, we give the proof of (iii) in Theorem 1.3. Assume u is a positive solution for problem (1.1)

with (1.2). We will prove that this leads to a contradiction for 0 < λ < λ∗, where

λ∗ =
G∥a∥1

G∥ω∥1∥u∥γ
.

Since (Tu)(t, x) = 1
λ
u(t, x) for x ∈ E, it follows from (3.2) that

∥u∥ ≤ λ G
G∥a∥1
∥ω∥1∥u∥γ

< λ∗
G

G∥a∥1
∥ω∥1∥u∥γ

= ∥u∥γ = ∥u∥.

This is a contradiction, and our proof is finished. □
Remark 3.1. The approach to prove Theorem 1.3 can be applied to the more general problem (1.8)
with (1.2).
Remark 3.2. Although we also use the eigenvalue theory to study problem (1.8) with (1.2), since the
nonlinear term is in a general form, some new techniques are needed. For detail to see the proof of
Theorems 3.1–3.3.

To consider the existence and asymptotic behavior of positive continuous solutions for eigenvalue
problem (1.8) with (1.2), we need to introduce the following notations:

f0 = lim
u→0+

f (u)
uγ
, f∞ = lim

u→+∞

f (u)
uγ
, R+ = [0,∞),

where γ > 0.

Theorem 3.3. Suppose that (H1) and (H2) hold. If f : R+ → R+ is continuous and

f0 = 0, f∞ = ∞,

then for γ > 0 and γ , 1, we get the following conclusions:
(i) If γ > 1, then for any λ > 0, problem (1.8) with (1.2) admits a positive doubly periodic solution

uλ with uλ . 0, and

lim
λ→0+
∥uλ∥ = +∞, (3.11)

lim
λ→+∞

∥uλ∥ = 0. (3.12)

(ii) If 0 < γ < 1, then for any λ > 0, problem (1.8) with (1.2) admits a positive doubly periodic
solution uλ with uλ . 0, and

lim
λ→0+
∥uλ∥ = 0. (3.13)
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Proof. Let T ∗ : K → E be defined by

(T ∗u)(t, x) = P(ω(t, x) f (u(t, x)), ∀u ∈ E. (3.14)

It follows from Lemma 2.3 that T ∗ : K → E is completely continuous, and the doubly periodic
solution of (1.8) with (1.2) is equivalent to the fixed point of λT ∗.

Similarly, one can verify that T ∗ is completely continuous from K∗ to K∗, where K∗ is defined in
(3.1).

Let u ∈ K and h∗(t, x) = ω(t, x) f (u(t, x)) for (t, x) ∈ R2. Then h∗ ∈ E and T ∗u = Ph∗, and it follows
from the proof of Lemma 2 in [9] that

(Ph∗)(t, x) ≥ (Rµh∗)(t, x). (3.15)

Considering f∞ = ∞, there exists r1 > 0 such that f (u) ≥ ε1uγ, for u ≥ r1, where ε1 > 0 satisfies

Gε1∥ω∥1σ
γ ≥ 1.

Let ∂K∗r1
= {u ∈ K∗ : ∥u∥ = r1}. Then, for x ∈ K∗r1

, we get from (3.14) and (3.15) that

∥T ∗u∥ = ∥Ph∗∥
≥ ∥Rµh∗∥
≥ G∥h∗∥1
≥ Gε1(σ∥u∥)γ∥ω∥1
≥ ∥u∥γ.

(3.16)

We so have the following two conclusions:
1) γ > 1
Since γ > 1, we get

lim
∥u∥→+∞

∥T ∗u∥
∥u∥

= +∞. (3.17)

2) 0 < γ < 1
Since 0 < γ < 1, we obtain

lim
∥u∥→+∞

∥T ∗u∥
∥u∥

= 0. (3.18)

Next, turning to f 0 = 0, there exists r2 : 0 < r2 < r1 so that f (u) ≤ ε2uγ, for 0 ≤ u ≤ r2, where
ε2 > 0 satisfies

G
G∥a∥1

∥ω∥1ε2 ≤ 1.

Thus, for u ∈ ∂K∗r2
, we have from (3.14)

∥T ∗u∥ = ∥Ph∗∥
≤ G

G∥a∥1
∥h∗∥1

≤ G
G∥a∥1
∥ω∥1ε2∥u∥γ

≤ ∥u∥γ.

(3.19)
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We hence obtain from (3.19) the following two conclusions:
1) γ > 1
Since γ > 1, we get

lim
∥u∥→0

∥T ∗u∥
∥u∥

= 0. (3.20)

2) 0 < γ < 1
Since 0 < γ < 1, we get

lim
∥u∥→0

∥T ∗u∥
∥u∥

= +∞. (3.21)

Thus, observing γ > 1, (3.17), (3.20) and Lemma 3.1, we find that: for any λ̄ > 0, there exists
uλ̄ ∈ E with uλ̄ , θ such that T ∗uλ̄ = λ̄uλ̄; and

lim
λ̄→+∞

∥uλ̄∥ = +∞. (3.22)

Moreover, it follows from (3.16) that

λ̄∥uλ̄∥ = ∥T ∗uλ̄∥ ≥ ∥uλ̄∥γ,

which shows that

∥uλ̄∥ ≤ (λ̄)
1
γ−1 . (3.23)

This proves that
lim
λ̄→0+
∥uλ̄∥ = 0

when γ > 1.
When considering 0 < γ < 1, then from (3.18) and (3.21), together with Lemma 3.2, we obtain

that: for any λ̄ > 0, there exists uλ̄ ∈ E with uλ̄ , θ such that T ∗uλ̄ = λ̄uλ̄; and lim
λ̄→∞

uλ̄ = 0.

Let λ = 1
λ̄
. Then the proof of Theorem 3.3 is completed. □

In Theorem 3.3, we consider the existence of positive solution for (1.8) with (1.2) in the case γ > 1
and 0 < γ < 1. Next we discuss what happen in the case γ = 1?

In fact, we will obtain two nonexistence results when γ = 1.

Theorem 3.4. Suppose that (H1), (H2), γ = 1 and f0 = 0. Then problem (1.8) with (1.2) possesses no
positive doubly periodic solution for 0 < λ < 1.

Proof. Let u be a positive solutions to problem (1.8) with (1.2). We next show that this leads to a
contradiction for 0 < λ < 1. Since (T ∗u)(t, x) = 1

λ
u(t, x) for (t, x) ∈ T2, it follows from (3.19) that

∥u∥ ≤ λ∥u∥γ < ∥u∥γ = ∥u∥,

which is a contradiction, and our proof is completed. □
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Theorem 3.5. Suppose that (H1), (H2), γ = 1 and f∞ = 0. Then problem (1.8) with (1.2) possesses no
positive doubly periodic solution for λ > 1.

Proof. Let u be a positive solutions to problem (1.8) with (1.2). We next show that this leads to a
contradiction for λ > 1. Since (T ∗u)(t, x) = 1

λ
u(t, x) for (t, x) ∈ T2, it follows from (3.16) that

∥u∥ ≥ λ∥u∥γ > ∥u∥γ = ∥u∥.

This is a contradiction, and our proof is finished. □

4. Proof of Theorem 1.4

In this section, we consider the multiplicity of positive solutions for problem (1.8) with (1.2) by
using a completely different method from that of Ortega-Robles-Pérez [7], Mawhin-Ortega-Robles-
Pérez [4–6], Li [3], Gilding-Kersner [8], Li [9], and Wang and An [10, 11], namely the following
lemma about fixed point index in a cone, which is used in Hu and Wang [21] and Zhang [22].

Lemma 4.1. ( [25]) Let E be a real Banach space and K be a cone in E. For r > 0, define Kr =

{x ∈ K : ∥x∥ < r}. Assume that T : K̄r → K is completely continuous such that T x , x for
x ∈ ∂Kr = {x ∈ K : ∥x∥ = r}.

