Research article

On the construction of $ \mathbb Z^n_2- $grassmannians as homogeneous $ \mathbb Z^n_2- $spaces

  • Received: 23 May 2021 Revised: 05 September 2021 Accepted: 29 October 2021 Published: 24 December 2021
  • In this paper, we construct the $ \mathbb Z^n_2- $grassmannians by gluing of the $ \mathbb Z^n_2- $domains and give an explicit description of the action of the $ \mathbb Z^n_2- $Lie group $ GL(\overrightarrow{\textbf{m}}) $ on the $ \mathbb Z^n_2- $grassmannian $ G_{ \overrightarrow{\textbf{k}}}(\overrightarrow{\textbf{m}}) $ in the functor of points language. In particular, we give a concrete proof of the transitively of this action, and the gluing of the local charts of the $ \mathbb Z^n_2- $grassmannian.

    Citation: Mohammad Mohammadi, Saad Varsaie. On the construction of $ \mathbb Z^n_2- $grassmannians as homogeneous $ \mathbb Z^n_2- $spaces[J]. Electronic Research Archive, 2022, 30(1): 221-241. doi: 10.3934/era.2022012

    Related Papers:

  • In this paper, we construct the $ \mathbb Z^n_2- $grassmannians by gluing of the $ \mathbb Z^n_2- $domains and give an explicit description of the action of the $ \mathbb Z^n_2- $Lie group $ GL(\overrightarrow{\textbf{m}}) $ on the $ \mathbb Z^n_2- $grassmannian $ G_{ \overrightarrow{\textbf{k}}}(\overrightarrow{\textbf{m}}) $ in the functor of points language. In particular, we give a concrete proof of the transitively of this action, and the gluing of the local charts of the $ \mathbb Z^n_2- $grassmannian.



    加载中


    [1] T. Covolo, J. Grabowski, N. Poncin, $ \mathbb Z^n_2-$supergeometry I: manifolds and morphisms. arXiv: 1408.2755.
    [2] T. Covolo, J. Grabowski, N. Poncin, Splitting theorem for $ \mathbb Z^n_2-$supermanifolds, J. Geom. Phys., 110 (2016), 393–401. https://doi.org/10.1016/j.geomphys.2016.09.006 doi: 10.1016/j.geomphys.2016.09.006
    [3] T. Covolo, J. Grabowski, N. Poncin, The category of $ \mathbb Z^n_2-$supermanifolds, J. Math. Phys., 57 (2016), 073503. https://doi.org/10.1063/1.4955416 doi: 10.1063/1.4955416
    [4] T. Covolo, V. Ovsienko, N. Poncin, Higher trace and Berezinian of matrices over a Clifford algebra, J. Geom. Phys., 62 (2012), 2294–2319. https://doi.org/10.1016/j.geomphys.2012.07.004 doi: 10.1016/j.geomphys.2012.07.004
    [5] W. M. Yang, S. C. Jing, A New Kind of Graded Lie Algebra and Parastatistical Supersymmetry, Science in China (Series A), 44 (2001), 1167–1173. https://doi.org/10.1007/BF02877435 doi: 10.1007/BF02877435
    [6] L. Balduzzi, C. Carmeli, G. Cassinelli, Super G-spaces, Symmetry in mathematics and physics, AMS: Providence, RI, USA, (2009), 159–176. https://doi.org/10.1090/conm/490/09594
    [7] L. Balduzzi, C. Carmeli, R. Fioresi, Quotients in supergeometry, Symmetry in mathematics and physics, AMS: Providence, RI, USA, (2009), 177–187. https://doi.org/10.1090/conm/490/09595
    [8] C. Carmeli, L. Caston, R. Fioresi, Mathematical Foundations of Supersymmetry, European Mathematical Society, 2011. https://doi.org/10.4171/097
    [9] Y. I. Manin, Gauge Field Theory and Complex Geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 289, Springer-Verlag, Berlin, 1988, Translated from the Russian by N. Koblitz and J. R. King.
    [10] T. Covolo, S. Kwok, N. Poncin, Differential Calculus on $\mathbb Z^n_2$supermanifolds. arXiv preprint arXiv:1608.00949, 2016.
    [11] A. J. Bruce, N. Poncin, Products in the category of $ \mathbb Z^n_2-$manifolds, J. Nonlinear Math. Phys., 26 (2019), 420–453. https://doi.org/10.1080/14029251.2019.1613051 doi: 10.1080/14029251.2019.1613051
    [12] B. Jubin, A. Kotov, N. Poncin, V. Salnikov, Differential graded Lie groups and their differential graded Lie algebras, arXiv: 1906.09630.
    [13] F. Bahadorykhalily, M. Mohammadi, S. Varsaie, A class of homogeneous superspaces associated to odd involutions, Period Math. Hung., 82 (2021), 153–172. https://doi.org/10.1007/s10998-020-00364-9
    [14] O. Sanchez-Valenzuela, Remarks on grassmannian supermanifolds, Trans. Am. Math. Soc., 307 (1988), 597–614. https://doi.org/10.2307/2001190 doi: 10.2307/2001190
    [15] M. Mohammadi, S. Varsaie, Supergrassmannians as Homogeneous Superspaces, Asian-European J. Math., 14 (2021), 2150053. https://doi.org/10.1142/S1793557121500534 doi: 10.1142/S1793557121500534
    [16] M. Roshandelbana, S. Varsaie, Analytic Approach To $\nu$-Classes. arXiv: 1801.06633
    [17] A. J. Bruce, N. Poncin, Functional analytic issues in $ \mathbb Z^n_2-$Geometry, Revista de la Unión Matemática Argentina, 60 (2019), 611–636. https://doi.org/10.33044/revuma.v60n2a21 doi: 10.33044/revuma.v60n2a21
    [18] R. Fioresi, M. A. Lledo, V. S. Varadarajan, The Minkowski and conformal superspaces, J. Math. Phys., 48 (2007), 113505. https://doi.org/10.1063/1.2799262 doi: 10.1063/1.2799262
    [19] T. Covolo, S. Kwok, N. Poncin, The Frobenius Theorem for $ \mathbb Z^n_2$supermanifolds, arXiv: 1608.00961.
    [20] S. Maclane, Categories for the Working Mathematician, Springer, 1978. https://doi.org/10.1007/978-1-4757-4721-8
    [21] V. S. Varadarajan, Supersymmetry for Mathematicians: An Introduction, Courant Lecture Notes in Mathematics, vol. 11, New York University CourantInstitute of Mathematical Sciences, New York, 2004. https://doi.org/10.1090/cln/011
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1738) PDF downloads(161) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog