In this paper, we consider the inviscid, incompressible planar flows in a bounded domain with a hole and construct stationary classical solutions with single vortex core, which is closed to the hole. This is carried out by constructing solutions to the following semilinear elliptic problem
$ \begin{equation} \begin{cases} -\Delta \psi = \lambda(\psi-\frac{\kappa}{4\pi}\ln\lambda)_+^p,\quad &\text{in}\; \Omega,\\ \psi = \rho_\lambda,\quad &\text{on}\; \partial O_0,\\ \psi = 0,\quad &\text{on}\; \partial\Omega_0, \end{cases} \;\;\;\;\;\;\;\;(1)\end{equation} $
where $ p>1 $, $ \kappa $ is a positive constant, $ \rho_\lambda $ is a constant, depending on $ \lambda $, $ \Omega = \Omega_0\setminus \bar{O}_0 $ and $ \Omega_0 $, $ O_0 $ are two planar bounded simply-connected domains. We show that under the assumption $ (\ln\lambda)^\sigma\leq\rho_\lambda\leq (\ln\lambda)^{1-\sigma} $ for some $ \sigma>0 $ small, (1) has a solution $ \psi_\lambda $, whose vorticity set $ \{y\in \Omega:\, \psi(y)-\kappa+\rho_\lambda\eta(y)>0\} $ shrinks to the boundary of the hole as $ \lambda\to +\infty $.
Citation: Shusen Yan, Weilin Yu. Planar vortices in a bounded domain with a hole[J]. Electronic Research Archive, 2021, 29(6): 4229-4241. doi: 10.3934/era.2021081
In this paper, we consider the inviscid, incompressible planar flows in a bounded domain with a hole and construct stationary classical solutions with single vortex core, which is closed to the hole. This is carried out by constructing solutions to the following semilinear elliptic problem
$ \begin{equation} \begin{cases} -\Delta \psi = \lambda(\psi-\frac{\kappa}{4\pi}\ln\lambda)_+^p,\quad &\text{in}\; \Omega,\\ \psi = \rho_\lambda,\quad &\text{on}\; \partial O_0,\\ \psi = 0,\quad &\text{on}\; \partial\Omega_0, \end{cases} \;\;\;\;\;\;\;\;(1)\end{equation} $
where $ p>1 $, $ \kappa $ is a positive constant, $ \rho_\lambda $ is a constant, depending on $ \lambda $, $ \Omega = \Omega_0\setminus \bar{O}_0 $ and $ \Omega_0 $, $ O_0 $ are two planar bounded simply-connected domains. We show that under the assumption $ (\ln\lambda)^\sigma\leq\rho_\lambda\leq (\ln\lambda)^{1-\sigma} $ for some $ \sigma>0 $ small, (1) has a solution $ \psi_\lambda $, whose vorticity set $ \{y\in \Omega:\, \psi(y)-\kappa+\rho_\lambda\eta(y)>0\} $ shrinks to the boundary of the hole as $ \lambda\to +\infty $.
[1] | Asymptotic behaviour in planar vortex theory. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. (1990) 1: 285-291. |
[2] | V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Second edition. Applied Mathematical Sciences, 125. Springer, Cham, 2021. doi: 10.1007/978-3-030-74278-2 |
[3] | Nonlinear desingularization in certain free-boundary problems. Comm. Math. Phys. (1980) 77: 149-172. |
[4] | Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. H. Poincaré Anal. Non Linéaire (1989) 6: 295-319. |
[5] | Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex. Acta Math. (1989) 163: 291-309. |
[6] | Regularization of point vortices for the Euler equation in dimension two. Arch. Ration. Mech. Anal. (2014) 212: 179-217. |
[7] | Multiplicity of solutions for the plasma problem in two dimensions. Adv. Math. (2010) 225: 2741-2785. |
[8] | Planar vortex patch problem in incompressible steady flow. Adv. Math. (2015) 270: 263-301. |
[9] | Regularization of planar vortices for the incompressible flow. Acta Math. Sci. Ser. B (Engl. Ed.) (2018) 38: 1443-1467. |
[10] | The Lazer-McKenna conjecture and a free boundary problem in two dimensions. J. Lond. Math. Soc. (2008) 78: 639-662. |
[11] | Steady vortex flows with circulation past asymmetric obstacles. Comm. Partial Differential Equations (1987) 2: 1095-1115. |
[12] | Two dimensional incompressible ideal flow around a small obstacle. Commun. Partial Diff. Equ. (2003) 28: 349-379. |
[13] | Two dimensional incompressible ideal flow around a thin obstacle tending to a curve. Ann. Inst. H. Poincaré Anal. Non Linéaire (2009) 26: 1121-1148. |
[14] | Vortex dynamics in a two dimensional domain with holes and the small obstacle limit. SIAM J. Math. Anal. (2007) 39: 422-436. |
[15] | Desingulariation of vortices for the Euler equation. Arch. Rational Mech. Anal. (2010) 198: 869-925. |
[16] | B. Turkington, On steady vortex flow in two dimensions. Ⅰ, Ⅱ, Comm. Partial Differential Equations, 8 (1983), 999–1030, 1031–1071. doi: 10.1080/03605308308820293 |
[17] | Existence and asymptotic behavior in planar vortex theory. Math. Models Methods Appl. Sci. (1991) 1: 461-475. |