Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Energy efficiency measurement of arrowroot production of Vietnam

  • Received: 01 December 2020 Accepted: 07 February 2021 Published: 03 March 2021
  • Energy efficiency along with friendly agricultural production is becoming one of the priority concerns of many countries in the world including Vietnam. The objective of this study was to estimate energy indicators and to determine the number of optimum energy inputs of arrowroot farms in Backan province regarding different regions and farm categories by using data envelopment analysis (DEA) technique. Findings unveiled that arrowroot farms in Nari district had high energy indicators, i.e., energy ratio, energy productivity, net energy, as compared to other farms in Babe district. The technical and pure technical efficiency and the amount of potential GHG emission reduction found to be higher in Babe district than that in Nari district. Farms in Nari district had opportunities to reduce energy input with slightly higher than that in Babe district (54.54% and 53.61%, respectively). Regarding farm sizes, other than specific energy, small arrowroot farms had the highest energy indicators as compared to other farm size groups. Thus, small farms had the quantity of optimum energy input (392.76 MJ acre-1), saving energy (509.70 MJ acre-1) and amount of GHG emission reduction (4.26 kg CO2-eq/acre) which were more than the others. Based on the results of this study, the suggested solutions to improve the energy efficiency and reduce the adverse effects of arrowroot production to the environment should focus on developing the extension activities as well as short technological training courses for farmers addressing on raising awareness of energy conservation when applying chemical fertilizer and other input factors.

    Citation: Hien Thi Vu, Ke-Chung Peng, Rebecca H. Chung, Huong Thi Dao, Trung Quang Ha, Giang Thi Nguyen. Energy efficiency measurement of arrowroot production of Vietnam[J]. AIMS Energy, 2021, 9(2): 326-341. doi: 10.3934/energy.2021017

    Related Papers:

    [1] Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . Mathematical analysis for an age-structured SIRS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 6071-6102. doi: 10.3934/mbe.2019304
    [2] Cristeta U. Jamilla, Renier G. Mendoza, Victoria May P. Mendoza . Explicit solution of a Lotka-Sharpe-McKendrick system involving neutral delay differential equations using the r-Lambert W function. Mathematical Biosciences and Engineering, 2020, 17(5): 5686-5708. doi: 10.3934/mbe.2020306
    [3] Shuyang Xue, Meili Li, Junling Ma, Jia Li . Sex-structured wild and sterile mosquito population models with different release strategies. Mathematical Biosciences and Engineering, 2019, 16(3): 1313-1333. doi: 10.3934/mbe.2019064
    [4] Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679
    [5] Rinaldo M. Colombo, Mauro Garavello . Optimizing vaccination strategies in an age structured SIR model. Mathematical Biosciences and Engineering, 2020, 17(2): 1074-1089. doi: 10.3934/mbe.2020057
    [6] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [7] Jordi Ripoll, Jordi Font . Numerical approach to an age-structured Lotka-Volterra model. Mathematical Biosciences and Engineering, 2023, 20(9): 15603-15622. doi: 10.3934/mbe.2023696
    [8] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [9] Hui Cao, Dongxue Yan, Ao Li . Dynamic analysis of the recurrent epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 5972-5990. doi: 10.3934/mbe.2019299
    [10] Andrea Franceschetti, Andrea Pugliese, Dimitri Breda . Multiple endemic states in age-structured SIR epidemic models. Mathematical Biosciences and Engineering, 2012, 9(3): 577-599. doi: 10.3934/mbe.2012.9.577
  • Energy efficiency along with friendly agricultural production is becoming one of the priority concerns of many countries in the world including Vietnam. The objective of this study was to estimate energy indicators and to determine the number of optimum energy inputs of arrowroot farms in Backan province regarding different regions and farm categories by using data envelopment analysis (DEA) technique. Findings unveiled that arrowroot farms in Nari district had high energy indicators, i.e., energy ratio, energy productivity, net energy, as compared to other farms in Babe district. The technical and pure technical efficiency and the amount of potential GHG emission reduction found to be higher in Babe district than that in Nari district. Farms in Nari district had opportunities to reduce energy input with slightly higher than that in Babe district (54.54% and 53.61%, respectively). Regarding farm sizes, other than specific energy, small arrowroot farms had the highest energy indicators as compared to other farm size groups. Thus, small farms had the quantity of optimum energy input (392.76 MJ acre-1), saving energy (509.70 MJ acre-1) and amount of GHG emission reduction (4.26 kg CO2-eq/acre) which were more than the others. Based on the results of this study, the suggested solutions to improve the energy efficiency and reduce the adverse effects of arrowroot production to the environment should focus on developing the extension activities as well as short technological training courses for farmers addressing on raising awareness of energy conservation when applying chemical fertilizer and other input factors.



    Mathematical models of disease spreading date back to the beginning of the twentieth century when Kermack and McKendrick published their famous epidemiological SIR model [1]. Since its invention, many researchers have relied heavily on these basic assumptions and have established more advances models [2,3,4]–only to name a few publications and references therein. Additionally, networks in epidemiology have been recently considered to describe dynamics of disease spreading and spreading patterns [5,6,7,8].

    Special attention has been currently attracted by structured models which take age or spatial structure into account [9,10]. However, transmission rates depend on age structure as well as sex structure in general. For that reason, we develop a simple age- and sex-structured SIR model for short-time prediction because we want to keep modeling as interpretable as possible [12]. Therefore, we structure our population by both sexes and same size age groups.

    Due to current epidemics like COVID-19 [13], we decided to stay with a SIR-typed model because data are suited for this type of models. If we take a closer look at data from Robert-Koch Institute in Germany, the assumption of same size age groups will be acceptable for current data. Theoretically, we have to consider continuous age-structure as presented in [10]. After this short motivational introduction, we can state our contributions in this article.

    Our contributions can be summarized as follows.

    1) We develop a time-continuous age- and sex-structured SIR model for short-term predictions with time-dependent transmission rates between susceptible and infectious people and time-dependent recovery rates.

    2) At first, we show certain properties such as non-negativity and boundedness of solutions.

    3) Additionally, we provide a thorough proof of global existence of solutions in time to our proposed system. We need non-negative and boundedness to conclude global existence and global uniqueness of the solution in time from inductive arguments based on Banach's fixed point theorem. This underlines usefulness of fixed point theorems for arguments regarding existence and uniqueness of solutions in different mathematical areas [11].

    4) Furthermore, we prove monotonicity properties of the global unique solution and investigate analytically that it convergences to a disease-free equilibrium.

    5) Afterwards, we introduce a time-discrete problem formulation which heavily relies on an explicit-implicit formulation of the right-hand-side function. As a consequence, our numerical solution scheme becomes unconditionally stable with respect to chosen time increments. We further show that all properties of the time-continuous formulation transfer to the time-discrete case.

    6) We finally summarize our numerical solution scheme in pseudo-code and one numerical example stresses our theoretical findings.

    Our article is structured as follows. After our motivational introduction of Section 1, we formulate the time-continuous age- and sex-structured SIR model in Section 2. Additionally, we analyze global existence and global uniqueness, non-negativity, boundedness, monotonicity and long-time behavior of the solution of this model. After that, we propose an explicit-implicit numerical solution scheme in Section 3. Here, we show that all properties of our time-continuous model transfer to our time-discrete problem formulation. We present one numerical example to illustrate our theoretical findings in Section 4 and finally, we conclude our article with some remarks on possible future research directions in Section 5.

    The aim of this section is the description and analysis of an age- and sex-structured SIR model. For that purpose, we briefly state our model and its assumptions. At first, we prove global existence based on a modified version of Gr{ö}nwall's Lemma. Afterwards, we provide proofs for non-negativity, boundedness, global uniqueness, monotonicity and long-time behavior of our model's solution.

    To especially state global existence and global uniqueness of the solution of our age- and sex-structured SIR model, we need to introduce some theoretical background material regarding nonlinear ordinary differential equations. Let us first recall Lipschitz continuity of a function on Euclidean spaces.

    Definition 2.1 ([14,Subsection 3.2]). Let d1,d2N. If SRd1, a defined function F:SRd2 is called Lipschitz continuous on S if there exists a non-negative constant L0 such that

    F(x)F(y)Rd2LxyRd1 (2.1)

    holds for all x,yS. Here, denotes a suitable norm on the corresponding Euclidean space.

    Let URd1 be open, let F:URd2. We shall call F locally Lipschitz continuous if for every point x0U there exists a neighborhood V of x0 such that the restriction of F to V is Lipschitz continuous on V.

    We consider an initial-value problem

    {z(t)=G(t,z(t)),z(0)=z0 (2.2)

    where z(t)=(x1(t),,xn(t)) denotes our solution vector. Our vectorial function is represented by G(t,z(t))=(g1(t,z(t)),,gn(t,z(t))) and z0Rn are our given initial conditions. To conclude global existence, we can apply the following theorem that is a direct consequence of Gr{ö}nwall's lemma.

    Theorem 2.2 ([14,Theorem 4.2.1]). If G:[0,)×RnRn is locally Lipschitz continuous and if there exist non-negative real constants B and K such that

    G(t,z(t))RnKz(t)Rn+B (2.3)

    holds for all z(t)Rn, then the solution of the initial value problem (2.2) exists for all time tR and moreover, it holds

    z(t)Rnz0Rnexp(K|t|)+BK(exp(K|t|)1) (2.4)

    for all tR.

    Finally, we need Banach's fixed point theorem to derive global uniqueness.

    Theorem 2.3 ([15,Theorem V.18]). Let (X,ϱ) be a complete metric space with the metric mapping ϱ:X×X[0,). Let T:XX be a strict contraction, i.e. there exists a constant K[0,1) such that ϱ(Tx,Ty)Kϱ(x,y) holds for all x,yX. Then the map T has a unique fixed point.

    At first, we define the supremum norm of a continuous function f:[0,)R. It is given by

    f:=sup

    An equivalent definition can be given for continuous functions on intervals \left[a, b \right] . Let us now state the model's assumptions [10,16,17]:

    1) The population size N is fixed over time t , i.e. N \left(t \right) = N for all t \in \left[0, \infty \right) ;

    2) We divide the population into three homogeneous subetaoups, namely susceptible people (S), infectious people (I) and recovered people (R). We can clearly assign every individual to exactly one subetaoup. Hence, we obtain

    \begin{equation} N = S \left( t \right) + I \left( t \right) + R \left( t \right) \end{equation} (2.5)

    for all t \in \left[0, \infty \right) ;

    3) We further distinguish our subetaoups. Let N_{a} \in \mathbb{N} be the number of age groups and let f and m be the subscripts for female and male persons respectively. Let k \in \left\{ 1, \ldots, N_{a} \right\} be arbitrary. We denote the k -th female susceptible subetaoup by S_{f, k} and the k -th male susceptible subetaoup by S_{m, k} . Consequently, it is clear how we denote the infectious and recovered subetaoups;

    4) Additionally, no births and deaths occur;

    5) The time-varying transmission rates \beta_{S_{m, j}, I_{s, k}} \colon \left[0, \infty \right) \longrightarrow \left(0, \infty \right) are Lipschitz continuous and continuously differentiable for fixed j \in \left\{ 1, \ldots, N_{a} \right\} , arbitrary k \in \left\{ 1, \ldots, N_{a} \right\} and arbitrary s \in \left\{ f, m \right\} . In addition to that, there exists a positive constant M_{\beta} > 0 such that \lVert \beta_{S_{m, j}, I_{s, k}} \rVert_{\infty} \leq M_{\beta} for all t \geq 0 , arbitrary s \in \left\{ f, m \right\} and arbitrary j, k \in \left\{ 1, \ldots, N_{a} \right\} ;

    6) The time-varying recovery rates \gamma_{I_{s, k}} \colon \left[0, \infty \right) \longrightarrow \left(0, \infty \right) are Lipschitz continuous and continuously differentiable for arbitrary s \in \left\{ f, m \right\} and arbitrary k \in \left\{ 1, \ldots, N_{a} \right\} . Additionally, there are positive constants M_{\gamma} > 0 and m_{\gamma} > 0 such that \lVert \gamma_{I_{s, k}} \rVert_{\infty} \leq M_{\gamma} and \gamma_{I_{s, k}} \left(t \right) \geq m_{\gamma} for all t \geq 0 , arbitrary s \in \left\{ f, m \right\} and arbitrary k \in \left\{ 1, \ldots, N_{a} \right\} .

    For abbreviation, we write g^{\prime} \left(t \right) : = \dfrac{ \text{d} g \left(t \right)}{ \text{d}t} for the first derivative of a differentiable function g at time t . Our equations of the time-continuous age- and sex-structured SIR model read

    \begin{equation} \left\{ \begin{aligned} S^{\prime}_{f, j} \left( t \right) & = - \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S_{f, j}, I_{f, k}} \left( t \right) \cdot \dfrac{S_{f, j} \left( t \right) \cdot I_{f, k} \left( t \right)}{N} + \beta_{S_{f, j}, I_{m, k}} \left( t \right) \cdot \dfrac{S_{f, j} \left( t \right) \cdot I_{m, k} \left( t \right)}{N} \biggr\}, \\ S^{\prime}_{m, j} \left( t \right) & = - \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S_{m, j}, I_{f, k}} \left( t \right) \cdot \dfrac{S_{m, j} \left( t \right) \cdot I_{f, k} \left( t \right)}{N} + \beta_{S_{m, j}, I_{m, k}} \left( t \right) \cdot \dfrac{S_{m, j} \left( t \right) \cdot I_{m, k} \left( t \right)}{N} \biggr\}, \\ I^{\prime}_{f, j} \left( t \right) & = \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S_{f, j}, I_{f, k}} \left( t \right) \cdot \dfrac{S_{f, j} \left( t \right) \cdot I_{f, k} \left( t \right)}{N} + \beta_{S_{f, j}, I_{m, k}} \left( t \right) \cdot \dfrac{S_{f, j} \left( t \right) \cdot I_{m, k} \left( t \right)}{N} \biggr\} - \gamma_{I_{f, j}} \left( t \right) \cdot I_{f, j} \left( t \right), \\ I^{\prime}_{m, j} \left( t \right) & = \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S_{m, j}, I_{f, k}} \left( t \right) \cdot \dfrac{S_{m, j} \left( t \right) \cdot I_{f, k} \left( t \right)}{N} + \beta_{S_{m, j}, I_{m, k}} \left( t \right) \cdot \dfrac{S_{m, j} \left( t \right) \cdot I_{m, k} \left( t \right)}{N} \biggr\} - \gamma_{I_{m, j}} \left( t \right) \cdot I_{m, j} \left( t \right), \\ R^{\prime}_{f, j} \left( t \right) & = \gamma_{I_{f, j}} \left( t \right) \cdot I_{f, j} \left( t \right), \\ R^{\prime}_{m, j} \left( t \right) & = \gamma_{I_{m, j}} \left( t \right) \cdot I_{m, j} \left( t \right) \end{aligned} \right. \end{equation} (2.6)

    with susceptible initial conditions S_{s, j} \left(0 \right) = S_{1, s, j} > 0 , infectious initial conditions I_{s, j} \left(0 \right) = I_{1, s, j} \geq 0 and recovered initial conditions R_{s, j} \left(0 \right) = R_{1, s, j} \geq 0 for arbitrary s \in \left\{ f, m \right\} and arbitrary j \in \left\{ 1, \ldots, N_{a} \right\} . At least one initial condition of the infectious subetaoups should be positive. Obviously, it holds

    \begin{equation*} N^{\prime} \left( t \right) = \sum\limits_{j = 1}^{N_{a}} \left\{ S^{\prime}_{f, j} \left( t \right) + S^{\prime}_{m, j} \left( t \right) + I^{\prime}_{f, j} \left( t \right) + I^{\prime}_{m, j} \left( t \right) + R^{\prime}_{f, j} \left( t \right) + R^{\prime}_{m, j} \left( t \right) \right\} = 0 \end{equation*}

    such that population size is preserved for all t \geq 0 .

    We examine non-negativity and boundedness of (2.6).

    Lemma 2.4. We obtain

    \begin{equation} \left\{ \begin{aligned} 0 & \leq S_{s, j} \left( t \right) \leq N, \\ 0 & \leq I_{s, j} \left( t \right) \leq N, \\ 0 & \leq R_{s, j} \left( t \right) \leq N \end{aligned} \right. \end{equation} (2.7)

    for arbitrary s \in \left\{ f, m \right\} , for all j \in \left\{ 1, \ldots, N_{a} \right\} and for all t \geq 0 with respect to (2.6).

    Proof. We divide our proof into four parts. Let s \in \left\{ f, m \right\} and j \in \left\{ 1, \ldots, N_{a} \right\} be arbitrary in the following.

    1) We consider

    \begin{eqnarray*} S^{\prime}_{s, j} \left( t \right) & = & - \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S_{s, j}, I_{f, k}} \left( t \right) \cdot \dfrac{S_{s, j} \left( t \right) \cdot I_{f, k} \left( t \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( t \right) \cdot \dfrac{S_{s, j} \left( t \right) \cdot I_{m, k} \left( t \right)}{N} \right\} \\ & = & - S_{s, j} \left( t \right) \cdot \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S_{s, j}, I_{f, k}} \left( t \right) \cdot \dfrac{I_{f, k} \left( t \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( t \right) \cdot \dfrac{I_{m, k} \left( t \right)}{N} \right\} \end{eqnarray*}

    since S_{s, j} \left(t \right) is contained in both summands and does not depend on the summation index k . Hence, we can put this term outside our considered sum. Division by S_{s, j} \left(t \right) now yields

    \begin{equation*} \dfrac{S^{\prime}_{s, j} \left( t \right)}{S_{s, j} \left( t \right)} = - \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S_{s, j}, I_{f, k}} \left( t \right) \cdot \dfrac{I_{f, k} \left( t \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( t \right) \cdot \dfrac{I_{m, k} \left( t \right)}{N} \right\} \end{equation*}

    and since we are able to write S^{\prime}_{s, j} \left(t \right) = \dfrac{ \text{d} S_{s, j} \left(t \right)}{ \text{d}t} , we can rewrite this equation by

    \begin{equation*} \dfrac{ \text{d} S_{s, j} \left( t \right)}{S_{s, j} \left( t \right)} = - \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S_{s, j}, I_{f, k}} \left( t \right) \cdot \dfrac{I_{f, k} \left( t \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( t \right) \cdot \dfrac{I_{m, k} \left( t \right)}{N} \right\} \, \text{d}t \end{equation*}

    through separation of variables. By integration on the respective time interval \left[0, t \right] , we observe that

    \begin{equation*} \text{ln} \left( \dfrac{S_{s, j} \left( t \right)}{S_{1, s, j}} \right) = - \int\limits_{0}^{t} \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S_{s, j}, I_{f, k}} \left( \tau \right) \cdot \dfrac{I_{f, k} \left( \tau \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( \tau \right) \cdot \dfrac{I_{m, k} \left( \tau \right)}{N} \right\} \, \text{d}\tau \end{equation*}

    holds. We finally obtain

    \begin{equation*} S_{s, j} \left( t \right) = S_{1, s, j} \cdot \text{exp} \left( - \int\limits_{0}^{t} \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S_{s, j}, I_{f, k}} \left( \tau \right) \cdot \dfrac{I_{f, k} \left( \tau \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( \tau \right) \cdot \dfrac{I_{m, k} \left( \tau \right)}{N} \right\} \, \text{d}\tau \right). \end{equation*}

    Hence, it holds S_{s, j} \left(t \right) > 0 for all t \geq 0 by our approach of separation of variables. This procedure is feasible because our initial conditions for susceptible people are positive.

    2) We examine

    \begin{equation*} \begin{aligned} I^{\prime}_{s, j} \left( t \right) & = \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S_{s, j}, I_{f, k}} \left( t \right) \cdot \dfrac{S_{s, j} \left( t \right) \cdot I_{f, k} \left( t \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( t \right) \cdot \dfrac{S_{s, j} \left( t \right) \cdot I_{m, k} \left( t \right)}{N} \biggr\} \\ & \, \, - \gamma_{I_{s, j}} \left( t \right) \cdot I_{s, j} \left( t \right), \\ \end{aligned} \end{equation*}

    under the initial condition I_{s, j} \left(0 \right) = I_{1, s, j} \geq 0 for arbitrary s \in \left\{ f, m \right\} and arbitrary j \in \left\{ 1, \ldots, N_{a} \right\} . Let us additionally assume that I_{s, k} \left(0 \right) = I_{1, s, k} \geq 0 for arbitrary s \in \left\{ f, m \right\} and arbitrary k \in \left\{ 1, \ldots, N_{a} \right\} with k \not = j . At least one initial condition I_{1, \widetilde{s}, \widetilde{j}} should be positive. This implies

    \begin{eqnarray*} I^{\prime}_{s, j} \left( 0 \right) & = & \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S_{s, j}, I_{f, k}} \left( 0 \right) \cdot \dfrac{S_{s, j} \left( T \right) \cdot I_{f, k} \left( 0 \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( 0 \right) \cdot \dfrac{S_{s, j} \left( 0 \right) \cdot I_{m, k} \left( 0 \right)}{N} \biggr\} - \gamma_{I_{s, j}} \left( 0 \right) \cdot \underbrace{I_{s, j} \left( 0 \right)}_{ = 0} \\ & = & \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S_{s, j}, I_{f, k}} \left( 0 \right) \cdot \dfrac{S_{s, j} \left( 0 \right) \cdot I_{f, k} \left( 0 \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( 0 \right) \cdot \dfrac{S_{s, j} \left( 0 \right) \cdot I_{m, k} \left( 0 \right)}{N} \biggr\} \\ & \geq & \beta_{S_{s, j}, I_{\widetilde{s}, \widetilde{j}}} \left( 0 \right) \cdot \dfrac{S_{s, j} \left( 0 \right) \cdot I_{\widetilde{s}, \widetilde{j}} \left( 0 \right)}{N} \\ & \gt & 0 \end{eqnarray*}

    for all derivatives of initial conditions for infectious subetaoups where the initial conditions are zero at time t = 0 since all S_{s, j} \left(0 \right) > 0 by assumption and all I_{s, k} \left(0 \right) \geq 0 with at least one positive function I_{\widetilde{s}, \widetilde{j}} \left(0 \right) > 0 by assumption. Hence, there exists a time T_{1} > 0 such that I_{s, j} \left(T_{1} \right) > 0 for all s \in \left\{ f, m \right\} and all j \in \left\{ 1, \ldots, N_{a} \right\} . Additionally, it holds I_{s, j} \left(t \right) \geq 0 for all t \in \left[0, T_{1} \right] for all s \in \left\{ f, m \right\} and all j \in \left\{ 1, \ldots, N_{a} \right\} .

    Now, we interpret T_{1} > 0 as our new starting point for our argument. We have to distinguish two cases.

    Case 1: Let T_{2} > T_{1} and let I_{s_{1}, j_{1}} \left(T_{2} \right) = 0 be one function of an infectious subetaoup which is non-negative for all t \in \left[0, T_{2} \right] . This is feasible due to continuity of these functions. Let there be at least one function of infectious subetaoups which is positive at t = T_{2} . As proven in the previous inequality, this implies I_{s_{1}, j_{1}}^{\prime} \left(T_{2} \right) > 0 . However, this yields the existence of a positive constant \delta > 0 such that I_{s_{1}, j_{1}} \left(t \right) < 0 for all t \in \left(T_{2} - \delta, T_{2} \right) by continuity. This contradicts our assumption. Hence, all functions of infectious subetaoups stay non-negative - even positive - in this case. By induction, this even holds on future time subintervals.

    Case 2: Let T_{2} > T_{1} and let I_{s, j} \left(T_{2} \right) = 0 for all s \in \left\{ f, m \right\} and all j \in \left\{ 1, \ldots, N_{a} \right\} . This implies the status of disease-free equilibrium for all future time points.

    Hence, (2.6) preserves non-negativity with respect to all infectious subetaoups.

    3) By our second property and integration of

    R^{\prime}_{s, j} \left( t \right) = \gamma_{I_{s, j}} \left( t \right) \cdot I_{s, j} \left( t \right)

    on the time interval \left[0, t \right] , we obtain

    \begin{equation*} R_{s, j} \left( t \right) = R_{1, s, j} + \int\limits_{0}^{t} \gamma_{I_{s, j}} \left( \tau \right) \cdot I_{s, j} \left( \tau \right) \, \text{d}\tau. \end{equation*}

    It yields full non-negativity preservation of our non-linear ordinary differential equation system (2.6).

    4) Our upper bound is a direct consequence of

    \begin{equation*} N^{\prime} \left( t \right) = \sum\limits_{j = 1}^{N_{a}} \left\{ S^{\prime}_{f, j} \left( t \right) + S^{\prime}_{m, j} \left( t \right) + I^{\prime}_{f, j} \left( t \right) + I^{\prime}_{m, j} \left( t \right) + R^{\prime}_{f, j} \left( t \right) + R^{\prime}_{m, j} \left( t \right) \right\} = 0 \end{equation*}

    for all t \geq 0 and our proof is complete.

    We now prove a global existence theorem of (2.6) based on Theorem 2.2.

    Theorem 2.5. The non-linear first order ordinary differential equation system (2.6) has at least one global solution, i.e. these possible solutions exist for all t \geq 0 .

    Proof. We define the six vectors

    \begin{eqnarray*} S_{f} \left( t \right) & = & \left( S_{f, 1} \left( t \right), \ldots, S_{f, N_{a}} \left( t \right) \right)^{T} \in \mathbb{R}^{N_{a}}, \\ S_{m} \left( t \right) & = & \left( S_{m, 1} \left( t \right), \ldots, S_{m, N_{a}} \left( t \right) \right)^{T} \in \mathbb{R}^{N_{a}}, \\ I_{f} \left( t \right) & = & \left( I_{f, 1} \left( t \right), \ldots, I_{f, N_{a}} \left( t \right) \right)^{T} \in \mathbb{R}^{N_{a}}, \\ I_{m} \left( t \right) & = & \left( I_{m, 1} \left( t \right), \ldots, I_{m, N_{a}} \left( t \right) \right)^{T} \in \mathbb{R}^{N_{a}}, \\ R_{f} \left( t \right) & = & \left( R_{f, 1} \left( t \right), \ldots, R_{f, N_{a}} \left( t \right) \right)^{T} \in \mathbb{R}^{N_{a}}, \\ R_{m} \left( t \right) & = & \left( R_{m, 1} \left( t \right), \ldots, R_{m, N_{a}} \left( t \right) \right)^{T} \in \mathbb{R}^{N_{a}} \end{eqnarray*}

    which build our solution vector

    \begin{equation*} \mathbf{z} \left( t \right) = \begin{pmatrix} S_{f} \left( t \right) \\ S_{m} \left( t \right) \\ I_{f} \left( t \right) \\ I_{m} \left( t \right) \\ R_{f} \left( t \right) \\ R_{m} \left( t \right) \end{pmatrix} \in \mathbb{R}^{6 \cdot N_{a}}. \end{equation*}

    Now, we define \mathbf{G} \colon \left[0, \infty \right) \times \mathbb{R}^{6 \cdot N_{a}} \longrightarrow \mathbb{R}^{N_{a}} by (2.6) in a straightforward manner. By applying maximum norms, triangle inequalities, non-negativity and boundedness by Lemma 2.4, we obtain

    \begin{eqnarray*} \lVert S^{\prime}_{f, j} \left( t \right) \rVert_{\infty} & \leq & 2 \cdot N_{a} \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \lVert \mathbf{z} \left( t \right) \rVert_{\infty}, \\ \lVert S^{\prime}_{m, j} \left( t \right) \rVert_{\infty} & \leq & 2 \cdot N_{a} \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \lVert \mathbf{z} \left( t \right) \rVert_{\infty}, \\ \lVert I^{\prime}_{f, j} \left( t \right) \rVert_{\infty} & \leq & \left( 2 \cdot N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \lVert \mathbf{z} \left( t \right) \rVert_{\infty}, \\ \lVert I^{\prime}_{m, j} \left( t \right) \rVert_{\infty} & \leq & \left( 2 \cdot N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \lVert \mathbf{z} \left( t \right) \rVert_{\infty}, \\ \lVert R^{\prime}_{f, j} \left( t \right) \rVert_{\infty} & \leq & \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \lVert \mathbf{z} \left( t \right) \rVert_{\infty}, \\ \lVert R^{\prime}_{m, j} \left( t \right) \rVert_{\infty} & \leq & \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \lVert \mathbf{z} \left( t \right) \rVert_{\infty} \end{eqnarray*}

    for all j \in \left\{ 1, \ldots, N_{a} \right\} and this yields

    \begin{equation*} \lVert \mathbf{G} \left( t, \mathbf{z} \left( t \right) \right) \rVert_{\infty} \leq \left( 2 \cdot N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \lVert \mathbf{z} \left( t \right) \rVert_{\infty}. \end{equation*}

    Hence, Theorem 2.2 implies global existence of the system's possible solutions in time.

    Now, we are able to prove global uniqueness of our time-continuous problem formulation (2.6).

    Theorem 2.6. The non-linear first order ordinary differential equation system (2.6) has exactly one global unique solution in time.

    Proof. 1) At first, we need one inequality for our proof. Let x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R} be arbitrary. By the triangle inequality, we obtain

    \begin{eqnarray*} \left| x_{1} \cdot y_{1} - x_{2} \cdot y_{2} \right| & = & \left| x_{1} \cdot y_{1} - x_{2} \cdot y _{1} + x_{2} \cdot y_{1} - x_{2} \cdot y_{2} \right| \\ & \leq & \left| x_{1} \cdot y_{1} - x_{2} \cdot y _{1} \right| + \left| x_{2} \cdot y_{1} - x_{2} \cdot y_{2} \right| \\ & = & \left| y_{1} \right| \cdot \left| x_{1} - x_{2} \right| + \left| x_{2} \right| \cdot \left| y_{1} - y_{2} \right|. \end{eqnarray*}

    2) Let

    \mathbf{z} \left( t \right) = \begin{pmatrix} S_{f} \left( t \right) \\ S_{m} \left( t \right) \\ I_{f} \left( t \right) \\ I_{m} \left( t \right) \\ R_{f} \left( t \right) \\ R_{m} \left( t \right) \end{pmatrix} \in \mathbb{R}^{6 \cdot N_{a}} \, \, \text{and} \, \, \mathbf{\widetilde{z}} \left( t \right) = \begin{pmatrix} \widetilde{S_{f}} \left( t \right) \\ \widetilde{S_{m}} \left( t \right) \\ \widetilde{I_{f}} \left( t \right) \\ \widetilde{I_{m}} \left( t \right) \\ \widetilde{R_{f}} \left( t \right) \\ \widetilde{R_{m}} \left( t \right) \end{pmatrix} \in \mathbb{R}^{6 \cdot N_{a}}

    be two solutions of our initial value problem (2.6) with same time-varying coefficients and same initial value conditions. Let us consider

    \begin{eqnarray*} \widetilde{S_{s, j}} \left( \tau \right) - S_{s, j} \left( \tau \right) & = & \underbrace{\widetilde{S_{s, j}} \left( 0 \right) - S_{s, j} \left( 0 \right)}_{ = 0} - \int\limits_{0}^{\tau} \sum\limits_{k = 1}^{N_{a}} \left\{ \dfrac{\beta_{S_{s, j}, I_{f, k}} \left( t \right)}{N} \cdot \left( \widetilde{S_{s, j}} \left( t \right) \cdot \widetilde{I_{f, k}} \left( t \right) - S_{s, j} \left( t \right) \cdot I_{f, k} \left( t \right) \right) \right\} \, \text{d}t \\ & & \, \, + \int\limits_{0}^{\tau} \sum\limits_{k = 1}^{N_{a}} \left\{ \dfrac{\beta_{S_{s, j}, I_{m, k}} \left( t \right)}{N} \cdot \left( \widetilde{S_{s, j}} \left( t \right) \cdot \widetilde{I_{m, k}} \left( t \right) - S_{s, j} \left( t \right) \cdot I_{m, k} \left( t \right) \right) \right\} \, \text{d}t \end{eqnarray*}

    for arbitrary s \in \left\{ f, m \right\} and arbitrary j \in \left\{ 1, \ldots, N_{a} \right\} . Application of the triangle inequality and assumptions on our time-varying coefficients yields

    \begin{eqnarray*} \left| \widetilde{S_{s, j}} \left( \tau \right) - S_{s, j} \left( \tau \right) \right| & \leq & \dfrac{M_{\beta}}{N} \cdot \int\limits_{0}^{\tau} \sum\limits_{k = 1}^{N_{a}} \left| \widetilde{S_{s, j}} \left( t \right) \cdot \widetilde{I_{f, k}} \left( t \right) - S_{s, j} \left( t \right) \cdot \widetilde{I_{f, k}} \left( t \right) + S_{s, j} \left( t \right) \cdot \widetilde{I_{f, k}} \left( t \right) - S_{s, j} \left( t \right) \cdot I_{f, k} \left( t \right) \right| \, \text{d}t \\ & + & \dfrac{M_{\beta}}{N} \cdot \int\limits_{0}^{\tau} \sum\limits_{k = 1}^{N_{a}} \left| \widetilde{S_{s, j}} \left( t \right) \cdot \widetilde{I_{m, k}} \left( t \right) - S_{s, j} \left( t \right) \cdot \widetilde{I_{m, k}} \left( t \right) + S_{s, j} \left( t \right) \cdot \widetilde{I_{m, k}} \left( t \right) - S_{s, j} \left( t \right) \cdot I_{m, k} \left( t \right) \right| \, \text{d}t. \end{eqnarray*}

    Since all functions are bounded above by the population size N, we obtain

    \begin{eqnarray*} \left| \widetilde{S_{s, j}} \left( \tau \right) - S_{s, j} \left( \tau \right) \right| & \leq & M_{\beta} \cdot \int\limits_{0}^{\tau} \sum\limits_{k = 1}^{N_{a}} \left\{ 2 \cdot \left| \widetilde{S_{s, j}} \left( t \right) - S_{s, j} \left( t \right) \right| + \left| \widetilde{I_{f, k}} \left( t \right) - I_{f, k} \left( t \right) \right| + \left| \widetilde{I_{m, k}} \left( t \right) - I_{m, k} \left( t \right) \right| \right\} \, \text{d}t \\ & \leq & 4 \cdot M_{\beta} \cdot \int\limits_{0}^{\tau} \sum\limits_{k = 1}^{N_{a}} \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty} \, \text{d}t \\ & \leq & 4 \cdot M_{\beta} \cdot N_{a} \cdot \tau \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty} \end{eqnarray*}

    by application of our inequality from the first step of this proof.

    3) Let us now consider

    \begin{eqnarray*} \widetilde{I_{s, j}}^{\prime} \left( t \right) - I_{s, j}^{\prime} \left( t \right) & = & \left\{ - \widetilde{S_{s, j}}^{\prime} \left( t \right) - \gamma_{I_{s, j}} \left( t \right) \cdot \widetilde{I_{s, j}} \left( t \right) \right\} - \left\{ - S_{s, j}^{\prime} \left( t \right) - \gamma_{I_{s, j}} \left( t \right) \cdot I_{s, j} \left( t \right) \right\} \\ & = & \left( S_{s, j}^{\prime} \left( t \right) - \widetilde{S_{s, j}}^{\prime} \left( t \right) \right) + \gamma_{I_{s, j}} \left( t \right) \cdot \left( I_{s, j} \left( t \right) - \widetilde{I_{s, j}} \left( t \right( \right). \end{eqnarray*}

    By integration on the time interval \left[0, \tau \right] , we obtain

    \widetilde{I_{s, j}} \left( \tau \right) - I_{s, j} \left( \tau \right) = S_{s, j} \left( \tau \right) - \widetilde{S_{s, j}} \left( \tau \right) + \int\limits_{0}^{\tau} \gamma_{I_{s, j}} \left( t \right) \cdot \left( I_{s, j} \left( t \right) - \widetilde{I_{s, j}} \left( t \right) \right) \, \text{d} t.

    Application of the triangle inequality and the second part of this proof yields

    \begin{eqnarray*} \left| \widetilde{I_{s, j}} \left( \tau \right) - I_{s, j} \left( \tau \right) \right| & \leq & \left| S_{s, j} \left( \tau \right) - \widetilde{S_{s, j}} \left( \tau \right) \right| + \left| \int\limits_{0}^{\tau} \gamma_{I_{s, j}} \left( t \right) \cdot \left( I_{s, j} \left( t \right) - \widetilde{I_{s, j}} \left( t \right) \right) \, \text{d}t \right| \\ & \leq & 4 \cdot M_{\beta} \cdot N_{a} \cdot \tau \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty} + M_{\gamma} \cdot \tau \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty} \\ & \leq & \left( 4 \cdot N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \tau \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty}. \end{eqnarray*}

    4) Furthermore, it holds

    \widetilde{R_{s, j}} \left( \tau \right) - R_{s, j} \left( \tau \right) = \int\limits_{0}^{\tau} \gamma_{I_{s, j}} \left( t \right) \cdot \left( \widetilde{I_{s, j}} \left( t \right) - I_{s, j} \left( t \right) \right) \, \text{d} t.

    We obtain

    \left| \widetilde{R_{s, j}} \left( \tau \right) - R_{s, j} \left( \tau \right) \right| \leq M_{\gamma} \cdot \tau \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty}.

    5) Combining the previous steps, we conclude

    \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty} \leq 4 \cdot \left( N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\} \cdot \tau \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty}

    on the time interval \left[0, \tau \right] . Choose \tau : = \dfrac{1}{8 \cdot \left(N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\}} . This implies

    \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty} \leq \dfrac{4 \cdot \left( N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\}}{8 \cdot \left( N_{a} + 1 \right) \cdot \max \left\{ M_{\beta}, M_{\gamma} \right\}} \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty} = \dfrac{1}{2} \cdot \lVert \mathbf{\widetilde{z}} \left( t \right) - \mathbf{z} \left( t \right) \rVert_{\infty}

    and hence, the solution is unique on the time interval \left[0, \tau \right] by Banach's fixed point theorem. Inductively, all previous steps hold on following time intervals \left[k \cdot \tau, \left(k + 1 \right) \right] with arbitrary k \in \mathbb{N} and initial conditions at time point t = k \cdot \tau . Therefore, we conclude that the solution is unique for all t \geq 0 which proves our assertion.

    We conclude our analysis of our time-continuous problem formulation (2.6) by an investigation of monotonicity and long-time behavior.

    Theorem 2.7. We obtain the following properties for arbitrary s \in \left\{ f, m \right\} and for all j \in \left\{ 1, \ldots, N_{a} \right\} :

    1) S_{s, j} is monotonically decreasing and there exists a number S^{\star}_{s, j} \geq 0 such that \lim\limits_{t \to \infty} S_{s, j} \left(t \right) = S^{\star}_{s, j} holds. Additionally, we obtain S^{\star}_{s, j} > 0 ;

    2) R_{s, j} is monotonically increasing and there exists a number R^{\star}_{s, j} \geq 0 such that \lim\limits_{t \to \infty} R_{s, j} \left(t \right) = R^{\star}_{s, j} ;

    3) I_{s, j} is Lebesgue-integrable on \left[0, \infty \right) and we get \lim\limits_{t \to \infty} I_{s, j} \left(t \right) = 0 ;

    4) Our system (2.6) always converges to a disease-free equilibrium

    for all solution functions of (2.6).

    Proof. We divide our proof in four parts. Let s \in \left\{ f, m \right\} and j \in \left\{ 1, \ldots, N_{a} \right\} be arbitrary.

    1) Since 0 \leq S_{s, j} \left(t \right) \leq N and 0 \leq I_{s, j} \left(t \right) \leq N hold for all t \geq 0 by Lemma 2.4, we obtain S^{\prime}_{s, j} \left(t \right) \leq 0 for all t \geq 0 . By separation of variables, we know that

    \begin{equation*} S_{s, j} \left( t \right) = S_{1, s, j} \cdot \text{exp} \left( - \int\limits_{0}^{t} \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S_{s, j}, I_{f, k}} \left( \tau \right) \cdot \dfrac{I_{f, k} \left( \tau \right)}{N} + \beta_{S_{s, j}, I_{m, k}} \left( \tau \right) \cdot \dfrac{I_{m, k} \left( \tau \right)}{N} \right\} \, \text{d}\tau \right) \end{equation*}

    is valid and this implies

    \begin{equation*} S_{s, j} \left( t \right) \geq S_{1, s, j} \cdot \text{exp} \left( - 2 \cdot M_{\beta} \cdot N_{a} \cdot t \right) \gt 0. \end{equation*}

    Since S_{s, j} is monotonically decreasing, bounded below by zero and

    \begin{equation*} S_{s, j} \left( t \right) \geq S_{1, s, j} \cdot \text{exp} \left( - 2 \cdot M_{\beta} \cdot N_{a} \cdot t \right) \gt 0, \end{equation*}

    there exists a positive real number S^{\star}_{s, j} such that we obtain the limit \lim\limits_{t \to \infty} S_{s, j} \left(t \right) = S^{\star}_{s, j} .

    2) By considering R^{\prime}_{s, j} \left(t \right) = \gamma_{I_{s, j}} \left(t \right) \cdot I_{s, j} \left(t \right) \geq 0 from Lemma 2.4, we conclude that R_{s, j} is monotonically increasing. Since R_{s, j} is further bounded above by N according to Lemma 2.4, there exists a positive real number R^{\star}_{s, j} such that \lim\limits_{t \to \infty} R_{s, j} \left(t \right) = R^{\star}_{s, j} .

    3) We have R^{\prime}_{s, j} \left(t \right) = \gamma_{I_{s, j}} \left(t \right) \cdot I_{s, j} \left(t \right) according to our non-linear differential equation system (2.6). Integration on \left[0, \infty \right) yields

    \begin{eqnarray*} R^{\star}_{s, j} - R_{1, s, j} & = & \int\limits_{0}^{\infty} \gamma_{I_{s, j}} \left( \tau \right) \cdot I_{s, j} \left( \tau \right) \, \text{d}\tau \\ & \geq & m_{\gamma} \cdot \int\limits_{0}^{\infty} I_{s, j} \left( \tau \right) \, \text{d}\tau. \end{eqnarray*}

    This yields

    \begin{eqnarray*} \int\limits_{0}^{\infty} \left| I_{s, j} \left( \tau \right) \right| \, \text{d}\tau & = & \int\limits_{0}^{\infty} I_{s, j} \left( \tau \right) \, \text{d}\tau \\ & \leq & \dfrac{R^{\star}_{s, j} - R_{1, s, j}}{m_{\gamma}} \\ & \leq & \dfrac{N}{{m_{\gamma}}} \end{eqnarray*}

    and hence, I_{s, j} is Lebesgue-integrable on \left[0, \infty \right) . This shows \lim\limits_{t \to \infty} I_{s, j} \left(t \right) = 0 .

    4) Remember the notation introduced at the beginning of the proof of Theorem 2.5. By our three aforementioned properties, we obtain the limiting vector

    \begin{eqnarray*} \mathbf{z}^{\star} & = & \lim\limits_{t \to \infty} \mathbf{z} \left( t \right) \\ & = & \lim\limits_{t \to \infty} \begin{pmatrix} S_{f} \left( t \right) \\ S_{m} \left( t \right) \\ I_{f} \left( t \right) \\ I_{m} \left( t \right) \\ R_{f} \left( t \right) \\ R_{m} \left( t \right) \end{pmatrix} \\ & = & \begin{pmatrix} \lim\limits_{t \to \infty} S_{f} \left( t \right) \\ \lim\limits_{t \to \infty} S_{m} \left( t \right) \\ \lim\limits_{t \to \infty} I_{f} \left( t \right) \\ \lim\limits_{t \to \infty} I_{m} \left( t \right) \\ \lim\limits_{t \to \infty} R_{f} \left( t \right) \\ \lim\limits_{t \to \infty} R_{m} \left( t \right) \end{pmatrix} \\ & = & \begin{pmatrix} S^{\star}_{f} \\ S^{\star}_{m} \\ \mathbf{0}_{\mathbb{R}^{N_{a}}} \\ \mathbf{0}_{\mathbb{R}^{N_{a}}} \\ I^{\star}_{f} \\ I^{\star}_{m} \end{pmatrix} \in \mathbb{R}^{6 \cdot N_{a}} \end{eqnarray*}

    and this vector represents the disease-free equilibrium. Hence, our non-linear differential equation system converges to the disease-free equilibrium. This finishes our proof.

    Here, we develop an explicit-implicit time-discrete variant of our time-continuous age- and sex-structured SIR model. We organize this section similar to the previous one. Our constructive goal in this section is to present a numerical solution scheme that captures as many properties of its continuous analogue as possible.

    Let us assume that our time interval \left[0, T \right] can be divided by a strictly increasing sequence \left\{ t_{p} \right\}_{p = 1}^{M} for M \in \mathbb{N} with t_{1} = 0 and t_{M} = T . To distinguish continuous and time-discrete solutions, all time-discrete functions are denoted by S^{ \text{num}}_{s, j} \left(t_{p} \right) for example. We additionally assume that time-continuous and time-discrete time-varying transmission rates and recovery rates coincide for all times.

    Here, we state our explicit-implicit time-discrete problem formulation

    \begin{equation} \left\{ \begin{aligned} \dfrac{S^{ \text{num}}_{f, j} \left( t_{p + 1} \right) - S^{ \text{num}}_{f, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} & = - \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S^{ \text{num}}_{f, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{f, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right)}{N} \\ & \quad \quad \quad \quad + \beta_{S^{ \text{num}}_{f, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{f, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right)}{N} \biggr\}, \\ \dfrac{S^{ \text{num}}_{m, j} \left( t_{p + 1} \right) - S^{ \text{num}}_{m, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} & = - \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S^{ \text{num}}_{m, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{m, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right)}{N} \\ & \quad \quad \quad \quad + \beta_{S^{ \text{num}}_{m, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{m, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right)}{N} \biggr\}, \\ \dfrac{I^{ \text{num}}_{f, j} \left( t_{p + 1} \right) - I^{ \text{num}}_{f, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} & = \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S^{ \text{num}}_{f, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{f, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right)}{N} \\ & \quad \quad + \beta_{S^{ \text{num}}_{f, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{f, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right)}{N} \biggr\} - \gamma_{I^{ \text{num}}_{f, j}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, j} \left( t_{p + 1} \right), \\ \dfrac{I^{ \text{num}}_{m, j} \left( t_{p + 1} \right) - I^{ \text{num}}_{m, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} & = \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S^{ \text{num}}_{m, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{m, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right)}{N} \\ & \quad \quad + \beta_{S^{ \text{num}}_{m, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{m, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right)}{N} \biggr\} - \gamma_{I^{ \text{num}}_{m, j}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, j} \left( t_{p + 1} \right), \\ \dfrac{R^{ \text{num}}_{f, j} \left( t_{p + 1} \right) - R^{ \text{num}}_{f, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} & = \gamma_{I^{ \text{num}}_{f, j}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, j} \left( t_{p + 1} \right), \\ \dfrac{R^{ \text{num}}_{m, j} \left( t_{p + 1} \right) - R^{ \text{num}}_{m, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} & = \gamma_{I^{ \text{num}}_{m, j}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, j} \left( t_{p + 1} \right) \end{aligned} \right. \end{equation} (3.1)

    of the time-continuous SIR model (2.6) for all p \in \left\{ 1, \ldots, M - 1 \right\} and for all subscripts of age groups j \in \left\{ 1, \ldots, N_{a} \right\} . Our initial conditions read

    \begin{equation*} S^{ \text{num}}_{s, j} \left( t_{1} \right) \gt 0 \, \, \text{and} \, \, I^{ \text{num}}_{s, j} \left( t_{1} \right) \geq 0 \, \, \text{and} \, \, R^{ \text{num}}_{s, j} \left( t_{1} \right) \geq 0 \end{equation*}

    for arbitrary s \in \left\{ f, m \right\} and all j \in \left\{ 1, \ldots, N_{a} \right\} with at least one initial condition of infectious subetaoups to be positive. For abbreviation, we write in short \Delta_{p + 1} = \left(t_{p + 1} - t_{p} \right) for all p \in \left\{ 1, \ldots, M - 1 \right\} in the following. This explicit-implicit time-discrete problem formulation obviously fulfills

    \begin{equation} \begin{aligned} N & = \sum\limits_{j = 1}^{N_{a}} \left\{ S^{ \text{num}}_{f, j} \left( t_{p + 1} \right) + S^{ \text{num}}_{m, j} \left( t_{p + 1} \right) + I^{ \text{num}}_{f, j} \left( t_{p + 1} \right) + I^{ \text{num}}_{m , j} \left( t_{p + 1} \right) \right. \\ & \left. \quad + R^{ \text{num}}_{f, j} \left( t_{p + 1} \right) + R^{ \text{num}}_{m, j} \left( t_{p + 1} \right) \right\} \\ & = \sum\limits_{j = 1}^{N_{a}} \left\{ S^{ \text{num}}_{f, j} \left( t_{p} \right) + S^{ \text{num}}_{m, j} \left( t_{p} \right) + I^{ \text{num}}_{f, j} \left( t_{p} \right) + I^{ \text{num}}_{m , j} \left( t_{p} \right) + R^{ \text{num}}_{f, j} \left( t_{p} \right) + R^{ \text{num}}_{m, j} \left( t_{p} \right) \right\} \end{aligned} \end{equation} (3.2)

    for all p \in \left\{ 1, \ldots, M - 1 \right\} .

    Let us proceed with unique solvability of our numerical scheme (3.1).

    1) We observe from

    \begin{equation*} \begin{aligned} \dfrac{S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) - S^{ \text{num}}_{s, j} \left( t_{p} \right)}{\Delta_{p + 1}} & = - \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right)}{N} \\ & \quad \quad \quad \quad + \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right)}{N} \biggr\} \end{aligned} \end{equation*}

    that

    \begin{equation} S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) = \dfrac{S^{ \text{num}}_{s, j} \left( t_{p} \right)}{1 + \dfrac{\Delta_{p + 1}}{N} \cdot S^{sum, num}_{s, j} \left( t_{p + 1} \right)} \end{equation} (3.3)

    holds for arbitrary s \in \left\{ f, m \right\} , for all j \in \left\{ 1, \ldots, N_{a} \right\} and for all p \in \left\{ 1, \ldots, M - 1 \right\} . Here, the sum in the denominator is given by

    \begin{equation*} \begin{aligned} S^{ \text{sum, num}}_{s, j} \left( t_{p + 1} \right) & = \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right) \right. \\ & \left. \quad + \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right) \right\}. \end{aligned} \end{equation*}

    2) We see from

    \begin{equation*} \begin{aligned} \dfrac{I^{ \text{num}}_{s, j} \left( t_{p + 1} \right) - I^{ \text{num}}_{s, j} \left( t_{p} \right)}{\Delta_{p + 1}} & = \sum\limits_{k = 1}^{N_{a}} \biggl\{ \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right)}{N} \\ & \quad \quad \quad \quad + \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right)}{N} \biggr\} \\ & \quad - \gamma_{I^{ \text{num}}_{s, j}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \end{aligned} \end{equation*}

    that

    \begin{equation} \begin{split} I^{ \text{num}}_{s, j} \left( t_{p + 1} \right) & = \dfrac{I_{s, j}^{ \text{num}} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}^{ \text{num}}} \left( t_{p + 1} \right)} \\ & \, \, + \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \left\{ \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{f, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{f, k} \left( t_{p} \right)}{N} + \beta_{S^{ \text{num}}_{s, j}, I^{ \text{num}}_{m, k}} \left( t_{p + 1} \right) \cdot \dfrac{S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{m, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}^{ \text{num}}} \left( t_{p + 1} \right)} \end{split} \end{equation} (3.4)

    holds for arbitrary s \in \left\{ f, m \right\} , for all j \in \left\{ 1, \ldots, N_{a} \right\} and for all p \in \left\{ 1, \ldots, M - 1 \right\} .

    3) We conclude from

    \begin{equation*} \dfrac{R^{ \text{num}}_{s, j} \left( t_{p + 1} \right) - R^{ \text{num}}_{s, j} \left( t_{p} \right)}{\Delta_{p + 1}} = \gamma_{I^{ \text{num}}_{s, j}} \left( t_{p + 1} \right) \cdot I^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \end{equation*}

    that

    \begin{equation} R^{ \text{num}}_{s, j} \left( t_{p + 1} \right) = R^{ \text{num}}_{s, j} \left( t_{p} \right) + \gamma_{I^{ \text{num}}_{s, j}} \left( t_{p + 1} \right) \cdot \Delta_{p + 1} \cdot I^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \end{equation} (3.5)

    holds for arbitrary s \in \left\{ f, m \right\} , for all j \in \left\{ 1, \ldots, N_{a} \right\} and for all p \in \left\{ 1, \ldots, M - 1 \right\} .

    4) Hence, all our computations demonstrate that our numerical solution scheme (3.1) is uniquely solvable. We even infer that, in contrast to typical explicit Euler-time stepping schemes, it is unconditionally stable and we avoid non-linearities as in implicit Euler-time stepping schemes. We summarize our computations and our observations in the following theorem.

    Theorem 3.1. Our numerical solution scheme (3.1) is uniquely solvable for all time steps. Additionally, it is also unconditionally stable.

    Proof. Follow the above computations in Subsection 3.2.

    Let us first remark that our initial conditions are non-negative. By induction, it follows that

    \begin{equation*} S^{ \text{num}}_{s, j} \left( t_{p} \right) \geq 0 \, \, , \, \, I^{ \text{num}}_{s, j} \left( t_{p} \right) \geq 0 \, \, \text{and} \, \, R^{ \text{num}}_{s, j} \left( t_{p} \right) \geq 0 \end{equation*}

    hold from (3.3) - (3.5) for all s \in \left\{ f, m \right\} , all j \in \left\{ 1, \ldots, N_{a} \right\} and all p \in \left\{ 1, \ldots, M \right\} . Boundedness is a consequence of (3.2). Thus, we can state the following lemma.

    Lemma 3.2. We obtain

    \begin{equation*} 0 \leq S^{ \text{num}}_{s, j} \left( t_{p} \right) \leq N \, \, , \, \, 0 \leq I^{ \text{num}}_{s, j} \left( t_{p} \right) \leq N \, \, \text{and} \, \, 0 \leq R^{ \text{num}}_{s, j} \left( t_{p} \right) \leq N \end{equation*}

    for arbitrary s \in \left\{ f, m \right\} , for all j \in \left\{ 1, \ldots, N_{a} \right\} and for all p \in \left\{ 1, \ldots, M \right\} .

    We continue this section with our theorem on monotonicity and long-time behavior of the solution of our explicit-implicit numerical scheme (3.1).

    Theorem 3.3. We have the following properties:

    1) The sequence \left\{ S^{ \text{num}}_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} is monotonically decreasing and there exists a non-negative real number S^{\star, \text{num}} such that \lim\limits_{p \to \infty} S^{ \text{num}}_{s, j} \left(t_{p} \right) = S^{\star, \text{num}} ;

    2) The sequence \left\{ R^{ \text{num}}_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} is monotonically increasing and there exists a non-negative real number R^{\star, \text{num}} such that \lim\limits_{p \to \infty} R^{ \text{num}}_{s, j} \left(t_{p} \right) = R^{\star, \text{num}} ;

    3) The sequence \left\{ I^{ \text{num}}_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} fulfills \lim\limits_{p \to \infty} I^{ \text{num}}_{s, j} \left(t_{p} \right) = I^{\star, \text{num}} = 0

    for arbitrary s \in \left\{ f, m \right\} and for all j \in \left\{ 1, \ldots, N_{a} \right\} .

    Proof. 1) By Lemma 3.2, we know that the sequence \left\{ S^{ \text{num}}_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} is bounded. Again by Lemma 3.2 and (3.3) - (3.5), we get

    \begin{equation*} S^{ \text{num}}_{s, j} \left( t_{p + 1} \right) = \dfrac{S^{ \text{num}}_{s, j} \left( t_{p} \right)}{1 + \dfrac{\Delta_{p + 1}}{N} \cdot S^{sum, num}_{s, j} \left( t_{p + 1} \right)} \leq S^{ \text{num}}_{s, j} \left( t_{p} \right) \end{equation*}

    for arbitrary s \in \left\{ f, m \right\} , for all j \in \left\{ 1, \ldots, N_{a} \right\} and for all p \in \left\{ 1, \ldots, M - 1 \right\} . Hence, the sequence \left\{ S^{ \text{num}}_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} is monotonically decreasing and it thus converges. This implies the existence of a non-negative real number S^{\star, \text{num}} such that \lim\limits_{p \to \infty} S^{ \text{num}}_{s, j} \left(t_{p} \right) = S^{\star, \text{num}} holds.

    2) By Lemma 3.2, we know that the sequence \left\{ R^{ \text{num}}_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} is bounded. Again by Lemma 3.2 and (3.3) - (3.5), we conclude

    \begin{equation*} R^{ \text{num}}_{s, j} \left( t_{p + 1} \right) = R^{ \text{num}}_{s, j} \left( t_{p} \right) + \gamma_{I^{ \text{num}}_{s, j}} \left( t_{p + 1} \right) \cdot \Delta_{p + 1} \cdot I^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \geq R^{ \text{num}}_{s, j} \left( t_{p} \right) \end{equation*}

    for arbitrary s \in \left\{ f, m \right\} , for all j \in \left\{ 1, \ldots, N_{a} \right\} and for all p \in \left\{ 1, \ldots, M - 1 \right\} . Hence, the sequence \left\{ R^{ \text{num}}_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} is monotonically increasing and it thus converges. This yields the existence of a non-negative real number R^{\star, \text{num}} such that \lim\limits_{p \to \infty} R^{ \text{num}}_{s, j} \left(t_{p} \right) = R^{\star, \text{num}} holds.

    3) Let us assume the contrary. This implies the existence of a positive real number I^{\star, \text{num}} such that \lim\limits_{p \to \infty} I^{ \text{num}}_{s, j} \left(t_{p} \right) = I^{\star, \text{num}} holds. By (3.4), we then know that all values of the sequence are positive from a certain sequence index. Hence, there exists a positive real number \tilde{I}^{ \text{num, min}} such that I^{ \text{num}}_{s, j} \left(t_{p} \right) \geq \tilde{I}^{ \text{num, min}} . Considering

    \begin{equation*} R^{ \text{num}}_{s, j} \left( t_{p + 1} \right) - R^{ \text{num}}_{s, j} \left( t_{p} \right) = \gamma_{I^{ \text{num}}_{s, j}} \left( t_{p + 1} \right) \cdot \Delta_{p + 1} \cdot I^{ \text{num}}_{s, j} \left( t_{p + 1} \right) \end{equation*}

    from (3.5), we obtain

    \begin{eqnarray*} R^{ \text{num}}_{s, j} \left( t_{p + 1} \right) - R^{ \text{num}}_{s, j} \left( t_{p} \right) & \geq & \gamma_{I^{ \text{num}}_{s, j}} \left( t_{p + 1} \right) \cdot \Delta_{p + 1} \cdot \tilde{I}^{ \text{num, min}} \\ & \geq & m_{\gamma} \cdot \Delta_{p + 1} \cdot \tilde{I}^{ \text{num, min}} \end{eqnarray*}

    and summation by parts yields

    \begin{equation*} \begin{aligned} R^{\star, \text{num}} - R^{ \text{num}}_{s, j} \left( t_{L} \right) & \geq \lim\limits_{p \to \infty} m_{\gamma} \cdot t_{p + 1} \cdot \tilde{I}^{ \text{num, min}} - m_{\gamma} \cdot t_{L} \cdot \tilde{I}^{ \text{num, min}} \\ & \xrightarrow[p \to \infty]{} \infty \end{aligned} \end{equation*}

    from the mentioned time index L as our summation beginning. However, this contradicts our second property. Hence, \lim\limits_{p \to \infty} I^{ \text{num}}_{s, j} \left(t_{p} \right) = I^{\star, \text{num}} = 0 holds.

