Rural areas are essential to moving towards the necessary sustainable energy transition and climate change mitigation through renewable energy (RE) technologies. However, RE planning and decision-making in rural locations have not been developed to date with a focus on the local level and accompanied by a careful and thorough assessment of the simultaneous availability of alternative RE sources in a specific territory. Quite differently, RE investments in rural locations have been primarily driven by the interests of large power utilities to exploit a particular RE source, with benefits escaping from the rural economies to end up in the income statements of those large corporations. There is a need to approach RE planning at the municipal scale considering the availability of alternative RE sources. This study suggests the development of a rural RE potential index that could help in the identification of appropriate locations for the implementation of hybrid renewable energy systems (HRESs). The construction of a composite indicator to measure rural RE potential is exemplified through a case study that deals with ten indicators in the context of Galician rural municipalities, involving different RE potentials and some technical or regulatory constraints. Equal weighting and Principal Component Analysis are considered alternative methods for the index construction. Municipalities are the relevant local decision level where energy policy should be focused in order to diversify both the RE mix and the investor base. The proposed index could be the basis for future analyses aimed at optimizing the design and implementation of HRESs in rural environments at a local-regional-national scale.
Citation: Vanessa Miramontes-Viña, Noelia Romero-Castro, M. Ángeles López-Cabarcos. Advancing towards a sustainable energy model, uncovering the untapped potential of rural areas[J]. AIMS Environmental Science, 2023, 10(2): 287-312. doi: 10.3934/environsci.2023017
Rural areas are essential to moving towards the necessary sustainable energy transition and climate change mitigation through renewable energy (RE) technologies. However, RE planning and decision-making in rural locations have not been developed to date with a focus on the local level and accompanied by a careful and thorough assessment of the simultaneous availability of alternative RE sources in a specific territory. Quite differently, RE investments in rural locations have been primarily driven by the interests of large power utilities to exploit a particular RE source, with benefits escaping from the rural economies to end up in the income statements of those large corporations. There is a need to approach RE planning at the municipal scale considering the availability of alternative RE sources. This study suggests the development of a rural RE potential index that could help in the identification of appropriate locations for the implementation of hybrid renewable energy systems (HRESs). The construction of a composite indicator to measure rural RE potential is exemplified through a case study that deals with ten indicators in the context of Galician rural municipalities, involving different RE potentials and some technical or regulatory constraints. Equal weighting and Principal Component Analysis are considered alternative methods for the index construction. Municipalities are the relevant local decision level where energy policy should be focused in order to diversify both the RE mix and the investor base. The proposed index could be the basis for future analyses aimed at optimizing the design and implementation of HRESs in rural environments at a local-regional-national scale.
[1] | Fuso Nerini F, Sovacool B, Hughes N, et al. (2019) Connecting climate action with other Sustainable Development Goals. Nat Sustain 2: 674–680. https://doi.org/10.1038/s41893-019-0334-y. doi: 10.1038/s41893-019-0334-y |
[2] | Lange-Salvia A, Leal Filho W, Londero Brandli L, et al. (2019) Assessing research trends related to Sustainable Development Goals: local and global issues. J Clean Prod 208: 841–849. https://doi.org/10.1016/j.jclepro.2018.09.242. doi: 10.1016/j.jclepro.2018.09.242 |
[3] | Galli A, Đurović G, Hanscom L, et al. (2018) Think globally, act locally: Implementing the sustainable development goals in Montenegro. Environ Sci Policy 84: 159– https://doi.org/169.10.1016/j.envsci.2018.03.012. doi: 10.1016/j.envsci.2018.03.012 |
[4] | Graute U (2015) Local Authorities Acting Globally for Sustainable Development. Reg Stud 50: 1931–1942. https://doi.org/10.1080/00343404.2016.1161740. doi: 10.1080/00343404.2016.1161740 |
[5] | Doukas H, Papadopoulou A, Savvakis N, et al. (2012) Assessing energy sustainability of rural communities using Principal Component Analysis. Renew Sustain Energy Rev 16: 1949–1957. http://dx.doi.org/10.1016/j.rser.2012.01.018. doi: 10.1016/j.rser.2012.01.018 |
[6] | Krakowiak-Bal A, Ziemianczyk U, Wozniak A, et al. (2017) Building entrepreneurial capacity in rural areas The use of AHP analysis for infrastructure evaluation. Int J Entrep Behav Res 23: 903–918. http://dx.doi.org/10.1108/IJEBR-07-2017-0223. doi: 10.1108/IJEBR-07-2017-0223 |
[7] | Marinakis V, Papadopoulou AG, Psarras J (2015) Local communities towards a sustainable energy future: needs and priorities. Int J Sustain Energy 36: 296–312. http://dx.doi.org/10.1080/14786451.2015.1018264. doi: 10.1080/14786451.2015.1018264 |
[8] | Abreu I, Nunes JM, Mesias FJ (2019) Can Rural Development Be Measured? Design and Application of a Synthetic Index to Portuguese Municipalities. Soc Indic Res 145: 1107–1123. https://doi.org/10.1007/s11205-019-02124-w. doi: 10.1007/s11205-019-02124-w |
[9] | Dammers E, Keiner M (2006) Rural Development In Europe. disP - Plan Rev 42: 5– https://doi.org/15.10.1080/02513625.2006.10556958. doi: 10.1080/02513625.2006.10556958 |
[10] | Okkonen L, Lehtonen O (2016) Socio-economic impacts of community wind power projects in Northern Scotland. Renew Energy 85: 826–833. http://dx.doi.org/10.1016/j.renene.2015.07.047. doi: 10.1016/j.renene.2015.07.047 |
[11] | Liu L, Cao C, Song W (2023) Bibliometric Analysis in the Field of Rural Revitalization: Current Status, Progress, and Prospects. Int J Environ Res Public Health 20. http://dx.doi.org/10.3390/ijerph20010823. |
[12] | de Los Ríos-Carmenado I, Ortuño M, Rivera M (2016) Private-Public Partnership as a tool to promote entrepreneurship for sustainable development: WWP torrearte experience. Sustainability 8. http://dx.doi.org/10.3390/su8030199. |
[13] | Díaz-Cuevas P, Domínguez-Bravo J, Prieto-Campos A (2019) Integrating MCDM and GIS for renewable energy spatial models: assessing the individual and combined potential for wind, solar and biomass energy in Southern Spain. Clean Technol Environ Policy 21: 1855–1869. https://doi.org/10.1007/s10098-019-01754-5. doi: 10.1007/s10098-019-01754-5 |
[14] | Marinakis V, Papadopoulou AG, Psarras J (2017) Local communities towards a sustainable energy future: needs and priorities. Int J Sustain Energy 36: 296–312. http://dx.doi.org/10.1080/14786451.2015.1018264. doi: 10.1080/14786451.2015.1018264 |
[15] | Streimikiene D, Baležentis T, Volkov A, et al. (2021) Barriers and drivers of renewable energy penetration in rural areas. Energies 14. http://dx.doi.org/10.3390/en14206452. |
[16] | Reddy AKN (2002) A generic Southern perspective on renewable energy. Energy Sustain Dev 6: 74–83. http://dx.doi.org/10.1016/S0973-0826(08)60327-0. doi: 10.1016/S0973-0826(08)60327-0 |
[17] | Kitchen L, Marsden T (2009) Creating sustainable rural development through stimulating the eco-economy: Beyond the eco-economic paradox? Sociol Ruralis 49: 273–294. http://dx.doi.org/10.1111/j.1467-9523.2009.00489.x. doi: 10.1111/j.1467-9523.2009.00489.x |
[18] | Graziano M, Billing SL, Kenter JO, et al. (2017) A transformational paradigm for marine renewable energy development. Energy Res Soc Sci 23: 136–147. http://dx.doi.org/10.1016/j.erss.2016.10.008. doi: 10.1016/j.erss.2016.10.008 |
[19] | Poggi F, Firmino A, Amado M (2018) Planning renewable energy in rural areas: Impacts on occupation and land use. Energy 155: 630–640. https://doi.org/10.1016/j.energy.2018.05.009. doi: 10.1016/j.energy.2018.05.009 |
[20] | Streimikiene D, Baležentis T, Kriščiukaitiene I (2012) Promoting interactions between local climate change mitigation, sustainable energy development, and rural development policies in Lithuania. Energy Policy 50: 699–710. https://doi.org/10.1016/j.enpol.2012.08.015. doi: 10.1016/j.enpol.2012.08.015 |
[21] | Brummer V (2018) Community energy – benefits and barriers: A comparative literature review of Community Energy in the UK, Germany and the USA, the benefits it provides for society and the barriers it faces. Renew Sustain Energy Rev 94: 187–196. https://doi.org/10.1016/j.rser.2018.06.013. doi: 10.1016/j.rser.2018.06.013 |
[22] | García-Martínez J, Reyes-Patiño JL, López-Sosa LB, et al. (2022) Anticipating alliances of stakeholders in the optimal design of community energy systems. Sustain Energy Technol Assessments 54: 102880. https://doi.org/10.1016/j.seta.2022.102880. doi: 10.1016/j.seta.2022.102880 |
[23] | Paredes-Sánchez JP, López-Ochoa LM, López-González LM, et al. (2018) Energy utilization for distributed thermal production in rural areas: A case study of a self-sustaining system in Spain. Energy Convers Manag 174: 1014–1023. https://doi.org/10.1016/j.enconman.2018.08.080. doi: 10.1016/j.enconman.2018.08.080 |
[24] | Van Hoesen J, Letendre S (2010) Evaluating potential renewable energy resources in Poultney, Vermont: A GIS-based approach to supporting rural community energy planning. Renew Energy 35: 2114–2122. http://dx.doi.org/10.1016/j.renene.2010.01.018. doi: 10.1016/j.renene.2010.01.018 |
[25] | Hain JJ, Ault GW, Galloway SJ, et al. (2005) Additional renewable energy growth through small-scale community orientated energy policies. Energy Policy 33: 1199–1212. http://dx.doi.org/10.1016/j.enpol.2003.11.017. doi: 10.1016/j.enpol.2003.11.017 |
[26] | Martire S, Tuomasjukka D, Lindner M, et al. (2015) Sustainability impact assessment for local energy supplies' development - The case of the alpine area of Lake Como, Italy. Biomass and Bioenergy 83: 60–76. http://dx.doi.org/10.1016/j.biombioe.2015.08.020. doi: 10.1016/j.biombioe.2015.08.020 |
[27] | Zabaniotou A, Rovas D, Delivand MK, et al. (2017) Conceptual vision of bioenergy sector development in Mediterranean regions based on decentralized thermochemical systems. Sustain Energy Technol Assessments 23: 33–47. http://dx.doi.org/10.1016/j.seta.2017.09.006. doi: 10.1016/j.seta.2017.09.006 |
[28] | von Bock und Polach C, Kunze C, Maaß O, et al. (2015) Bioenergy as a socio-technical system: The nexus of rules, social capital and cooperation in the development of bioenergy villages in Germany. Energy Res Soc Sci 6: 128–135. http://dx.doi.org/10.1016/j.erss.2015.02.003. doi: 10.1016/j.erss.2015.02.003 |
[29] | Klepacki B, Kusto B, Bórawski P, et al. (2021) Investments in renewable energy sources in basic units of local government in rural areas. Energies 14: 1–17. http://dx.doi.org/10.3390/en14113170. doi: 10.3390/en14113170 |
[30] | Wang Y, Cai C, Liu C, et al. (2022) Planning research on rural integrated energy system based on coupled utilization of biomass-solar energy resources. Sustain Energy Technol Assessments 53: 102416. https://doi.org/10.1016/j.seta.2022.102416. doi: 10.1016/j.seta.2022.102416 |
[31] | Poggi F, Firmino A, Amado M (2020) Shaping energy transition at municipal scale: A net-zero energy scenario-based approach. Land use policy 99: 104955. https://doi.org/10.1016/j.landusepol.2020.104955. doi: 10.1016/j.landusepol.2020.104955 |
[32] | Markantoni M, Woolvin M (2013) The role of rural communities in the transition to a low-carbon Scotland: A review. Local Environ 20: 202–219. http://dx.doi.org/10.1080/13549839.2013.834880. doi: 10.1080/13549839.2013.834880 |
[33] | OECD (2012) Linking Renewable Energy to Rural Development. |
[34] | ECA (2018) Special Report No. 05. Renewable energy for sustainable rural development: significant potential synergies, but mostly unrealized., Luxembourg. |
[35] | Clausen LT, Rudolph D (2020) Renewable energy for sustainable rural development: Synergies and mismatches. Energy Policy 138: 111289. https://doi.org/10.1016/j.enpol.2020.111289. doi: 10.1016/j.enpol.2020.111289 |
[36] | Katsaprakakis D Al, Christakis DG (2016) The exploitation of electricity production projects from Renewable Energy Sources for the social and economic development of remote communities. the case of Greece: An example to avoid. Renew Sustain Energy Rev 54: 341–349. http://dx.doi.org/10.1016/j.rser.2015.10.029. doi: 10.1016/j.rser.2015.10.029 |
[37] | O'Sullivan K, Golubchikov O, Mehmood A (2020) Uneven energy transitions: Understanding continued energy peripheralization in rural communities. Energy Policy 138: 111288. https://doi.org/10.1016/j.enpol.2020.111288. doi: 10.1016/j.enpol.2020.111288 |
[38] | Dütschke E, Wesche JP (2018) The energy transformation as a disruptive development at community level. Energy Res Soc Sci 37: 251–254. https://doi.org/10.1016/j.erss.2017.10.030. doi: 10.1016/j.erss.2017.10.030 |
[39] | Rommel J, Radtke J, von Jorck G, et al. (2018) Community renewable energy at a crossroads: A think piece on degrowth, technology, and the democratization of the German energy system. J Clean Prod 197: 1746–1753. https://doi.org/10.1016/j.jclepro.2016.11.114. doi: 10.1016/j.jclepro.2016.11.114 |
[40] | Sliz-Szkliniarz B (2013) Assessment of the renewable energy-mix and land use trade-off at a regional level: A case study for the Kujawsko-Pomorskie Voivodship. Land use policy 35: 257–270. http://dx.doi.org/10.1016/j.landusepol.2013.05.018. doi: 10.1016/j.landusepol.2013.05.018 |
[41] | Kumar N, Namrata K, Samadhiya A (2023) Techno socio-economic analysis and stratified assessment of hybrid renewable energy systems for electrification of rural community. Sustain Energy Technol Assessments 55: 102950. https://doi.org/10.1016/j.seta.2022.102950. doi: 10.1016/j.seta.2022.102950 |
[42] | Ma W, Xue X, Liu G (2018) Techno-economic evaluation for hybrid renewable energy system: Application and merits. Energy 159: 385–409. https://doi.org/10.1016/j.energy.2018.06.101. doi: 10.1016/j.energy.2018.06.101 |
[43] | He J, Wu Y, Wu J, et al. (2021) Towards cleaner heating production in rural areas: Identifying optimal regional renewable systems with a case in Ningxia, China. Sustain Cities Soc 75: 103288. https://doi.org/10.1016/j.scs.2021.103288. doi: 10.1016/j.scs.2021.103288 |
[44] | Li S, Zhang L, Wang X, et al. (2022) A decision-making and planning optimization framework for multi-regional rural hybrid renewable energy system. Energy Convers Manag 273: 116402. https://doi.org/10.1016/j.enconman.2022.116402. doi: 10.1016/j.enconman.2022.116402 |
[45] | Hori K, Matsui T, Hasuike T, et al. (2016) Development and application of the renewable energy regional optimization utility tool for environmental sustainability: REROUTES. Renew Energy 93: 548–561. http://dx.doi.org/10.1016/j.renene.2016.02.051. doi: 10.1016/j.renene.2016.02.051 |
[46] | Woch F, Hernik J, Linke HJ, et al. (2017) Renewable energy and rural autonomy: A case study with generalizations. Polish J Environ Stud 26: 2823–2832. http://dx.doi.org/10.15244/pjoes/74129. doi: 10.15244/pjoes/74129 |
[47] | Romero-Castro N, Miramontes-Viña V, López-Cabarcos MÁ (2022) Understanding the Antecedents of Entrepreneurship and Renewable Energies to Promote the Development of Community Renewable Energy in Rural Areas. Sustain 14: 1–25. http://dx.doi.org/10.3390/su14031234. doi: 10.3390/su14031234 |
[48] | Romero-Castro N, Ángeles López-Cabarcos M, Miramontes-Viña V, et al. (2023) Sustainable energy transition and circular economy: The heterogeneity of potential investors in rural community renewable energy projects. Environ Dev Sustain. https://doi.org/10.1007/s10668-022-02898-z. |
[49] | D'Souza C, Yiridoe EK (2014) Social acceptance of wind energy development and planning in rural communities of Australia: A consumer analysis. Energy Policy 74: 262–270. http://dx.doi.org/10.1016/j.enpol.2014.08.035. doi: 10.1016/j.enpol.2014.08.035 |
[50] | Süsser D, Kannen A (2017) Renewables? Yes, please!': perceptions and assessment of community transition induced by renewable-energy projects in North Frisia. Sustain Sci 12: 563–578. http://dx.doi.org/10.1007/s11625-017-0433-5. doi: 10.1007/s11625-017-0433-5 |
[51] | Monteleone M, Cammerino ARB, Libutti A (2018) Agricultural "greening" and cropland diversification trends: Potential contribution of agroenergy crops in Capitanata (South Italy). Land use policy 70: 591–600. https://doi.org/10.1016/j.landusepol.2017.10.038. doi: 10.1016/j.landusepol.2017.10.038 |
[52] | Sæ tórsdóttir AD, Hall CM (2019) Contested development paths and rural communities: Sustainable energy or sustainable tourism in Iceland? Sustain 11. https://doi.org/10.3390/su11133642. |
[53] | Yildiz Ö (2014) Financing renewable energy infrastructures via financial citizen participation - The case of Germany. Renew Energy 68: 677–685. http://dx.doi.org/10.1016/j.renene.2014.02.038. doi: 10.1016/j.renene.2014.02.038 |
[54] | Lowitzsch J, Hanke F (2019) Energy transition: Financing consumer co-ownership in renewables. Energy Transit Financ Consum Co-ownersh Renewables 139–162. http://dx.doi.org/10.1007/978-3-319-93518-8. |
[55] | Schreuer A, Weismeier-Sammer D (2010) Energy cooperatives and local Ownership in the field of renewable energy technologies: A literature review. |
[56] | McKenna R (2018) The double-edged sword of decentralized energy autonomy. Energy Policy 113: 747–750. https://doi.org/10.1016/j.enpol.2017.11.033. doi: 10.1016/j.enpol.2017.11.033 |
[57] | Lam PTI, Law AOK (2016) Crowdfunding for renewable and sustainable energy projects: An exploratory case study approach. Renew Sustain Energy Rev 60: 11–20. http://dx.doi.org/10.1016/j.rser.2016.01.046. doi: 10.1016/j.rser.2016.01.046 |
[58] | Martínez-Alonso P, Hewitt R, Pacheco JD, et al. (2016) Losing the roadmap: Renewable energy paralysis in Spain and its implications for the EU low carbon economy. Renew Energy 89: 680–694. http://dx.doi.org/10.1016/j.renene.2015.12.004. doi: 10.1016/j.renene.2015.12.004 |
[59] | Ryberg DS, Robinius M, Stolten D (2018) Evaluating land eligibility constraints of renewable energy sources in Europe. Energies 11: 1–19. http://dx.doi.org/10.3390/en11051246. doi: 10.3390/en11051246 |
[60] | Medina-Santana AA, Flores-Tlacuahuac A, Cárdenas-Barrón LE, et al. (2020) Optimal design of the water-energy-food nexus for rural communities. Comput Chem Eng 143: 107120. https://doi.org/10.1016/j.compchemeng.2020.107120. doi: 10.1016/j.compchemeng.2020.107120 |
[61] | Singh A, Yadav A, Sinha S (2022) Hybrid Power Systems: Solution to Rural Electrification. Curr Sustain Energy Reports 9: 77–93. https://doi.org/10.1007/s40518-022-00206-x. doi: 10.1007/s40518-022-00206-x |
[62] | Zhang G, Shi Y, Maleki A, et al. (2020) Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach. Renew Energy 156: 1203–1214. https://doi.org/10.1016/j.renene.2020.04.010. doi: 10.1016/j.renene.2020.04.010 |
[63] | Elkadeem MR, Younes A, Sharshir SW, et al. (2021) Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis. Appl Energy 295: 117071. https://doi.org/10.1016/j.apenergy.2021.117071. doi: 10.1016/j.apenergy.2021.117071 |
[64] | Izadyar N, Ong HC, Chong WT, et al. (2016) Investigation of potential hybrid renewable energy at various rural areas in Malaysia. J Clean Prod 139: 61–73. http://dx.doi.org/10.1016/j.jclepro.2016.07.167. doi: 10.1016/j.jclepro.2016.07.167 |
[65] | Angelis-Dimakis A, Biberacher M, Dominguez J, et al. (2011) Methods and tools to evaluate the availability of renewable energy sources. Renew Sustain Energy Rev 15: 1182– http://dx.doi.org/1200.10.1016/j.rser.2010.09.049. doi: 10.1016/j.rser.2010.09.049 |
[66] | Šúri M, Huld TA, Dunlop ED, et al. (2007) Potential of solar electricity generation in the European Union member states and candidate countries. Sol Energy 81: 1295– http://dx.doi.org/1305.10.1016/j.solener.2006.12.007. doi: 10.1016/j.solener.2006.12.007 |
[67] | Barragán-Escandón E, Zalamea-León E, Terrados-Cepeda J, et al. (2019) Factores que influyen en la selección de energías renovables en la ciudad. Eure 45: 259–277. http://dx.doi.org/10.4067/S0250-71612019000100259. doi: 10.4067/S0250-71612019000100259 |
[68] | Potrč S, Čuček L, Martin M, et al. (2021) Sustainable renewable energy supply networks optimization – The gradual transition to a renewable energy system within the European Union by 2050. Renew Sustain Energy Rev 146. http://dx.doi.org/10.1016/j.rser.2021.111186. |
[69] | Roberts JJ, Cassula AM, Osvaldo Prado P, et al. (2015) Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredón, Argentina. Renew Sustain Energy Rev 41: 568–583. https://doi.org/10.1016/j.rser.2014.08.066. doi: 10.1016/j.rser.2014.08.066 |
[70] | Fridleifsson IB (2001) Geothermal energy for the benefit of the people. Renew Sustain Energy Rev 5: 299–312. https://doi.org/10.1016/S1364-0321(01)00002-8. doi: 10.1016/S1364-0321(01)00002-8 |
[71] | Hurter S, Schellschmidt R (2003) Atlas of geothermal resources in Europe. Geothermics 32: 779–787. https://doi.org/10.1016/S0375-6505(03)00070-1. doi: 10.1016/S0375-6505(03)00070-1 |
[72] | EUROPEAN SMALL HYDROPOWER ASSOCIATION (2006) Guía para el desarrollo de una pequeña central hidroeléctrica, Bruselas. |
[73] | Espejo Marín C, García Marín R, Aparicio Guerrero AE (2016) La energía minihidráulica en los planes de fomento de las energías renovables en España, Paisaje, cultura territorial y vivencia de la geografía: Libro homenaje al profesor Alfredo Morales Gil, 507–533. |
[74] | IDAE (2006) Minicentrales Hidroeléctricas, Madrid. |
[75] | Espejo Marín C, García Marín R, Aparicio Guerrero AE (2017) El resurgimiento de la energía minihidráulica en España y su situación actual 1. Rev Geogr Norte Gd 67: 115–143. |
[76] | Palla A, Gnecco I, La Barbera P, et al. (2016) An Integrated GIS Approach to Assess the Mini Hydropower Potential. Water Resour Manag 30: 2979–2996. https://doi.org/10.1007/s11269-016-1318-6. doi: 10.1007/s11269-016-1318-6 |
[77] | Bergmann A, Colombo S, Hanley N (2008) Rural versus urban preferences for renewable energy developments. Ecol Econ 65: 616–625. https://doi.org/10.1016/j.ecolecon.2007.08.011. doi: 10.1016/j.ecolecon.2007.08.011 |
[78] | Kalkbrenner BJ, Roosen J (2016) Citizens' willingness to participate in local renewable energy projects: The role of community and trust in Germany. Energy Res Soc Sci 13: 60–70. http://dx.doi.org/10.1016/j.erss.2015.12.006. doi: 10.1016/j.erss.2015.12.006 |
[79] | Wang J-J, Jing Y-Y, Zhang C-F, et al. (2009) Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew Sustain Energy Rev 13: 2263–2278. http://doi.org/10.1016/j.enpol.2013.09.059. doi: 10.1016/j.enpol.2013.09.059 |
[80] | Boon FP, Dieperink C (2014) Local civil society based renewable energy organisations in the Netherlands: Exploring the factors that stimulate their emergence and development. Energy Policy 69: 297–307. http://doi.org/10.1016/j.enpol.2014.01.046. doi: 10.1016/j.enpol.2014.01.046 |
[81] | Loomis DG, Hayden J, Noll S, et al. (2016) Economic Impact of Wind Energy in Illinois. J Bus Valuat Econ Loss Anal 11: 3–23. http://doi.org/10.1515/jbvela-2015-0008. doi: 10.1515/jbvela-2015-0008 |
[82] | Bere J, Jones C, Jones S, et al. (2017) Energy and development in the periphery: A regional perspective on small hydropower projects. Environ Plan C Polit Sp 35: 355–375. http://journals.sagepub.com/doi/10.1177/0263774X16662029. |
[83] | Bauwens T (2016) Explaining the diversity of motivations behind community renewable energy. Energy Policy 93: 278–290. http://dx.doi.org/10.1016/j.enpol.2016.03.017. doi: 10.1016/j.enpol.2016.03.017 |
[84] | Dóci G, Vasileiadou E (2015) 'Let's do it ourselves' Individual motivations for investing in renewables at community level. Renew Sustain Energy Rev 49: 41–50. http://doi.org/10.1016/j.rser.2015.04.051. doi: 10.1016/j.rser.2015.04.051 |
[85] | Helming K, Pérez-Soba M (2011) Landscape Scenarios and Multifunctionality : Making Land Use Impact. Ecol Soc 16 http://www.ecologyandsociety.org/vol16/iss1/art50/ES-2011-4042.pdf. |
[86] | Wiggering H, Dalchow C, Glemnitz M, et al. (2006) Indicators for multifunctional land use - Linking socio-economic requirements with landscape potentials. Ecol Indic 6: 238–249. https://doi.org/10.1016/j.ecolind.2005.08.014. doi: 10.1016/j.ecolind.2005.08.014 |
[87] | Krewitt W, Nitsch J (2003) The potential for electricity generation from on-shore wind energy under the constraints of nature conservation: A case study for two regions in Germany. Renew Energy 28: 1645–1655. https://doi.org/10.1016/S0960-1481(03)00008-9. doi: 10.1016/S0960-1481(03)00008-9 |
[88] | Chiabrando R, Fabrizio E, Garnero G (2009) The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk. Renew Sustain Energy Rev 13: 2441–2451. https://doi.org/10.1016/j.rser.2009.06.008. doi: 10.1016/j.rser.2009.06.008 |
[89] | Tsoutsos T, Frantzeskaki N, Gekas V (2005) Environmental impacts from the solar energy technologies. Energy Policy 33: 289–296. https://doi.org/10.1016/S0301-4215(03)00241-6. doi: 10.1016/S0301-4215(03)00241-6 |
[90] | Dijkman TJ, Benders RMJ (2010) Comparison of renewable fuels based on their land use using energy densities. Renew Sustain Energy Rev 14: 3148–3155. http://dx.doi.org/10.1016/j.rser.2010.07.029. doi: 10.1016/j.rser.2010.07.029 |
[91] | Russi D (2008) An integrated assessment of a large-scale biodiesel production in Italy: Killing several birds with one stone? Energy Policy 36: 1169–1180. https://doi.org/10.1016/j.enpol.2007.11.016. doi: 10.1016/j.enpol.2007.11.016 |
[92] | Huston MA, Marland G (2003) Carbon management and biodiversity. J Environ Manage 67: 77–86. https://doi.org/10.1016/S0301-4797(02)00190-1. doi: 10.1016/S0301-4797(02)00190-1 |
[93] | Robertson GP, Dale VH, Doering OC, et al. (2008) Agriculture: Sustainable biofuels redux. Science (80-) 322: 49–50. https://doi.org/10.1126/science.1161525. doi: 10.1126/science.1161525 |
[94] | Janhunen S, Hujala M, Pätäri S (2014) Owners of second homes, locals and their attitudes towards future rural wind farm. Energy Policy 73: 450–460. http://dx.doi.org/10.1016/j.enpol.2014.05.050. doi: 10.1016/j.enpol.2014.05.050 |
[95] | Paz Espinosa M, Pizarro-Irizar C (2018) Is renewable energy a cost-effective mitigation resource? An application to the Spanish electricity market. Renew Sustain Energy Rev 94: 902–914. https://doi.org/10.1016/j.rser.2018.06.065. doi: 10.1016/j.rser.2018.06.065 |
[96] | Capellán-Pérez I, Campos-Celador Á, Terés-Zubiaga J (2018) Renewable Energy Cooperatives as an instrument towards the energy transition in Spain. Energy Policy 123: 215–229. https://doi.org/10.1016/j.enpol.2018.08.064. doi: 10.1016/j.enpol.2018.08.064 |
[97] | Campos I, Pontes Luz G, Marín González E, et al. (2020) Regulatory challenges and opportunities for collective renewable energy prosumers in the EU. Energy Policy 138. https://doi.org/10.1016/j.enpol.2019.111212. |
[98] | Frieden D, Roberts J, Gubina AF (2019) Overview of emerging regulatory frameworks on collective self-consumption and energy communities in Europe. Int Conf Eur Energy Mark EEM 2019-Septe: 1–6. https://doi.org/10.1109/EEM.2019.8916222. |
[99] | Cuesta-Fernandez I, Belda-Miquel S, Calabuig Tormo C (2020) Challengers in energy transitions beyond renewable energy cooperatives: community-owned electricity distribution cooperatives in Spain. Innov Eur J Soc Sci Res 0: 1–20. https://doi.org/10.1080/13511610.2020.1732197. doi: 10.1080/13511610.2020.1732197 |
[100] | Heras-Saizarbitoria I, Sáez L, Allur E, et al. (2018) The emergence of renewable energy cooperatives in Spain: A review. Renew Sustain Energy Rev 94: 1036–1043. https://doi.org/10.1016/j.rser.2018.06.049- doi: 10.1016/j.rser.2018.06.049- |
[101] | Romero-Rubio C, de Andrés Díaz JR (2015) Sustainable energy communities: A study contrasting Spain and Germany. Energy Policy 85: 397–409. http://dx.doi.org/10.1016/j.enpol.2015.06.012. doi: 10.1016/j.enpol.2015.06.012 |
[102] | Burgueño J, Lladós MG (2014) The municipal map of Spain: A geographical description. Bol la Asoc Geogr Esp 407–414. |
[103] | Delgado Viñas C (2019) Depopulation processes in European Rural Areas: A case study of Cantabria (Spain). Eur Countrys 11: 341–369. http://dx.doi.org/10.2478/euco-2019-0021. doi: 10.2478/euco-2019-0021 |