(i) If ∥T x∥ ≥ ∥x∥ for x ∈ ∂Kr, then i(T,Kr,K) = 0.
(ii) If ∥T x∥ ≤ ∥x∥ for x ∈ ∂Kr, then i(T,Kr,K) = 1.

Let Tλ : K → E be defined by

(Tλu)(t, x) = P(λω(t, x) f (u(t, x))), ∀u ∈ E, (4.1)

where K is defined in (2.5) and E := C(T2).
It follows from Lemma 2.3 that Tλ : K → E is completely continuous, and the doubly periodic

solution of (1.8) with (1.2) is equivalent to the fixed point of Tλ.

Proof of Theorem 1.4. Let u ∈ K and

hλ(t, x) = λω(t, x) f (u(t, x)) (4.2)

for (t, x) ∈ R2. Then hλ ∈ E and Tλu = Phλ, and it follows from the proof of Lemma 2 in [9] that

(Phλ)(t, x) ≥ (Rµhλ)(t, x), ∀(t, x) ∈ C(T2). (4.3)

For any given τ > 0, it follows from (H5) that there exist η > 0 and d > τ such that

f (u) ≥ η for u ≥ d. (4.4)

Letting δ = d
Gη∥ω∥1

, then for λ > δ, (4.1) and Lemma 2.3 imply that Tλ : K → K is completely
continuous.

Considering (H3), there exists 0 < r < d such that f (u) ≤ Λ2 u for 0 ≤ u ≤ r, where

Λ =
G∥a∥1

Gλ∥ω∥1
.
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So, for u ∈ ∂Kr = {u ∈ K : ∥u∥ = r}, we have from (4.1) and (4.2) that

∥Tλu∥ = ∥Phλ∥ ≤
G

G∥a∥1
∥h∥1 ≤

λG
G∥a∥1

∥ω∥1
Λ

2
∥u∥ < ∥u∥. (4.5)

Consequently, for u ∈ ∂Kr, we have ∥Tλu∥ < ∥u∥. Thus, by Lemma 4.1, we get

i(Tλ,Kr,K) = 1. (4.6)

Now turning to (H4), there exists σ > 0, for u > σ, such that f (u) ≤ Λ
2 u. Letting η = max

0≤u≤σ
f (u),

then

0 ≤ f (u) ≤
Λ

2
u + η. (4.7)

Choosing

R > max
{
d,

2λG
G∥a∥1

∥ω∥1η
}
. (4.8)

So for x ∈ ∂KR, from (4.1) and (4.2) we have

∥Tλu∥ = ∥Phλ∥
≤ G

G∥a∥1
∥hλ∥1

≤ λG
G∥a∥1
∥ω∥1(Λ2 ∥u∥ + η)

< ∥u∥2 +
R
2 = ∥u∥.

(4.9)

Thus, it follows from Lemma 4.1 that

i(Tλ,KR,K) = 1. (4.10)

On the other hand, for u ∈ K̄R
d = {u ∈ K : ∥u∥ ≤ R, min

(t,x)∈T2
u(t, x) ≥ d}, (4.1), (4.2), (4.7) and (4.8)

yield that

∥Tλu∥ = ∥Phλ∥ ≤
G

G∥a∥1
∥hλ∥1 ≤

λG
G∥a∥1

∥ω∥1(
Λ

2
∥u∥ + η) < R.

Furthermore, for u ∈ K̄R
d , from (4.1), (4.2), (4.3), and (H5), we obtain

min
(t,x)∈C(T2)

(Tu)(t, x) = min
(t,x)∈C(T2)

(Phλ)(t, x)

≥ (Rµhλ)(t, x)
= λ
∫
T2 G(t − s, x − y)ω(s, y) f (u(s, y))dsdy

≥ λGη
∫
T2 ω(s, y)dsdy

> δGη∥ω∥1
= d.

Letting u0 ≡
d+R

2 and H(x, u) = (1− x)Tλu+ xu0, then H : [0, 1]× K̄R
d → K is completely continuous,

and from the analysis above, we obtain for (x, u) ∈ [0, 1] × K̄R
d

H(x, u) ∈ KR
d . (4.11)
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Therefore, for x ∈ [0, 1], u ∈ ∂KR
d , we have H(x, u) , u. Hence, by the normality property and the

homotopy invariance property of the fixed point index, we obtain

i(Tλ,KR
d ,K) = i(u0,KR

d ,K) = 1. (4.12)

Consequently, by the solution property of the fixed point index, Tλ admits a fixed point u(1)
λ with

u(1)
λ ∈ KR

d , and
max

(t,x)∈T2
u(1)
λ (t, x) ≥ min

(t,x)∈T2
u(1)
λ (t, x) > d > τ.

On the other hand, it follows from (4.6), (4.10) and (4.12) together with the additivity of the fixed
point index that

i(Tλ,KR\(K̄r ∪ K̄R
d ),K)

= i(Tλ,KR,K) − i(Tλ,KR
d ,K) − i(Tλ,Kr,K)

= 1 − 1 − 1 = −1.
(4.13)

By the solution property of the fixed point index, Tλ so admits a fixed point u(2)
λ and u(2)

λ ∈ KR\(K̄r ∪

K̄R
d ). It is not difficult to see that u(1)

λ , u(2)
λ . This gives the proof of Theorem 1.4. □

5. Proof of Theorem 1.5

In this section, we intend to analyze the uniqueness and continuity of positive solution on the pa-
rameter λ to problem (1.8) with (1.2). In order to prove Theorem 1.5, we need the following results
and some definitions, which can be found in Guo-Lakshmikantham [27].

Let E be a real Banach space, K is a cone of E. Every cone K ⊂ E induces an semi-order in E given
by “ ≤ ”. That is, x ≤ y if and only if y − x ∈ K. If cone K is solid and y − x ∈ K◦, we write x ≪ y.
Definition 5.1. Let K be a cone of a real Banach space E. K is a solid cone, if K◦ is not empty, where
K◦ is the interior of K.
Definition 5.2. Let K be a solid cone of a real Banach space E. A : K◦ → K◦ is an operator. A is called
an α-concave operator (−α-convex operator), if

A(tx) ≥ tαAx (A(tx) ≤ t−αAx), ∀x ∈ K◦, 0 < t < 1,

where 0 ≤ α < 1. The operator A is increasing (decreasing), if x1, x2 ∈ K◦ and x1 ≤ x2 imply
Ax1 ≤ Ax2 (Ax1 ≥ Ax2), and further, the operator A is strong increasing (decreasing), if x1, x2 ∈ K◦

and x1 < x2 imply Ax2 − Ax1 ∈ K◦(Ax1 − Ax2 ∈ K◦). Let xλ be a proper element of the enginvalve λ
of A, that is Axλ = λxλ. xλ is called strong increasing (decreasing), if λ1 > λ2 implies that xλ1 − xλ2 ∈

K◦(xλ2 − xλ1 ∈ K◦), which is denoted by xλ1 ≫ xλ2(xλ2 ≫ xλ1).

Lemma 5.1. Suppose that P is a normal cone of a real Banach space, A : P◦ → P◦ is an α−concave
increasing (or −α−convex decreasing) operator. Then A has exactly one fixed point in P◦.

Proof of Theorem 1.5. Let Ψ = λA, where A : K → E be defined by

(Au)(t, x) = P(ω(t, x) f (u(t, x))), ∀u ∈ E, (5.1)
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K is defined in (2.5) and E := C(T2). In fact, one can prove that the operator Ψ maps K into K. In
view of G(t, s) > 0, (H2) and f (u) > 0 for u > 0, it is easy to see that Ψ : K0 → K0. We prove that
Ψ : K0 → K0 is an α-concave increasing operator.