    Here, we want to discuss convergence of our proposed numerical scheme (3.1).

    Theorem 3.4. In addition to the assumptions of Subsection 2.2, all solution functions S_{s, j}, I_{s, j}, R_{s, j} \colon \left[0, \infty \right) \longrightarrow \left[0, N \right] are assumed to be continuously differentiable twice with globally bounded first and second derivatives. Additionally, all first derivatives of time-varying transmission rates and time-varying recovery rates are assumed to be globally bounded as well. Let \Delta_{p} \leq 1 for all p \in \mathbb{N} . If \max\limits_{p \in \mathbb{N}} \Delta_{p} \to 0 holds, the discrete solution of the numerical scheme (3.1) converges linearly towards the global unique continuous solution on a considered time interval \left[0, T \right] .

    Proof. Since this proof become relatively technical, we briefly describe our strategy. At first, local errors between continuous and time-discrete solutions are considered. Afterwards, we need to take into account that errors propagate in time. Finally, we investigate cumulation of these errors which finalizes our proof. We adapt ideas from [18] and [19]. In general, we follow [19,Satz 74.1] and modify ideas for explicit Eulerian time-stepping schemes because our scheme is a mixture of explicit-implicit parts.

    1) For investigation of local errors, we assume that

    \left( t_{p}, S_{s, j}^{ \text{num} } \left( t_{p} \right) \right) = \left( t_{p}, S_{s, j} \left( t_{p} \right) \right) \, \, , \, \, \left( t_{p}, I_{s, j}^{ \text{num} } \left( t_{p} \right) \right) = \left( t_{p}, I_{s, j} \left( t_{p} \right) \right) \, \, \text{and} \, \, \left( t_{p}, R_{s, j}^{ \text{num} } \left( t_{p} \right) \right) = \left( t_{p}, R_{s, j} \left( t_{p} \right) \right)

    hold for arbitrary s \in \left\{ f, m \right\} and arbitrary j \in \left\{ 1, \ldots, N_{a} \right\} and we consider the time interval \left[t_{p}, t_{p + 1} \right] . Here, we thus only consider one time step and denote solutions by \widetilde{S_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} , \widetilde{I_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} and \widetilde{R_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} respectively.

    1.1) It first holds

    \begin{equation*} \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} = S_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \end{equation*}

    and solving this equation for \widetilde{S_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} yields

    \begin{eqnarray*} \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} & = & \dfrac{S_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \\ & = & S_{s, j} \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}. \end{eqnarray*}

    We consider \left| S_{s, j} \left(t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} \right| . It holds

    \begin{eqnarray*} & & \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| S_{s, j} \left( t_{p + 1} \right) - \left\{ S_{s, j} \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right\} \right|. \end{eqnarray*}

    Zero addition and application of the triangle inequality implies

    \begin{eqnarray*} & & \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| S_{s, j} \left( t_{p + 1} \right) - S_{s, j} \left( t_{p} \right) + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right| \\ & \leq & \left| S_{s, j} \left( t_{p + 1} \right) - S_{s, j} \left( t_{p} \right) + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & & + \left| - \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right|. \end{eqnarray*}

    We define the two terms

    \begin{eqnarray*} I_{a} = \left| S_{s, j} \left( t_{p + 1} \right) - S_{s, j} \left( t_{p} \right) + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \end{eqnarray*}

    and

    \begin{eqnarray*} I_{b} & = & \left| - \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right|. \end{eqnarray*}

    For I_{a} , we obtain

    \begin{eqnarray*} I_{a} & = & \left| S_{s, j} \left( t_{p + 1} \right) - S_{s, j} \left( t_{p} \right) + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} S_{s, j}^{\prime} \left( \tau \right) \, \text{d}\tau - \Delta_{p + 1} \cdot S_{s, j}^{\prime} \left( t_{p} \right) \right| = \left| \int\limits_{t_{p}}^{t_{p + 1}} S_{s, j}^{\prime} \left( \tau \right) \, \text{d}\tau - \int\limits_{t_{p}}^{t_{p + 1}} S_{s, j}^{\prime} \left( t_{p} \right) \, \text{d}\tau \right| \\ & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} \left\{ S_{s, j}^{\prime} \left( \tau \right) - S_{s, j}^{\prime} \left( t_{p} \right) \right\} \, \text{d}\tau \right|. \end{eqnarray*}

    Application of the mean value theorem of calculus yields the existence of \xi_{a} \in \left(t_{p}, t_{p + 1} \right) such that

    S_{s, j}^{\prime \prime} \left( \xi_{a} \right) = \dfrac{S_{s, j}^{\prime} \left( \tau \right) - S_{s, j}^{\prime} \left( t_{p} \right)}{\tau - t_{p}}

    holds. This implies

    \begin{eqnarray*} I_{a} & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} \left\{ S_{s, j}^{\prime} \left( \tau \right) - S_{s, j}^{\prime} \left( t_{p} \right) \right\} \, \text{d}\tau \right| \\ & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( \tau - t_{p} \right) \cdot \dfrac{S_{s, j}^{\prime} \left( \tau \right) - S_{s, j}^{\prime} \left( t_{p} \right)}{\tau - t_{p}} \, \text{d}\tau \right| = \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( \tau - t_{p} \right) \cdot S_{s, j}^{\prime \prime} \left( \xi_{a} \right) \, \text{d}\tau \right| \\ & \leq & \max\limits_{t \in \left[ t_{p}, t_{p + 1} \right]} \left| S_{s, j}^{\prime \prime} \left( t \right) \right| \cdot \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( \tau - t_{p} \right) \, \text{d}\tau \right| \leq \dfrac{\Delta_{p + 1}^{2}}{2} \cdot \lVert S_{s, j}^{\prime \prime} \rVert_{\infty}. \end{eqnarray*}

    For I_{b} , we obtain

    \begin{eqnarray*} I_{b} & = & \left| - \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} + \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right| \\ & = & \left| \dfrac{- \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right. \\ & & \left. - \Delta_{p + 1}^{2} \cdot \dfrac{\left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right\} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right. \\ & & \left. + \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right|. \end{eqnarray*}

    Application of the triangle inequality and rearranging yields

    \begin{eqnarray*} I_{b} & \leq & \left| \dfrac{\Delta_{p + 1} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{t_{p}} \left( t_{p} \right)}{N} \right\} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right| \\ & & + \left| \Delta_{p + 1}^{2} \cdot \dfrac{\left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right\} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right|. \end{eqnarray*}

    Since

    1 \leq 1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}

    is valid, we obtain

    \begin{eqnarray*} I_{b} & \leq & \left| \Delta_{p + 1} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{t_{p}} \left( t_{p} \right)}{N} \right\} \right\} \right| \\ & & + \Delta_{p + 1}^2 \cdot \left| \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right\} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right\} \right|. \end{eqnarray*}

    By the mean value theorem of calculus, there exists \xi_{b} \in \left(t_{p}, t_{p + 1} \right) such that

    \beta_{S_{s, j}, I_{q, k}}^{\prime} \left( \xi_{b} \right) = \dfrac{\beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right)}{t_{p + 1} - t_{p}}

    holds. This implies

    \begin{eqnarray*} I_{b} & \leq & \left| \Delta_{p + 1}^{2} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \dfrac{\left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \right)}{t_{p + 1} - t_{p}} \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{t_{p}} \left( t_{p} \right)}{N} \right\} \right\} \right| \\ & & + \Delta_{p + 1}^{2} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} M_{\beta} \cdot N \right\} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} M_{\beta} \right\} \\ & \leq & \left| \Delta_{p + 1}^{2} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}}^{\prime} \left( \xi_{b} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{t_{p}} \left( t_{p} \right)}{N} \right\} \right\} \right| \\ & & + \Delta_{p + 1}^{2} \cdot \left\{ 2 \cdot M_{\beta} \cdot N_{a} \cdot N \right\} \cdot \left\{ 2 \cdot M_{\beta} \cdot N_{a} \right\} \\ & \leq & \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot N \cdot \lVert { \beta ^{\prime}} \rVert_{\infty} + \Delta_{p + 1}^{2} \cdot 4 \cdot M_{\beta}^{2} \cdot N_{a}^{2} \cdot N \\ & = & \Delta_{p + 1}^{2} \cdot \left\{ 2 \cdot N_{a} \cdot N \cdot \lVert { \beta ^{\prime}} \rVert_{\infty} + 4 \cdot M_{\beta}^{2} \cdot N_{a}^{2} \cdot N \right\}. \end{eqnarray*}

    Here, { \beta ^{\prime}} denotes the vector of all derivatives of time-varying transmission rates. We conclude

    \begin{eqnarray*} \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| & \leq & I_{a} + I_{b} \\ & \leq & \dfrac{\Delta_{p + 1}^{2}}{2} \cdot \lVert S_{s, j}^{\prime \prime} \rVert_{\infty} + \Delta_{p + 1}^{2} \cdot \left\{ 2 \cdot N_{a} \cdot N \cdot \lVert { \beta ^{\prime}} \rVert_{\infty} + 4 \cdot M_{\beta}^{2} \cdot N_{a}^{2} \cdot N \right\} \\ & \leq & \Delta_{p + 1}^{2} \cdot \underbrace{\left\{ \lVert S_{s, j}^{\prime \prime} \rVert_{\infty} + 2 \cdot N_{a} \cdot N \cdot \lVert { \beta ^{\prime}} \rVert_{\infty} + 4 \cdot M_{\beta}^{2} \cdot N_{a}^{2} \cdot N \right\}}_{: = C_{s, \text{loc}}} \end{eqnarray*}

    and summarizing our results, this implies

    \begin{equation} \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \leq C_{s, \text{loc}} \cdot \Delta_{p + 1}^{2}. \end{equation} (3.6)

    1.2) From

    \begin{eqnarray*} \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} & = & I_{s, j} \left( t_{p} \right) + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \\ & & - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)}, \end{eqnarray*}

    we obtain

    \begin{eqnarray*} \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} & = & \dfrac{I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} + \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \\ & = & I_{s, j} \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \\ & & + \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)}. \end{eqnarray*}

    We consider \left| I_{s, j} \left(t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} \right| . It holds

    \begin{eqnarray*} & & \left| I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| I_{s, j} \left( t_{p + 1} \right) - I_{s, j} \left( t_{p} \right) + \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & = & \left| I_{s, j} \left( t_{p + 1} \right) - I_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right. \\ & & \left. + \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    Rearranging of these terms and application of the triangle inequality yields

    \begin{eqnarray*} & & \left| I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| \left\{ I_{s, j} \left( t_{p + 1} \right) - I_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right\} \right. \\ & & \left. + \left\{ \Delta_{p + 1} \cdot \left\{ \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| I_{s, j} \left( t_{p + 1} \right) - I_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \left\{ \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right| \\ & & + \left| \Delta_{p + 1} \cdot \left\{ \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right| \\ & & + \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} I_{s, j}^{\prime} \left( \tau \right) \, \text{d}\tau - \Delta_{p + 1} \cdot I_{s, j}^{\prime} \left( t_{p} \right) \right| + \left| \Delta_{p + 1} \cdot \left\{ \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right| \\ & & + \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    We define the following three terms

    \begin{eqnarray*} I_{c} & : = & \left| \int\limits_{t_{p}}^{t_{p + 1}} I_{s, j}^{\prime} \left( \tau \right) \, \text{d}\tau - \Delta_{p + 1} \cdot I_{s, j}^{\prime} \left( t_{p} \right) \right|, \\ I_{d} & : = & \left| \Delta_{p + 1} \cdot \left\{ \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right| \end{eqnarray*}

    and

    \begin{eqnarray*} I_{e} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    I_{c} can be rewritten as

    I_{c} = \left| \int\limits_{t_{p}}^{t_{p + 1}} I_{s, j}^{\prime} \left( \tau \right) \, \text{d} \tau - \int\limits_{t_{p}}^{t_{p + 1}} I_{s, j}^{\prime} \left( t_{p} \right) \, \text{d} \tau \right| = \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( I_{s, j}^{\prime} \left( \tau \right) - I_{s, j}^{\prime} \left( t_{p} \right) \right) \, \text{d} \tau \right|.

    By the mean value theorem of calculus, there exists \xi_{c} \in \left(t_{p}, t_{p + 1} \right) such that

    I_{s, j}^{\prime \prime} \left( \xi_{c} \right) = \dfrac{I_{s, j}^{\prime} \left( \tau \right) - I_{s, j}^{\prime} \left( t_{p} \right)}{\tau - t_{p}}

    holds. This implies

    \begin{eqnarray*} I_{c} & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( I_{s, j}^{\prime} \left( \tau \right) - I_{s, j}^{\prime} \left( t_{p} \right) \right) \, \text{d}\tau \right| = \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( \tau - t_{p} \right) \cdot \dfrac{I_{s, j}^{\prime} \left( \tau \right) - I_{s, j}^{\prime} \left( t_{p} \right)}{\tau - t_{p}} \, \text{d}\tau \right| \\ & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( \tau - t_{p} \right) \cdot I_{s, j}^{\prime \prime} \left( \xi_{c} \right) \, \text{d}\tau \right| \leq \dfrac{\Delta_{p + 1}^{2}}{2} \cdot \lVert I_{s, j}^{\prime \prime} \rVert_{\infty}. \end{eqnarray*}

    For I_{d} , we obtain

    \begin{eqnarray*} I_{d} & : = & \left| \Delta_{p + 1} \cdot \left\{ \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} - \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right\} \right| \\ & = & \left| \dfrac{\Delta_{p + 1} \cdot I_{s, j} \left( t_{p} \right) \cdot \left\{ \gamma_{I_{s, j}} \left( t_{p + 1} \right) - \gamma_{I_{s, j}} \left( t_{p} \right) \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} - \Delta_{p + 1}^{2} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right|. \end{eqnarray*}

    Application of the triangle inequality implies

    \begin{eqnarray*} I_{d} & \leq & \left| \dfrac{\Delta_{p + 1} \cdot I_{s, j} \left( t_{p} \right) \cdot \left\{ \gamma_{I_{s, j}} \left( t_{p + 1} \right) - \gamma_{I_{s, j}} \left( t_{p} \right) \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| + \left| \Delta_{p + 1}^{2} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right| \\ & \leq & \left| \Delta_{p + 1} \cdot I_{s, j} \left( t_{p} \right) \cdot \left\{ \gamma_{I_{s, j}} \left( t_{p + 1} \right) - \gamma_{I_{s, j}} \left( t_{p} \right) \right\} \right| + \left| \Delta_{p + 1}^{2} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right|. \end{eqnarray*}

    By the mean value theorem of calculus, there is \xi_{d} \in \left(t_{p}, t_{p + 1} \right) such that

    \gamma_{I_{s, j}}^{\prime} \left( \xi_{d} \right) = \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) - \gamma_{I_{s, j}} \left( t_{p} \right)}{t_{p + 1} - t_{p}}

    holds. Hence, we conclude

    \begin{eqnarray*} I_{d} & \leq & \left| \Delta_{p + 1}^{2} \cdot I_{s, j} \left( t_{p} \right) \cdot \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) - \gamma_{I_{s, j}} \left( t_{p} \right)}{t_{p + 1} - t_{p}} \right| + \left| \Delta_{p + 1}^{2} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right| \\ & \leq & \left| \Delta_{p + 1}^{2} \cdot I_{s, j} \left( t_{p} \right) \cdot \gamma_{I_{s, j}}^{\prime} \left( \xi_{d} \right) \right| + \Delta_{p + 1}^{2} \cdot M_{\gamma}^{2} \cdot N \\ & \leq & \Delta_{p + 1}^{2} \cdot N \cdot \lVert { \gamma ^{\prime}} \rVert_{\infty} + \Delta_{p + 1}^{2} \cdot M_{\gamma}^{2} \cdot N. \end{eqnarray*}

    Here, { \gamma ^{\prime}} denotes the vector containing all derivatives of time-varying recovery rates. We consider

    \begin{eqnarray*} I_{e} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    By zero addition, we obtain

    \begin{eqnarray*} I_{e} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{ \left( S_{s, j} \left( t_{p} \right) - S_{s, j} \left( t_{p + 1} \right) \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    Application of the triangle inequality yields

    \begin{eqnarray*} I_{e} & \leq & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{ \left( S_{s, j} \left( t_{p} \right) - S_{s, j} \left( t_{p + 1} \right) \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & & + \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & & + \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    We define the following three terms

    \begin{eqnarray*} I_{e, 1} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{ \left( S_{s, j} \left( t_{p} \right) - S_{s, j} \left( t_{p + 1} \right) \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right|, \\ I_{e, 2} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \end{eqnarray*}

    and

    \begin{eqnarray*} I_{e, 3} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    Considering I_{e, 1} , there exists \xi_{e, 1} \in \left(t_{p}, t_{p + 1} \right) such that

    S_{s, j}^{\prime} \left( \xi_{e, 1} \right) = \dfrac{S_{s, j} \left( t_{p + 1} \right) - S_{s, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}}

    holds due to the mean value theorem of calculus. Hence, we obtain

    \begin{eqnarray*} I_{e, 1} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{ \left( S_{s, j} \left( t_{p} \right) - S_{s, j} \left( t_{p + 1} \right) \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & = & \left| - \Delta_{p + 1}^{2} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot \dfrac{ \left( S_{s, j} \left( t_{p} \right) - S_{s, j} \left( t_{p + 1} \right) \right)}{t_{p} - t_{p + 1}} \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & = & \left| \Delta_{p + 1}^{2} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \cdot S_{s, j}^{\prime} \left( \xi_{e, 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & \leq & \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot \lVert { \beta } \rVert_{\infty} \cdot \lVert S_{s, j}^{\prime} \rVert_{\infty}. \end{eqnarray*}

    By the mean value theorem of calculus, there exists \xi_{e, 2} \in \left(t_{p}, t_{p + 1} \right) such that

    \beta_{S_{s, j}, I_{q, k}}^{\prime} \left( \xi_{e, 2} \right) = \dfrac{\beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right)}{t_{p + 1} - t_{p}}

    is valid. Application of the triangle inequality yields

    \begin{eqnarray*} I_{e, 2} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & = & \left| - \Delta_{p + 1}^{2} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \dfrac{\left( \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) - \beta_{S_{s, j}, I_{q, k}} \left( t_{p} \right) \right)}{t_{p + 1} - t_{p}} \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & = & \left| \Delta_{p + 1}^{2} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}}^{\prime} \left( \xi_{e, 2} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & \leq & \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot N \cdot \lVert \beta^{\prime} \rVert_{\infty}. \end{eqnarray*}

    Now, we consider

    \begin{eqnarray*} I_{e, 3} & : = & \left| \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    By application of the triangle inequality, we obtain

    \begin{eqnarray*} I_{e, 3} & = & \left| \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. + \dfrac{\Delta_{p + 1}^{2} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & \leq & \Delta_{p + 1}^{2} \cdot \left| \gamma_{I_{s, j}} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j} \left( t_{p + 1} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & & + \Delta_{p + 1} \cdot \left| \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\left( S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right) \cdot I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & \leq & \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    By inequality (3.6) from Step 1.1), we know that

    \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num} } \left( t_{p + 1} \right)} \right| \leq C_{s, \text{loc} } \cdot \Delta_{p + 1}^{2}

    holds. This implies

    \begin{eqnarray*} I_{e, 3} & \leq & \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot C_{s, \text{loc}} \cdot \Delta_{p + 1}^{2} \\ & = & \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} + \Delta_{p + 1}^{3} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot C_{s, \text{loc}} \\ & = & \Delta_{p + 1}^{2} \cdot \left\{ 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} + 2 \cdot N_{a} \cdot M_{\beta} \cdot C_{s, \text{loc}} \cdot \Delta_{p + 1} \right\} \\ & \leq & \Delta_{p + 1}^{2} \cdot \left\{ 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} + 2 \cdot N_{a} \cdot M_{\beta} \cdot C_{s, \text{loc}} \right\}. \end{eqnarray*}

    Combining our results, we obtain

    \begin{eqnarray*} & & \left| I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & I_{c} + I_{d} + I_{e} \\ & \leq & I_{c} + I_{d} + I_{e, 1} + I_{e, 2} + I_{e, 3} \\ & \leq & \dfrac{\Delta_{p + 1}^{2}}{2} \cdot \lVert I_{s, j}^{\prime \prime} \rVert_{\infty} + \Delta_{p + 1}^{2} \cdot N \cdot \lVert { \gamma ^{\prime}} \rVert_{\infty} + \Delta_{p + 1}^{2} \cdot M_{\gamma}^{2} \cdot N + \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot \lVert { \beta } \rVert_{\infty} \cdot \lVert S_{s, j}^{\prime} \rVert_{\infty} \\ & & + \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot N \cdot \lVert \beta^{\prime} \rVert_{\infty} + \Delta_{p + 1}^{2} \cdot \left\{ 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} + 2 \cdot N_{a} \cdot M_{\beta} \cdot C_{s, \text{loc}} \right\} \\ & = & \Delta_{p + 1}^{2} \cdot \left\{ \dfrac{\lVert I_{s, j}^{\prime \prime} \rVert_{\infty}}{2} + N \cdot \lVert { \gamma ^{\prime}} \rVert_{\infty} + M_{\gamma}^{2} \cdot N + \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot \lVert { \beta } \rVert_{\infty} \cdot \lVert S_{s, j}^{\prime} \rVert_{\infty} \right. \\ & & \left. + 2 \cdot N_{a} \cdot N \cdot \lVert \beta^{\prime} \rVert_{\infty} + 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} + 2 \cdot N_{a} \cdot M_{\beta} \cdot C_{s, \text{loc}} \right\} \end{eqnarray*}

    We define

    \begin{eqnarray*} C_{I, \text{loc}} & : = & \left\{ \dfrac{\lVert I_{s, j}^{\prime \prime} \rVert_{\infty}}{2} + N \cdot \lVert { \gamma ^{\prime}} \rVert_{\infty} + M_{\gamma}^{2} \cdot N + \Delta_{p + 1}^{2} \cdot 2 \cdot N_{a} \cdot \lVert { \beta } \rVert_{\infty} \cdot \lVert S_{s, j}^{\prime} \rVert_{\infty} \right. \\ & & \left. + 2 \cdot N_{a} \cdot N \cdot \lVert \beta^{\prime} \rVert_{\infty} + 2 \cdot N_{a} \cdot N \cdot M_{\beta} \cdot M_{\gamma} + 2 \cdot N_{a} \cdot M_{\beta} \cdot C_{s, \text{loc}} \right\}. \end{eqnarray*}

    We conclude

    \begin{equation} \left| I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \leq \Delta_{p + 1}^{2} \cdot C_{I, \text{loc}}. \end{equation} (3.7)

    1.3) It holds

    \widetilde{R_{s, j}^{ \text{num} } \left( t_{p + 1} \right)} = R_{s, j} \left( t_{p} \right) + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num} } \left( t_{p + 1} \right)}.

    We consider \left| R_{s, j} \left(t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} \right| and obtain

    \begin{eqnarray*} & & \left| R_{s, j} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| R_{s, j} \left( t_{p + 1} \right) - R_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    Application of zero addition and the triangle inequality yields

    \begin{eqnarray*} & & \left| R_{s, j} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} R_{s, j}^{\prime} \left( \tau \right) \, \text{d}\tau - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right. \\ & & \left. + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p + 1} \right) \right. \\ & & \left. + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p + 1} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p + 1} \right) \right. \\ & & \left. + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p + 1} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left | \int\limits_{t_{p}}^{t_{p + 1}} R_{s, j}^{\prime} \left( \tau \right) \, \text{d}\tau - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) \right| \\ & & + \left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p + 1} \right) \right| \\ & & + \left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot I_{s, j} \left( t_{p + 1} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p + 1} \right) \right| \\ & & + \left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p + 1} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \underbrace{\left| \int\limits_{t_{p}}^{t_{p + 1}} \left( R_{s, j}^{\prime} \left( \tau \right) - R_{s, j}^{\prime} \left( t_{p} \right) \right) \, \text{d}\tau \right|}_{: = I_{f, 1}} + \underbrace{\left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot \left( I_{s, j} \left( t_{p} \right) - I_{s, j} \left( t_{p + 1} \right) \right) \right|}_{: = I_{f, 2}} \\ & & + \underbrace{\left| \Delta_{p + 1} \cdot I_{s, j} \left( t_{p + 1} \right) \cdot \left( \gamma_{I_{s, j}} \left( t_{p} \right) - \gamma_{I_{s, j}} \left( t_{p + 1} \right) \right) \right|}_{: = I_{f, 3}} + \underbrace{\left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \left( I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right) \right|}_{: = I_{f, 4}}. \end{eqnarray*}

    By the mean value theorem of calculus, there are \xi_{f, 1}, \xi_{f, 2}, \xi_{f, 3}, \xi_{f, 4} \in \left(t_{p}, t_{p + 1} \right) such that

    R_{s, j}^{\prime \prime} \left( \xi_{f, 1} \right) = \dfrac{R_{s, j}^{\prime} \left( \tau \right) - R_{s, j}^{\prime} \left( t_{p} \right)}{\tau - t_{p}} \, \, , \, \, I_{s, j}^{\prime} \left( \xi_{f, 2} \right) = \dfrac{I_{s, j} \left( t_{p + 1} \right) - I_{s, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} \, \, , \, \, \gamma_{I_{s, j}}^{\prime} \left( \xi_{f, 3} \right) = \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) - \gamma_{I_{s, j}} \left( t_{p} \right)}{t_{p + 1} - t_{p}}

    hold. This implies

    \begin{eqnarray*} I_{f, 1} & : = & \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( R_{s, j}^{\prime} \left( \tau \right) - R_{s, j}^{\prime} \left( t_{p} \right) \right) \, \text{d}\tau \right| = \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( \tau - t_{p} \right) \cdot \dfrac{R_{s, j}^{\prime} \left( \tau \right) - R_{s, j}^{\prime} \left( t_{p} \right)}{\tau - t_{p}} \, \text{d}\tau \right| \\ & = & \left| \int\limits_{t_{p}}^{t_{p + 1}} \left( \tau - t_{p} \right) \cdot R_{s, j}^{\prime \prime} \left( \xi_{f, 1} \right) \, \text{d}\tau \right| \leq \dfrac{\Delta_{p + 1}^{2}}{2} \cdot \lVert R_{s, j}^{\prime \prime} \rVert_{\infty}, \\ I_{f, 2} & : = & \left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p} \right) \cdot \left( I_{s, j} \left( t_{p} \right) - I_{s, j} \left( t_{p + 1} \right) \right) \right| = \left| \Delta_{p + 1}^{2} \cdot \gamma_{I_{s, j}} \cdot \dfrac{I_{s, j} \left( t_{p + 1} \right) - I_{s, j} \left( t_{p} \right)}{t_{p + 1} - t_{p}} \right| \\ & = & \left| \Delta_{p + 1}^{2} \cdot \gamma_{I_{s, j}} \cdot I_{s, j}^{\prime} \left( \xi_{f, 2} \right) \right| \leq \Delta_{p + 1}^{2} \cdot \lVert { \beta } \rVert_{\infty} \cdot \lVert I_{s, j}^{\prime} \rVert_{\infty} \end{eqnarray*}

    and

    \begin{eqnarray*} I_{f, 3} & : = & \left| \Delta_{p + 1} \cdot I_{s, j} \left( t_{p + 1} \right) \cdot \left( \gamma_{I_{s, j}} \left( t_{p} \right) - \gamma_{I_{s, j}} \left( t_{p + 1} \right) \right) \right| = \left| \Delta_{p + 1}^{2} \cdot I_{s, j} \left( t_{p + 1} \right) \cdot \dfrac{\gamma_{I_{s, j}} \left( t_{p + 1} \right) - \gamma_{I_{s, j}} \left( t_{p} \right)}{t_{p + 1} - t_{p}} \right| \\ & = & \left| \Delta_{p + 1}^{2} \cdot I_{s, j} \left( t_{p + 1} \right) \cdot \gamma_{I_{s, j}}^{\prime} \left( \xi_{f, 3} \right) \right| \leq \Delta_{p + 1}^{2} \cdot N \cdot \lVert \gamma_{I_{s, j}}^{\prime} \rVert_{\infty}. \end{eqnarray*}

    By inequality (3.7) from Step 1.2), we know that

    \left| I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num} } \left( t_{p + 1} \right)} \right| \leq \Delta_{p + 1}^{2} \cdot C_{I, \text{loc} }

    is valid. We infer that

    \begin{eqnarray*} I_{f, 4} & = & \left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \left( I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right) \right| \\ & \leq & \Delta_{p + 1} \cdot \lVert \gamma_{I_{s, j}} \rVert_{\infty} \cdot \Delta_{p + 1}^{2} \cdot C_{I, \text{loc}} \leq \Delta_{p + 1}^{3} \cdot C_{I, \text{loc}} \cdot M_{\gamma} \end{eqnarray*}

    holds. Summarizing our results, we obtain

    \begin{eqnarray*} \left| R_{s, j} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| & \leq & I_{f, 1} + I_{f, 2} + I_{f, 3} + I_{f, 4} \\ & \leq & \dfrac{\Delta_{p + 1}^{2}}{2} \cdot \lVert R_{s, j}^{\prime \prime} \rVert_{\infty} + \Delta_{p + 1}^{2} \cdot \lVert { \beta } \rVert_{\infty} \cdot \lVert I_{s, j}^{\prime} \rVert_{\infty} \\ & & + \Delta_{p + 1}^{2} \cdot N \cdot \lVert \gamma_{I_{s, j}}^{\prime} \rVert_{\infty} + \Delta_{p + 1}^{3} \cdot C_{I, \text{loc}} \cdot M_{\gamma} \\ & = & \Delta_{p + 1}^{2} \cdot \left\{ \dfrac{\lVert R_{s, j}^{\prime \prime} \rVert_{\infty}}{2} + \lVert { \beta } \rVert_{\infty} \cdot \lVert I_{s, j}^{\prime} \rVert_{\infty} + N \cdot \lVert \gamma_{I_{s, j}}^{\prime} \rVert_{\infty} + \Delta_{p + 1} \cdot C_{I, \text{loc}} \cdot M_{\gamma} \right\} \\ & \leq & \Delta_{p + 1}^{2} \cdot \underbrace{\left\{ \dfrac{\lVert R_{s, j}^{\prime \prime} \rVert_{\infty}}{2} + \lVert { \beta } \rVert_{\infty} \cdot \lVert I_{s, j}^{\prime} \rVert_{\infty} + N \cdot \lVert \gamma_{I_{s, j}}^{\prime} \rVert_{\infty} + C_{I, \text{loc}} \cdot M_{\gamma} \right\}}_{: = C_{R, \text{loc}}} \\ & = & \Delta_{p + 1}^{2} \cdot C_{R, \text{loc}}. \end{eqnarray*}

    and

    \begin{equation} \left| R_{s, j} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \leq \Delta_{p + 1}^{2} \cdot C_{R, \text{loc}} \end{equation} (3.8)

    in a short manner.

