Special Issues

Planar vortices in a bounded domain with a hole

  • Received: 01 August 2021 Published: 08 October 2021
  • Primary: 58F15, 58F17; Secondary: 53C35

  • In this paper, we consider the inviscid, incompressible planar flows in a bounded domain with a hole and construct stationary classical solutions with single vortex core, which is closed to the hole. This is carried out by constructing solutions to the following semilinear elliptic problem

    $ \begin{equation} \begin{cases} -\Delta \psi = \lambda(\psi-\frac{\kappa}{4\pi}\ln\lambda)_+^p,\quad &\text{in}\; \Omega,\\ \psi = \rho_\lambda,\quad &\text{on}\; \partial O_0,\\ \psi = 0,\quad &\text{on}\; \partial\Omega_0, \end{cases} \;\;\;\;\;\;\;\;(1)\end{equation} $

    where $ p>1 $, $ \kappa $ is a positive constant, $ \rho_\lambda $ is a constant, depending on $ \lambda $, $ \Omega = \Omega_0\setminus \bar{O}_0 $ and $ \Omega_0 $, $ O_0 $ are two planar bounded simply-connected domains. We show that under the assumption $ (\ln\lambda)^\sigma\leq\rho_\lambda\leq (\ln\lambda)^{1-\sigma} $ for some $ \sigma>0 $ small, (1) has a solution $ \psi_\lambda $, whose vorticity set $ \{y\in \Omega:\, \psi(y)-\kappa+\rho_\lambda\eta(y)>0\} $ shrinks to the boundary of the hole as $ \lambda\to +\infty $.

    Citation: Shusen Yan, Weilin Yu. Planar vortices in a bounded domain with a hole[J]. Electronic Research Archive, 2021, 29(6): 4229-4241. doi: 10.3934/era.2021081

    Related Papers:

  • In this paper, we consider the inviscid, incompressible planar flows in a bounded domain with a hole and construct stationary classical solutions with single vortex core, which is closed to the hole. This is carried out by constructing solutions to the following semilinear elliptic problem

    $ \begin{equation} \begin{cases} -\Delta \psi = \lambda(\psi-\frac{\kappa}{4\pi}\ln\lambda)_+^p,\quad &\text{in}\; \Omega,\\ \psi = \rho_\lambda,\quad &\text{on}\; \partial O_0,\\ \psi = 0,\quad &\text{on}\; \partial\Omega_0, \end{cases} \;\;\;\;\;\;\;\;(1)\end{equation} $

    where $ p>1 $, $ \kappa $ is a positive constant, $ \rho_\lambda $ is a constant, depending on $ \lambda $, $ \Omega = \Omega_0\setminus \bar{O}_0 $ and $ \Omega_0 $, $ O_0 $ are two planar bounded simply-connected domains. We show that under the assumption $ (\ln\lambda)^\sigma\leq\rho_\lambda\leq (\ln\lambda)^{1-\sigma} $ for some $ \sigma>0 $ small, (1) has a solution $ \psi_\lambda $, whose vorticity set $ \{y\in \Omega:\, \psi(y)-\kappa+\rho_\lambda\eta(y)>0\} $ shrinks to the boundary of the hole as $ \lambda\to +\infty $.



    加载中


    [1] Asymptotic behaviour in planar vortex theory. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. (1990) 1: 285-291.
    [2] V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Second edition. Applied Mathematical Sciences, 125. Springer, Cham, 2021. doi: 10.1007/978-3-030-74278-2
    [3] Nonlinear desingularization in certain free-boundary problems. Comm. Math. Phys. (1980) 77: 149-172.
    [4] Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. H. Poincaré Anal. Non Linéaire (1989) 6: 295-319.
    [5] Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex. Acta Math. (1989) 163: 291-309.
    [6] Regularization of point vortices for the Euler equation in dimension two. Arch. Ration. Mech. Anal. (2014) 212: 179-217.
    [7] Multiplicity of solutions for the plasma problem in two dimensions. Adv. Math. (2010) 225: 2741-2785.
    [8] Planar vortex patch problem in incompressible steady flow. Adv. Math. (2015) 270: 263-301.
    [9] Regularization of planar vortices for the incompressible flow. Acta Math. Sci. Ser. B (Engl. Ed.) (2018) 38: 1443-1467.
    [10] The Lazer-McKenna conjecture and a free boundary problem in two dimensions. J. Lond. Math. Soc. (2008) 78: 639-662.
    [11] Steady vortex flows with circulation past asymmetric obstacles. Comm. Partial Differential Equations (1987) 2: 1095-1115.
    [12] Two dimensional incompressible ideal flow around a small obstacle. Commun. Partial Diff. Equ. (2003) 28: 349-379.
    [13] Two dimensional incompressible ideal flow around a thin obstacle tending to a curve. Ann. Inst. H. Poincaré Anal. Non Linéaire (2009) 26: 1121-1148.
    [14] Vortex dynamics in a two dimensional domain with holes and the small obstacle limit. SIAM J. Math. Anal. (2007) 39: 422-436.
    [15] Desingulariation of vortices for the Euler equation. Arch. Rational Mech. Anal. (2010) 198: 869-925.
    [16] B. Turkington, On steady vortex flow in two dimensions. Ⅰ, Ⅱ, Comm. Partial Differential Equations, 8 (1983), 999–1030, 1031–1071. doi: 10.1080/03605308308820293
    [17] Existence and asymptotic behavior in planar vortex theory. Math. Models Methods Appl. Sci. (1991) 1: 461-475.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1552) PDF downloads(116) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog