In this paper, we construct the $ \mathbb Z^n_2- $grassmannians by gluing of the $ \mathbb Z^n_2- $domains and give an explicit description of the action of the $ \mathbb Z^n_2- $Lie group $ GL(\overrightarrow{\textbf{m}}) $ on the $ \mathbb Z^n_2- $grassmannian $ G_{ \overrightarrow{\textbf{k}}}(\overrightarrow{\textbf{m}}) $ in the functor of points language. In particular, we give a concrete proof of the transitively of this action, and the gluing of the local charts of the $ \mathbb Z^n_2- $grassmannian.
Citation: Mohammad Mohammadi, Saad Varsaie. On the construction of $ \mathbb Z^n_2- $grassmannians as homogeneous $ \mathbb Z^n_2- $spaces[J]. Electronic Research Archive, 2022, 30(1): 221-241. doi: 10.3934/era.2022012
In this paper, we construct the $ \mathbb Z^n_2- $grassmannians by gluing of the $ \mathbb Z^n_2- $domains and give an explicit description of the action of the $ \mathbb Z^n_2- $Lie group $ GL(\overrightarrow{\textbf{m}}) $ on the $ \mathbb Z^n_2- $grassmannian $ G_{ \overrightarrow{\textbf{k}}}(\overrightarrow{\textbf{m}}) $ in the functor of points language. In particular, we give a concrete proof of the transitively of this action, and the gluing of the local charts of the $ \mathbb Z^n_2- $grassmannian.
[1] | T. Covolo, J. Grabowski, N. Poncin, $ \mathbb Z^n_2-$supergeometry I: manifolds and morphisms. arXiv: 1408.2755. |
[2] | T. Covolo, J. Grabowski, N. Poncin, Splitting theorem for $ \mathbb Z^n_2-$supermanifolds, J. Geom. Phys., 110 (2016), 393–401. https://doi.org/10.1016/j.geomphys.2016.09.006 doi: 10.1016/j.geomphys.2016.09.006 |
[3] | T. Covolo, J. Grabowski, N. Poncin, The category of $ \mathbb Z^n_2-$supermanifolds, J. Math. Phys., 57 (2016), 073503. https://doi.org/10.1063/1.4955416 doi: 10.1063/1.4955416 |
[4] | T. Covolo, V. Ovsienko, N. Poncin, Higher trace and Berezinian of matrices over a Clifford algebra, J. Geom. Phys., 62 (2012), 2294–2319. https://doi.org/10.1016/j.geomphys.2012.07.004 doi: 10.1016/j.geomphys.2012.07.004 |
[5] | W. M. Yang, S. C. Jing, A New Kind of Graded Lie Algebra and Parastatistical Supersymmetry, Science in China (Series A), 44 (2001), 1167–1173. https://doi.org/10.1007/BF02877435 doi: 10.1007/BF02877435 |
[6] | L. Balduzzi, C. Carmeli, G. Cassinelli, Super G-spaces, Symmetry in mathematics and physics, AMS: Providence, RI, USA, (2009), 159–176. https://doi.org/10.1090/conm/490/09594 |
[7] | L. Balduzzi, C. Carmeli, R. Fioresi, Quotients in supergeometry, Symmetry in mathematics and physics, AMS: Providence, RI, USA, (2009), 177–187. https://doi.org/10.1090/conm/490/09595 |
[8] | C. Carmeli, L. Caston, R. Fioresi, Mathematical Foundations of Supersymmetry, European Mathematical Society, 2011. https://doi.org/10.4171/097 |
[9] | Y. I. Manin, Gauge Field Theory and Complex Geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 289, Springer-Verlag, Berlin, 1988, Translated from the Russian by N. Koblitz and J. R. King. |
[10] | T. Covolo, S. Kwok, N. Poncin, Differential Calculus on $\mathbb Z^n_2$supermanifolds. arXiv preprint arXiv:1608.00949, 2016. |
[11] | A. J. Bruce, N. Poncin, Products in the category of $ \mathbb Z^n_2-$manifolds, J. Nonlinear Math. Phys., 26 (2019), 420–453. https://doi.org/10.1080/14029251.2019.1613051 doi: 10.1080/14029251.2019.1613051 |
[12] | B. Jubin, A. Kotov, N. Poncin, V. Salnikov, Differential graded Lie groups and their differential graded Lie algebras, arXiv: 1906.09630. |
[13] | F. Bahadorykhalily, M. Mohammadi, S. Varsaie, A class of homogeneous superspaces associated to odd involutions, Period Math. Hung., 82 (2021), 153–172. https://doi.org/10.1007/s10998-020-00364-9 |
[14] | O. Sanchez-Valenzuela, Remarks on grassmannian supermanifolds, Trans. Am. Math. Soc., 307 (1988), 597–614. https://doi.org/10.2307/2001190 doi: 10.2307/2001190 |
[15] | M. Mohammadi, S. Varsaie, Supergrassmannians as Homogeneous Superspaces, Asian-European J. Math., 14 (2021), 2150053. https://doi.org/10.1142/S1793557121500534 doi: 10.1142/S1793557121500534 |
[16] | M. Roshandelbana, S. Varsaie, Analytic Approach To $\nu$-Classes. arXiv: 1801.06633 |
[17] | A. J. Bruce, N. Poncin, Functional analytic issues in $ \mathbb Z^n_2-$Geometry, Revista de la Unión Matemática Argentina, 60 (2019), 611–636. https://doi.org/10.33044/revuma.v60n2a21 doi: 10.33044/revuma.v60n2a21 |
[18] | R. Fioresi, M. A. Lledo, V. S. Varadarajan, The Minkowski and conformal superspaces, J. Math. Phys., 48 (2007), 113505. https://doi.org/10.1063/1.2799262 doi: 10.1063/1.2799262 |
[19] | T. Covolo, S. Kwok, N. Poncin, The Frobenius Theorem for $ \mathbb Z^n_2$supermanifolds, arXiv: 1608.00961. |
[20] | S. Maclane, Categories for the Working Mathematician, Springer, 1978. https://doi.org/10.1007/978-1-4757-4721-8 |
[21] | V. S. Varadarajan, Supersymmetry for Mathematicians: An Introduction, Courant Lecture Notes in Mathematics, vol. 11, New York University CourantInstitute of Mathematical Sciences, New York, 2004. https://doi.org/10.1090/cln/011 |