    1.4) Conclusively, we obtain

    \begin{equation} \begin{split} & \, \, \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| I_{s, j} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| R_{s, j} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \right\} \\ & \leq \Delta_{p + 1}^{2} \cdot \underbrace{\max \left\{ C_{S, \text{loc}}, C_{I, \text{loc}}, C_{R, \text{loc}} \right\}}_{: = C_{ \text{loc}}} = \Delta_{p + 1}^{2} \cdot C_{ \text{loc}} \end{split} \end{equation} (3.9)

    from the inequalities (3.6), (3.7) and (3.8).

    2) In reality, the points \left(t_{p}, S_{s, j}^{ \text{num}} \left(t_{p} \right) \right) , \left(t_{p}, I_{s, j}^{ \text{num}} \left(t_{p} \right) \right) and \left(t_{p}, R_{s, j}^{ \text{num}} \left(t_{p} \right) \right) do not lie on the continuous solution graph. For that reason, we must investigate how procedural errors S_{s, j}^{ \text{num}} \left(t_{p} \right) - S_{s, j} \left(t_{p} \right) , I_{s, j}^{ \text{num}} \left(t_{p} \right) - I_{s, j} \left(t_{p} \right) and R_{s, j}^{ \text{num}} \left(t_{p} \right) - R _{s, j} \left(t_{p} \right) propagate to the \left(p + 1 \right) -th time step. These estimates are going to be carried out in the following steps 2) and 3) of this proof.

    2.1) At first, we must consider \left| S_{s, j}^{ \text{num}} \left(t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} \right| . Remember that \widetilde{S_{s, j}^{ \text{num}} \left(t_{p} \right)} = S_{s, j} \left(t_{p} \right) . Note that

    S_{s, j}^{ \text{num} } \left( t_{p + 1} \right) = S_{s, j}^{ \text{num} } \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot S_{s, j}^{ \text{num} } \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \cdot \dfrac{I_{q, k}^{ \text{num} } \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k}^{ \text{num} } \left( t_{p} \right)}{N} \right\}}

    and

    \widetilde{S_{s, j}^{ \text{num} } \left( t_{p + 1} \right)} = S_{s, j} \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}

    are valid. Hence, we obtain

    \begin{eqnarray*} & & \left| S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| \dfrac{S_{s, j}^{ \text{num}} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}} - \dfrac{S_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}} \right| \\ & = & \left| \dfrac{\left\{ S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right\} + \Delta_{p + 1} \cdot S_{s, j}^{ \text{num}} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\}}{\left\{ 1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\} \right\} \cdot \left\{ 1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right\}} \right. \\ & & \left. - \dfrac{\Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{\left\{ 1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\} \right\} \cdot \left\{ 1 + \Delta_{p + 1} \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right\}} \right|. \end{eqnarray*}

    Application of the triangle inequality and zero addition yields

    \begin{eqnarray*} & & \left| S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \left| \Delta_{p + 1} \cdot S_{s, j}^{ \text{num}} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\} \right| \\ & = & \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \left| \Delta_{p + 1} \cdot S_{s, j}^{ \text{num}} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right. \\ & & \left. - \Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\} \right| \\ & \leq & \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \\ & & + \left| \Delta_{p + 1} \cdot \left( S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right)}{N} \right\} \right| \\ & & + \left| \Delta_{p + 1} \cdot S_{s, j} \left( t_{p} \right) \cdot \sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{I_{q, k} \left( t_{p} \right) - I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\} \right| \\ & \leq & \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k} \left( t_{p} \right) - I_{q, k}^{ \text{num}} \left( t_{p} \right) \right| \right\}. \end{eqnarray*}

    Summarizing this result, we obtain

    \begin{equation} \begin{split} & \, \, \left| S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \\ & \, \, + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k} \left( t_{p} \right) - I_{q, k}^{ \text{num}} \left( t_{p} \right) \right| \right\}. \end{split} \end{equation} (3.10)

    2.2) Now, we consider \left| I_{s, j}^{ \text{num}} \left(t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} \right| . We first observe that

    \begin{eqnarray*} I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) & = & I_{s, j}^{ \text{num}} \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j}^{ \text{num}} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \\ & & + \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) \cdot I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \end{eqnarray*}

    and

    \begin{eqnarray*} \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} & = & \widetilde{I_{s, j} \left( t_{p} \right)} - \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num}} \left( t_{p} \right)}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \\ & & + \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot \widetilde{I_{q, k}^{ \text{num}} \left( t_{p} \right)}}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \\ & = & I_{s, j} \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \\ & & + \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \end{eqnarray*}

    are valid from step 1.2). Application of the triangle inequality and zero addition yields

    \begin{eqnarray*} & & \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j}^{ \text{num}} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. + \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) \cdot I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. - I_{s, j} \left( t_{p} \right) + \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j} \left( t_{p} \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. - \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \left| \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \left( I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & & + \left| \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) \cdot I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. - \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & = & \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \left| \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \left( I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & & + \left| \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) \cdot I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. - \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. + \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right. \\ & & \left. - \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot I_{q, k} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \left| \dfrac{\Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \left( I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right)}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & & + \left| \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\left( S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right) \cdot I_{q, k}^{ \text{num}} \left( t_{p} \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & & + \left| \Delta_{p + 1} \cdot \dfrac{\sum\limits_{k = 1}^{N_{a}} \sum\limits_{q \in \left\{ f, m \right\}} \left\{ \beta_{S_{s, j}, I_{q, k}} \left( t_{p + 1} \right) \cdot \dfrac{\widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \cdot \left( I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right)}{N} \right\}}{1 + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\}. \end{eqnarray*}

    Using (3.10), we obtain

    \begin{eqnarray*} & & \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \\ & & \left. + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k} \left( t_{p} \right) - I_{q, k}^{ \text{num}} \left( t_{p} \right) \right| \right\} \right\} \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \\ & = & \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \\ & & + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \\ & & + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \end{eqnarray*}

    and the result reads

    \begin{equation} \begin{split} & \, \, \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \\ & \, \, + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \\ & \, \, + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \\ & \, \, + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\}. \end{split} \end{equation} (3.11)

    2.3) We consider \left| R_{s, j}^{ \text{num}} \left(t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left(t_{p + 1} \right)} \right| . From step 1.3), we know that

    R_{s, j}^{ \text{num} } \left( t_{p + 1} \right) = R_{s, j}^{ \text{num} } \left( t_{p} \right) + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j}^{ \text{num} } \left( t_{p + 1} \right)

    and

    \widetilde{R_{s, j}^{ \text{num} } \left( t_{p + 1} \right)} = R_{s, j} \left( t_{p} \right) + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num} } \left( t_{p + 1} \right)}

    hold. By application of the triangle inequality, this implies

    \begin{eqnarray*} & & \left| R_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & = & \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) + \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - R_{s, j} \left( t_{p} \right) - \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| + \left| \Delta_{p + 1} \cdot \gamma_{I_{s, j}} \left( t_{p + 1} \right) \cdot \left( I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right) \right| \\ & \leq & \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|. \end{eqnarray*}

    Using inequality (3.11), we obtain

    \begin{eqnarray*} & & \left| R_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq & \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left\{ \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \right. \\ & & \left. + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \\ & & \left. + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \\ & & \left. + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \right\}. \end{eqnarray*}

    We conclude that

    \begin{equation} \begin{split} & \, \, \left| R_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \\ & \leq \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left\{ \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \right. \\ & \, \, \left. + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \\ & \, \, \left. + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \\ & \, \, \left. + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \right. \\ & \, \, \left. + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \right\}. \end{split} \end{equation} (3.12)

    holds.

    2.4) Now, we want to combine our results. Since s \in \left\{ f, m \right\} and j \in \left\{ 1, \ldots, N_{a} \right\} are arbitrary indices, we infer by inequalities (3.10), (3.11) and (3.12) that

    \begin{eqnarray*} & & \, \, \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| R_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \right\} \\ & \leq & \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \\ & & \left. + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k} \left( t_{p} \right) - I_{q, k}^{ \text{num}} \left( t_{p} \right) \right| \right\}, \right. \\ & & \left. \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \right. \\ & & \left. + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \\ & & \left. + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \right. \\ & & \left. + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\}, \right. \\ & & \left. \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left\{ \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| \right. \right. \\ & & \left. \left. + \Delta_{p + 1} \cdot M_{\gamma} \cdot \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right| + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \right. \\ & & \left. \left. + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right| \right. \right. \\ & & \left. \left. + \Delta_{p + 1}^{2} \cdot 4 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \right. \right. \\ & & \left. \left. + \Delta_{p + 1} \cdot 2 \cdot N_{a} \cdot M_{\beta} \cdot \max\limits_{\substack{k \in \left\{ 1, \ldots, N_{a} \right\} \\ q \in \left\{ f, m \right\}}} \left\{ \left| I_{q, k}^{ \text{num}} \left( t_{p} \right) - I_{q, k} \left( t_{p} \right) \right| \right\} \right\} \right\} \\ & \leq & \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right|, \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right|, \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| \right\} \\ & & \times \left\{ 1 + \Delta_{p + 1} \cdot \left\{ 2 \cdot M_{\gamma} + 4 \cdot N_{a} \cdot M_{\beta} + 8 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \cdot \Delta_{p + 1} \right\} \right\} \\ & \leq & \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right|, \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right|, \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| \right\} \\ & & \times \left\{ 1 + \Delta_{p + 1} \cdot \left\{ 2 \cdot M_{\gamma} + 4 \cdot N_{a} \cdot M_{\beta} + 8 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \right\} \right\} \end{eqnarray*}

    holds because \Delta_{p + 1} \leq 1 by assumption. This yields

    \begin{equation} \begin{split} & \, \, \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| R_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \right\} \\ & \leq \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p} \right) - S_{s, j} \left( t_{p} \right) \right|, \left| I_{s, j}^{ \text{num}} \left( t_{p} \right) - I_{s, j} \left( t_{p} \right) \right|, \left| R_{s, j}^{ \text{num}} \left( t_{p} \right) - R_{s, j} \left( t_{p} \right) \right| \right\} \\ & \, \, \times \left\{ 1 + \Delta_{p + 1} \cdot \underbrace{\left\{ 2 \cdot M_{\gamma} + 4 \cdot N_{a} \cdot M_{\beta} + 8 \cdot N_{a}^{2} \cdot M_{\beta}^{2} \right\}}_{: = C_{ \text{prop}}} \right\}. \end{split} \end{equation} (3.13)

    3) Finally, we can finish our proof of convergence. For abbreviation, we write

    \begin{eqnarray*} & & \lVert \mathbf{z}^{ \text{num}} \left( t_{p + 1} \right) - \mathbf{z} \left( t_{p + 1} \right) \rVert_{ \text{conv}} \\ & : = & \max\limits_{\substack{j \in \left\{ 1, \ldots, N_{a} \right\} \\ s \in \left\{ f, m \right\}}} \left\{ \left| S_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{S_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| I_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{I_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right|, \left| R_{s, j}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{R_{s, j}^{ \text{num}} \left( t_{p + 1} \right)} \right| \right\} \end{eqnarray*}

    where \mathbf{z} \in \mathbb{R}^{6 \cdot N_{a}} is defined as in the proof of Theorem 2.5. Our proof is heavily based on the inequality

    1 + x \leq \text{exp} \left( x \right)

    for all x \geq 0 . Note that t_{1} = 0 < t_{2} < \ldots < t_{M - 1} < t_{M} = T .

    3.1) At first, we want to inductively prove that

    \begin{equation} \begin{split} \lVert \mathbf{z}^{ \text{num}} \left( t_{p + 1} \right) - \mathbf{z} \left( t_{p + 1} \right) \rVert_{ \text{conv}} & \leq \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{1} \right\} \right) \\ & \, \, + C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{p + 1} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{k} \right\} \right) \end{split} \end{equation} (3.14)

    holds for all p \in \left\{ 0, \ldots, M - 1 \right\} . Let p = 0 first. The inequality (3.14) is fulfilled. Let p = 1 to understand the concept. By application of the triangle inequality and inequalities (3.9) and (3.13), we see that

    \begin{eqnarray*} & & \lVert \mathbf{z}^{ \text{num}} \left( t_{2} \right) - \mathbf{z} \left( t_{2} \right) \rVert_{ \text{conv}} \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{2} \right) - \widetilde{\mathbf{z}^{ \text{num}} \left( t_{2} \right)} \rVert_{ \text{conv}} + \lVert \widetilde{\mathbf{z}^{ \text{num}} \left( t_{2} \right)} - \mathbf{z} \left( t_{2} \right) \rVert_{ \text{conv}} \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \left\{ 1 + C_{ \text{prop}} \cdot \Delta_{2} \right\} + C_{ \text{loc}} \cdot \Delta_{2}^{2} \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \Delta_{2} \right) + C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{2} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{2} - t_{k} \right\} \right) \\ & = & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \Delta_{2} \right) + C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{2} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{2} - t_{k} \right\} \right) \\ & = & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{2} - t_{1} \right\} \right) + C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{2} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{2} - t_{k} \right\} \right) \end{eqnarray*}

    is valid. We now assume that

    \begin{equation*} \begin{split} \lVert \mathbf{z}^{ \text{num}} \left( t_{p} \right) - \mathbf{z} \left( t_{p} \right) \rVert_{ \text{conv}} & \leq \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p} - t_{1} \right\} \right) \\ & \, \, + C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{p} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p} - t_{k} \right\} \right) \end{split} \end{equation*}

    holds. We now want to show that (3.14) follows. We see that

    \begin{eqnarray*} & & \lVert \mathbf{z}^{ \text{num}} \left( t_{p + 1} \right) - \mathbf{z} \left( t_{p + 1} \right) \rVert_{ \text{conv}} \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{p + 1} \right) - \widetilde{\mathbf{z}^{ \text{num}} \left( t_{p + 1} \right)} \rVert_{ \text{conv}} + \lVert \widetilde{\mathbf{z}^{ \text{num}} \left( t_{p + 1} \right)} - \mathbf{z} \left( t_{p + 1} \right) \rVert_{ \text{conv}} \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{p} \right) - \mathbf{z} \left( t_{p} \right) \rVert_{ \text{conv}} \cdot \left\{ 1 + C_{ \text{prop}} \cdot \Delta_{p + 1} \right\} + C_{ \text{loc}} \cdot \Delta_{p + 1}^{2} \\ & \leq & \left\{ \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p} - t_{1} \right\} \right) + C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{p} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p} - t_{k} \right\} \right) \right\} \\ & & \times \, \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{p} \right\} \right) + C_{ \text{loc}} \cdot \Delta_{p + 1}^{2} \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{1} \right\} \right) \\ & & + \left( C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{p} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p} - t_{k} \right\} \right) \right) \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{p} \right\} \right) + C_{ \text{loc}} \cdot \Delta_{p + 1}^{2} \\ & = & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{1} \right\} \right) \\ & & + \left( C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{p} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{k} \right\} \right) \right) + C_{ \text{loc}} \cdot \Delta_{p + 1}^{2} \\ & = & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{1} \right\} \right) \\ & & + \left( C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{p + 1} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{k} \right\} \right) \right) \end{eqnarray*}

    holds. This proves (3.14) by induction.