[104] | Martínez-Filgueira X, Peón D, López-Iglesias E (2017) Intra-rural divides and regional planning: an analysis of a traditional emigration region (Galicia, Spain). Eur Plan Stud 25: 1237–1255. http://dx.doi.org/10.1080/09654313.2017.1319465 doi: 10.1080/09654313.2017.1319465 |
[105] | López-Iglesias E, Peón D, Rodríguez-Álvarez J (2018) Mobility innovations for sustainability and cohesion of rural areas: A transport model and public investment analysis for Valdeorras (Galicia, Spain). J Clean Prod 172: 3520–3534. https://doi.org/10.1016/j.jclepro.2017.05.149. doi: 10.1016/j.jclepro.2017.05.149 |
[106] | Pose DP, Martínez-Filgueira XM, López-Iglesias E (2020) Productive vs. Residential economy: Factors behind the recovery of rural areas in socioeconomic decline. Rev Galega Econ 29: 1–30. https://doi.org/10.15304/rge.29.2.6744. doi: 10.15304/rge.29.2.6744 |
[107] | Copena D, Simón X (2018) Wind farms and payments to landowners: Opportunities for rural development for the case of Galicia. Renew Sustain Energy Rev 95: 38–47. https://doi.org/10.1016/j.rser.2018.06.043. doi: 10.1016/j.rser.2018.06.043 |
[108] | Simón X, Copena D, Montero M (2019) Strong wind development with no community participation. The case of Galicia (1995–2009). Energy Policy 133: 110930. https://doi.org/10.1016/j.enpol.2019.110930. doi: 10.1016/j.enpol.2019.110930 |
[109] | Montoya FG, Aguilera MJ, Manzano-Agugliaro F (2014) Renewable energy production in Spain: A review. Renew Sustain Energy Rev 33: 509–531. https://doi.org/10.1016/j.rser.2014.01.091. doi: 10.1016/j.rser.2014.01.091 |
[110] | Instituto Enerxético de Galicia (2020) Avance do Balance Enerxético de Galicia 2018. |
[111] | Copena Rodríguez D, Simón Fernández X (2018) Enerxía eólica e desenvolvemento local en galicia: os parques eólicos singulares municipais. Rev Galega Econ 27: 31–48. |
[112] | Maimó-Far A, Tantet A, Homar V, et al. (2020) Predictable and unpredictable climate variability impacts on optimal renewable energy mixes: The example of Spain. Energies 13. https://doi.org/10.3390/en13195132. |
[113] | Gregorio M De (2020) Biomasa en España. Generación de valor añadido y análisis prospectivo. |
[114] | Benedek J, Sebestyén TT, Bartók B (2018) Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development. Renew Sustain Energy Rev 90: 516–535. https://doi.org/10.1016/j.rser.2018.03.020. doi: 10.1016/j.rser.2018.03.020 |
[115] | Igliński B, Buczkowski R, Cichosz M (2015) Biogas production in Poland - Current state, potential and perspectives. Renew Sustain Energy Rev 50: 686–695. https://doi.org/10.1016/j.rser.2015.05.013. doi: 10.1016/j.rser.2015.05.013 |
[116] | Corcoran; L, Coughlan; P, McNabola A (2013) Energy recovery potential using micro hydropower in water supply networks in the UK and Ireland. Water Supply 13: 552–560. https://doi.org/10.2166/ws.2013.050. doi: 10.2166/ws.2013.050 |
[117] | Langer K, Decker T, Roosen J, et al. (2018) Factors influencing citizens' acceptance and non-acceptance of wind energy in Germany. J Clean Prod 175: 133–144. https://doi.org/10.1016/j.jclepro.2017.11.221. doi: 10.1016/j.jclepro.2017.11.221 |
[118] | Colmenar-Santos A, Folch-Calvo M, Rosales-Asensio E, et al. (2016) The geothermal potential in Spain. Renew Sustain Energy Rev 56: 865–886. http://dx.doi.org/10.1016/j.rser.2015.11.070. doi: 10.1016/j.rser.2015.11.070 |
[119] | Østergaard PA, Mathiesen BV, Möller B, et al. (2010) A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass. Energy 35: 4892–4901. http://dx.doi.org/10.1016/j.energy.2010.08.041. doi: 10.1016/j.energy.2010.08.041 |
[120] | Gan X, Fernandez IC, Guo J, et al. (2017) When to use what: Methods for weighting and aggregating sustainability indicators. Ecol Indic 81: 491–502. http://dx.doi.org/10.1016/j.ecolind.2017.05.068. doi: 10.1016/j.ecolind.2017.05.068 |
[121] | Li T, Zhang H, Yuan C, et al. (2012) A PCA-based method for construction of composite sustainability indicators. Int J Life Cycle Assess 17: 593–603. http://dx.doi.org/10.1007/s11367-012-0394-y. doi: 10.1007/s11367-012-0394-y |
[122] | Salvati L, Carlucci M (2014) A composite index of sustainable development at the local scale: Italy as a case study. Ecol Indic 43: 162–171. http://dx.doi.org/10.1016/j.ecolind.2014.02.021. doi: 10.1016/j.ecolind.2014.02.021 |
[123] | Kotzee I, Reyers B (2016) Piloting a social-ecological index for measuring flood resilience: A composite index approach. Ecol Indic 60: 45–53. http://dx.doi.org/10.1016/j.ecolind.2015.06.018. doi: 10.1016/j.ecolind.2015.06.018 |
[124] | Schlossarek M, Syrovátka M, Vencálek O (2019) The Importance of Variables in Composite Indices: A Contribution to the Methodology and Application to Development Indices, Springer Netherlands. |