In fact, it follows from (5.1), Lemma 2.3 and f (ρu) ≥ ρα f (u) that

Ψ(ρu) = λP(ω(t, x) f (ρu(t, x)))
≥ ραλP(ω(t, x) f (u(t, x)))
= ραΨ(u), ∀0 < ρ < 1,

where 0 ≤ α < 1. Since f (u) is nondecreasing, then

(Ψu∗)(t, x) = λP(ω(t, x) f (u∗(t, x)))
≤ λP(ω(t, x) f (u∗∗(t, x)))
= (Ψu∗∗)(t, x) f or u∗ ≤ u∗∗, u∗, u∗∗ ∈ E.

Lemma 5.1 yields that Ψ admits a unique fixed point uλ ∈ K0. This shows that problem (1.8) with (1.2)
admits a unique positive solution uλ.

Next, we prove that (i)-(iii) hold. Let γ = 1
λ
, and denote λAuλ = uλ by Auγ = γuγ. Assume

0 < γ1 < γ2. Then uγ1 ≥ uγ2 . In fact, set

η̄ = sup
{
η : uγ1 ≥ ηuγ2

}
. (5.2)

We prove η̄ ≥ 1. If it is not, then 0 < η̄ < 1, and further

γ1uγ1 = Auγ1 ≥ A(η̄uγ2) ≥ η̄
αAuγ2 = η̄

αγ2uγ2 .

This shows
uγ1 ≥ η̄

αγ2

γ1
uγ2 ≫ η̄

αuγ2 ≫ η̄uγ2 ,

which is a contradiction to (5.2).
It follows from the discussion above that

uγ1 =
1
γ1

Auγ1 ≥
1
γ1

Auγ2 =
γ2

γ1
uγ2 ≫ uγ2 . (5.3)

This proves that uγ(t) is strong decreasing in γ. Namely uλ(t) is strong increasing in λ. This gives the
proof of Theorem 1.5 (i).

Let γ2 = γ and fix γ1 in (5.3), we get uγ1 ≥
γ

γ1
uγ, for γ > γ1. Further

∥uγ∥ ≤
γ1N1

γ
∥uγ1∥, (5.4)

where N1 > 0 denotes a normal constant. Noting that γ = 1
λ
, we get lim

λ→0+
∥uλ(t)∥ = 0.

Similarly, set γ1 = γ and fix γ2, again by (5.3) and the normality of K, we obtain lim
λ→+∞

∥uλ(t)∥ = +∞.
This finishes the proof of (ii).
Finally, we prove the continuity of uγ(t). For given γ0 > 0. From (i),

uγ ≪ uγ0 f or any γ > γ0. (5.5)
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Set
lγ = sup{ν > 0 | uγ ≥ νuγ0 , γ > γ0}.

It is clear to see that 0 < lγ < 1 and uγ ≥ lγuγ0 .We so have

γuγ = Auγ ≥ A(lγuγ0) ≥ lαγAuγ0 = lαγγ0uγ0 ,

and further
uγ ≥

γ0

γ
lαγuγ0 .

It follows the definition of lγ that

γ0

γ
lαγ ≤ lγ or lγ ≥ (

γ0

γ
)

1
1−α .

Again from the definition of lγ, we obtain

uγ ≥ (
γ0

γ
)

1
1−αuγ0 for any γ > γ0. (5.6)

Noticing that K is a normal cone, it follows from (5.5) and (5.6) that

∥uγ0 − uγ∥ ≤ N2[1 − (
γ0

γ
)

1
1−α ]∥uγ0∥ → 0, γ → γ0 + 0.

Similarly, we have
∥uγ − uγ0∥ → 0, γ → γ0 − 0.

where N2 > 0 denotes a normal constant. This shows that Theorem 1.5 (iii) holds. The proof of Theo-
rem 1.5 is complete. □
Remark 5.1. The idea of the proof for Theorem 1.5 comes from Theorem 2.2.7 in Guo-
Lakshmikantham [27], but there is almost no paper studying the uniqueness of positive doubly periodic
solution for telegraph equations.
Remark 5.2. In Theorem 1.5, even though we do not suppose that A is continuous even completely
continuous, we can prove that uλ depends continuously on λ.
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