[125] | OECD (2008) Handbook on constructing composite indicators: methodology and user guide. |
[126] | Greco S, Ishizaka A, Tasiou M, et al. (2019) On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Soc Indic Res 141: 61–94. https://doi.org/10.1007/s11205-017-1832-9. doi: 10.1007/s11205-017-1832-9 |
[127] | Pearson K (1901) LⅢ. On lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos Mag J Sci 2: 559–572. |
[128] | Jolliffe IT (1986) Principal component analysis., New York, Springer. |
[129] | Jollife IT (2002) Principal Component Analysis, New York, Springer - Verlang. |
[130] | Li Y, Shi X, Yao L (2016) Evaluating energy security of resource-poor economies: A modified principle component analysis approach. Energy Econ 58: 211–221. http://dx.doi.org/10.1016/j.eneco.2016.07.001. doi: 10.1016/j.eneco.2016.07.001 |
[131] | de Freitas DS, de Oliveira TE, de Oliveira JM (2019) Sustainability in the Brazilian pampa biome: A composite index to integrate beef production, social equity, and ecosystem conservation. Ecol Indic 98: 317–326. https://doi.org/10.1016/j.ecolind.2018.10.012. doi: 10.1016/j.ecolind.2018.10.012 |
[132] | González-García S, Rama M, Cortés A, et al. (2019) Embedding environmental, economic and social indicators in the evaluation of the sustainability of the municipalities of Galicia (northwest of Spain). J Clean Prod 234: 27–42. https://doi.org/10.1016/j.jclepro.2019.06.158. doi: 10.1016/j.jclepro.2019.06.158 |
[133] | Nogués S, González-González E, Cordera R (2019) Planning regional sustainability: An index-based framework to assess spatial plans. Application to the region of Cantabria (Spain). J Clean Prod 225: 510–523.https://doi.org/10.1016/j.jclepro.2019.03.328. doi: 10.1016/j.jclepro.2019.03.328 |
[134] | Pontarollo N, Serpieri C (2018) A composite policy tool to measure territorial resilience capacity. Socioecon Plann Sci 100669. https://doi.org/10.1016/j.seps.2018.11.006. |
[135] | Tapia C, Abajo B, Feliu E, et al. (2017) Profiling urban vulnerabilities to climate change: An indicator-based vulnerability assessment for European cities. Ecol Indic 78: 142–155. https://doi.org/10.1016/j.ecolind.2017.02.040. doi: 10.1016/j.ecolind.2017.02.040 |
[136] | Lévy Mangin JP, Varela Mallou J (2003) Análisis Multivariante para las Ciencias Sociales, España. |
[137] | López-Roldán P, Fachelli S (2016) Parte Ⅲ. Análisis. Capítulo Ⅲ. 11. Análisis Factorial. Metodol la Investig Soc cuantitativa 140. |
[138] | Nardo M, Saisana M, Tarantola A, et al. (2005) Tools for Composite Indicators Building. 1–134. http://collection.europarchive.org/dnb/20070702132253/http://farmweb.jrc.ec.europa.eu/ci/Document/EUR 21682 EN.pdf. |
[139] | Stockdale A (2006) Migration: Pre-requisite for rural economic regeneration? J Rural Stud 22: 354–366. https://doi.org/10.1016/j.jrurstud.2005.11.001. doi: 10.1016/j.jrurstud.2005.11.001 |
[140] | Borch J, Odd A, Førde L, et al. (2008) Resource Configuration and Creative Practices of Community Entrepreneurs. J Enterprising Communities People Places Glob Econ 2. https://doi.org/10.1108/17506200810879943. |
[141] | Baumgartner D, Schulz T, Seidl I (2013) Quantifying entrepreneurship and its impact on local economic performance: A spatial assessment in rural Switzerland. Entrep Reg Dev 25: 222–250. https://doi.org/10.1080/08985626.2012.710266. doi: 10.1080/08985626.2012.710266 |
[142] | Hussain A, Arif SM, Aslam M (2017) Emerging renewable and sustainable energy technologies: State of the art. Renew Sustain Energy Rev 71: 12–28. https://doi.org/10.1016/j.rser.2016.12.033 doi: 10.1016/j.rser.2016.12.033 |
[143] | Gormally AM, Whyatt JD, Timmis RJ, et al. (2012) A regional-scale assessment of local renewable energy resources in Cumbria, UK. Energy Policy 50: 283–293. http://dx.doi.org/10.1016/j.enpol.2012.07.015. doi: 10.1016/j.enpol.2012.07.015 |
[144] | Mainali B, Silveira S (2015) Using a sustainability index to assess energy technologies for rural electrification. Renew Sustain Energy Rev 41: 1351–1365. http://dx.doi.org/10.1016/j.rser.2014.09.018. doi: 10.1016/j.rser.2014.09.018 |
[145] | Slee B (2015) Is there a case for community-based equity participation in Scottish on-shore wind energy production? Gaps in evidence and research needs. Renew Sustain Energy Rev 41: 540–549. http://dx.doi.org/10.1016/j.rser.2014.08.064. doi: 10.1016/j.rser.2014.08.064 |
[146] | Berka AL, Creamer E (2018) Taking stock of the local impacts of community owned renewable energy: A review and research agenda. Renew Sustain Energy Rev 82: 3400–3419. https://doi.org/10.1016/j.rser.2017.10.050. doi: 10.1016/j.rser.2017.10.050 |
Environ-10-02-017-s001.pdf |