    3.2) Concluding our proof, we consider

    \begin{equation*} \begin{split} \lVert \mathbf{z}^{ \text{num}} \left( t_{p + 1} \right) - \mathbf{z} \left( t_{p + 1} \right) \rVert_{ \text{conv}} & \leq \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{1} \right\} \right) \\ & \, \, + C_{ \text{loc}} \cdot \sum\limits_{k = 2}^{p + 1} \Delta_{k}^{2} \cdot \text{exp} \left( C_{ \text{prop}} \cdot \left\{ t_{p + 1} - t_{k} \right\} \right) \end{split} \end{equation*}

    from (3.14). We define \Delta : = \max\limits_{r \in \left\{ 2, \ldots, M \right\}} \Delta_{r} . We infer that

    \begin{eqnarray*} & & \lVert \mathbf{z}^{ \text{num}} \left( t_{p + 1} \right) - \mathbf{z} \left( t_{p + 1} \right) \rVert_{ \text{conv}} \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot T \right) + C_{ \text{loc}} \cdot \Delta \cdot \sum\limits_{k = 2}^{p + 1} \Delta_{k} \cdot \text{exp} \left( C_{ \text{prop}} \cdot T \right) \\ & \leq & \lVert \mathbf{z}^{ \text{num}} \left( t_{1} \right) - \mathbf{z} \left( t_{1} \right) \rVert_{ \text{conv}} \cdot \text{exp} \left( C_{ \text{prop}} \cdot T \right) + C_{ \text{loc}} \cdot \Delta \cdot T \cdot \text{exp} \left( C_{ \text{prop}} \cdot T \right) \end{eqnarray*}

    holds. If the initial conditions of our continuous and our time-discrete problem formulation coincide and \Delta \to 0 , the time-discrete solution convergences linearly towards the continuous solution. This proves our assertion.

    We briefly summarize our numerical solution algorithm for the time-discrete explicit-implicit numerical scheme (3.1) in Table 1. This summary is intended to give a brief overview of aspects which need to be considered during implementation. Especially, we state all inputs which are important for our time-discrete numerical scheme.

    Table 1.  Algorithmic summary of our time-discrete explicit-implicit numerical solution scheme for the age- and sex-structured SIR model.
    Input: - Population size N
    - Increasing sequence of time points t_{1} = 0 < t_{2} < \ldots < t_{M - 1} < t_{M} = T
    - Initial condition of susceptible people S_{s, j} \left(t_{1} \right) for arbitrary s \in \left\{ f, m \right\}
    and all j \in \left\{ 1, \ldots, N_{a} \right\}
    - Initial condition of infected people I_{s, j} \left(t_{1} \right) for arbitrary s \in \left\{ f, m \right\}
    and all j \in \left\{ 1, \ldots, N_{a} \right\}
    - Initial condition of recovered people R_{s, j} \left(t_{1} \right) for arbitrary s \in \left\{ f, m \right\}
    and all j \in \left\{ 1, \ldots, N_{a} \right\}
    - Time-varying transmission rates \beta_{S_{s, j}, I_{q, k}} \colon \left[0, \infty \right) \longrightarrow \left[0, \infty \right)
    for arbitrary s, q \in \left\{ f, m \right\} and arbitrary j, k \in \left\{ 1, \ldots, N_{a} \right\}
    - Time-varying recovery rates \gamma_{I_{s, j}} \colon \left[0, \infty \right) \longrightarrow \left[0, \infty \right)
    for arbitrary s \in \left\{ f, m \right\} and arbitrary j \in \left\{ 1, \ldots, N_{a} \right\}
    Steps: For all p \in \left\{ 1, \ldots, M - 1 \right\} do the following:
    - Compute S_{s, j} \left(t_{p + 1} \right) for arbitrary s \in \left\{ f, m \right\} and all
    j \in \left\{ 1, \ldots, N_{a} \right\} by (3.3)
    - Compute I_{s, j} \left(t_{p + 1} \right) for arbitrary s \in \left\{ f, m \right\} and all
    j \in \left\{ 1, \ldots, N_{a} \right\} by (3.4)
    - Compute R_{s, j} \left(t_{p + 1} \right) for arbitrary s \in \left\{ f, m \right\} and all
    j \in \left\{ 1, \ldots, N_{a} \right\} by (3.5)
    Output: - Sequence of susceptible people \left\{ S_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} for arbitrary s \in \left\{ f, m \right\}
    and all j \in \left\{ 1, \ldots, N_{a} \right\}
    - Sequence of infected people \left\{ I_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} for arbitrary s \in \left\{ f, m \right\}
    and all j \in \left\{ 1, \ldots, N_{a} \right\}
    - Sequence of recovered people \left\{ R_{s, j} \left(t_{p} \right) \right\}_{p = 1}^{M} for arbitrary s \in \left\{ f, m \right\}
    and all j \in \left\{ 1, \ldots, N_{a} \right\}

     | Show Table
    DownLoad: CSV

    In this section, we illustrate our theoretical findings by one synthetic data example. At first, we sum up all important information to set calculations up. Finally, we show the results and discuss these findings with respect to our theoretical results.

    Let us provide our setting. In Table 2, we summarize the corresponding indices of population subetaoups. The total population is divided into six subetaoups. Now, we report the (time-varying) transmission rates \beta_{S_{s, j}, I_{q, k}} \colon \left[0, \infty \right) \longrightarrow \left[0, \infty \right) and (time-varying) recovery rates \gamma_{I_{s, j}} \colon \left[0, \infty \right) \longrightarrow \left[0, \infty \right) for arbitrary s, q \in \left\{ f, m \right\} and arbitrary j, k \in \left\{ 1, \ldots, N_{a} \right\} . These data can be found in Tables 3 and 4. This is an imaginary disease which spreads mainly in the adult population. All initial conditions of populations subetaoups are described in Table 5. The final time is set T = 180 with an equidistant time sequence

    t_{1} = 0 \lt t_{2} = 1 \lt \ldots \lt t_{180} = 179 \lt t_{181} = 180
    Table 2.  Indices of corresponding population subgroups.
    Young Adult Elder
    Female f, y f, a f, e
    Male m, y m, a m, e

     | Show Table
    DownLoad: CSV
    Table 3.  (Time-varying) transmission rates.
    \beta_{S, I} I_{f, y} I_{f, a} I_{f, e} I_{m, y} I_{m, a} I_{m, e}
    S_{f, y} 0.10 0.08 0.04 0.10 0.08 0.04
    S_{f, a} 0.08 0.20 0.02 0.08 0.20 0.02
    S_{f, e} 0.04 0.02 0.01 0.04 0.02 0.01
    S_{m, y} 0.10 0.08 0.04 0.10 0.08 0.04
    S_{m, a} 0.08 0.20 0.02 0.08 0.20 0.02
    S_{m, e} 0.04 0.02 0.01 0.04 0.02 0.01

     | Show Table
    DownLoad: CSV
    Table 4.  (Time-varying) recovery rates.
    I_{f, y} I_{f, a} I_{f, e} I_{m, y} I_{m, a} I_{m, e}
    \gamma_{I} 0.20 0.10 0.05 0.20 0.10 0.05

     | Show Table
    DownLoad: CSV
    Table 5.  Initial conditions for all population subgroups.
    f, y f, a f, e m, y m, a m, e
    S \left(0 \right) 10000 20000 19900 10000 20000 19900
    I \left(0 \right) 35 35 30 35 35 30
    R \left(0 \right) 0 0 0 0 0 0

     | Show Table
    DownLoad: CSV

    and this implies M = 181 . The total population size reads N = 100000 due to Table 5. Hence, all data are available for our numerical simulation.

    Here, we present the results of our setting described before. In Figure 1, the temporal development of all susceptible population subetaoups is depicted. It can be clearly seen that the resulting graphs are decreasing in time. In Figure 2, all graphs of the temporal development with regard to all infectious subetaoups are portrayed. Figure 3 illustrates the temporal development of all recovered population subetaoups. As expected, these curves are increasing in time. Finally, conservation of the total population size for our implicit-explicit numerical solution scheme is shown in Figure 4.

    Figure 1.  Results for all susceptible population subgroups.
    Figure 2.  Results for all infectious population subgroups.
    Figure 3.  Results for all recovered population subgroups.
    Figure 4.  Conservation of total population size.

    We introduced an age- and sex-structured SIR model for short-term predictions in Section 2. We established global existence, global uniqueness, non-negativity and boundedness of the solution. Additionally, we showed some monotonicity properties and proved convergence to a disease-free equilibrium in the continuous setting. Afterwards, we proposed an explicit-implicit numerical solution scheme in Section 3. We were able to demonstrate that all aforementioned properties transfer to this time-discrete setting of the age- and sex-structured SIR model for short-term predictions. We also concluded that this scheme is linearly convergent towards the continuous solution. For short-term predictions, effects of demography and transmission between age groups can be simplified or neglected in this case.

    To continue this work and extend it to long-term predictions that definitely play an important role, it might be fruitful to additionally take birth rates and death rates into account. The works [20,21] can serve as examples for extensions of our work. Incubation times also lead to delays from transfer between different compartments. Hence, introduction of delays in our system might be another possible future research direction. Examples can be seen in [22]. Furthermore, spatial inhomogeneities should also be considered because spreading of diseases differ in regions depending on social status for example [23,24], which leads to ODE-PDE coupled systems. Application of higher-order methods might be considerable as well [25,26].

    Finally, we stress the fact that the inverse problem in dynamics of biological systems needs further investigation [27,28,29,30].

    Both authors conceived and designed the research. Benjamin Wacker analyzed the time-continuous problem formulation. Benjamin Wacker analyzed the time-discrete problem formulation. Benjamin Wacker implemented the explicit-implicit numerical solution scheme. Both authors discussed the numerical example. Both authors drafted and edited this manuscript.

    Both authors declare that they have no conflict of interest.



    [1] Duc Luong N (2015) A critical review on energy efficiency and conservation policies and programs in Vietnam. Renew Sust Energ Rev 52: 623-634. doi: 10.1016/j.rser.2015.07.161
    [2] Chansri R, Puttanlek C, Rungsadthogy V, et al. (2005) Characteristics of clear noodles prepared from edible canna starches. J Food Sci 70: 337-342. doi: 10.1111/j.1365-2621.2005.tb09988.x
    [3] Vankar P, Srivastava J (2018) A review-canna the wonder plant. J Textile Eng Fashion Technol 4: 158-162.
    [4] Imai K, Kiya R (2017) A mechanical study on the mitigation of lodging in edible canna. Plant Prod Sci 20: 55-66. doi: 10.1080/1343943X.2016.1255148
    [5] Okonwu K, Ariaga C (2016) Nutritional evaluation of various parts of Canna indica. L Annu Res Rev Biol, 1-5.
    [6] Thitipraphunkul K, Uttapap D, Piyachomkwan K, et al. (2003) A comparative study of edible canna (Canna edulis) starch from different cultivars. Part Ⅱ. Molecular structure of amylose and amylopectin. Carbohydr Polym 54: 489-498. doi: 10.1016/j.carbpol.2003.08.003
    [7] Vu HT, Peng K-C, Chung RH (2020) Efficiency measurement of edible canna production in Vietnam. AIMS Agri Food 5: 466-479. doi: 10.3934/agrfood.2020.3.466
    [8] Mardani A, Kazimieras ZE, Dalia S, et al. (2017) A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renew Sustain Energy Rev 70: 1298-1322. doi: 10.1016/j.rser.2016.12.030
    [9] Mohammadi A, Rafiee S, Mohtasebi SS, et al. (2011) Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach. Renew Energy 36: 2573-2579. doi: 10.1016/j.renene.2010.10.036
    [10] Coluccia B, Valente D, Fusco G, et al. (2020) Assessing agricultural eco-efficiency in Italian Regions. Ecol Indic 116: 106-483. doi: 10.1016/j.ecolind.2020.106483
    [11] Nabavi-Pelesaraei A, Abdi R, Rafiee S, et al. (2014). Applying data envelopment analysis approach to improve energy efficiency and reduce greenhouse gas emission of rice production. Eng Agri Env Food 7: 155-162. doi: 10.1016/j.eaef.2014.06.001
    [12] Gatimbu KK, Ogada MJ, Budambula NL (2019) Environmental efficiency of small-scale tea processors in Kenya: an inverse data envelopment analysis (DEA) approach. Environ Dev Sustain, 1-13.
    [13] Toma P, Miglietta PP, Zurlini G (2017) A non-parametric bootstrap-data envelopment analysis approach for environmental policy planning and management of agricultural efficiency in EU countries. Ecol Indic 83: 132-143. doi: 10.1016/j.ecolind.2017.07.049
    [14] Banaeian N, Zangeneh M (2011) Study on energy efficiency in corn production of Iran. Energy 36: 5394-5402. doi: 10.1016/j.energy.2011.06.052
    [15] Houshyar E, Azadi H, Almassi M, et al. (2012) Sustainable and efficient energy consumption of corn production in Southwest Iran: combination of multi-fuzzy and DEA modeling. Energy 44: 672-681. doi: 10.1016/j.energy.2012.05.025
    [16] Nassiri SM, Singh S (2009) Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique. Appl Energy 86: 1320-1325. doi: 10.1016/j.apenergy.2008.10.007
    [17] Masuda K (2018) Energy efficiency of intensive rice production in Japan: an application of data envelopment analysis. Sustainability 10: 120. doi: 10.3390/su10010120
    [18] Unakitan G, Hurma H, Yilmaz F (2010) An analysis of energy use efficiency of canola production in Turkey. Energy 35: 3623-3627. doi: 10.1016/j.energy.2010.05.005
    [19] Mousavi-Avval SH, Rafiee S, Jafari A, et al. (2011) Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy 36: 2765-2772. doi: 10.1016/j.energy.2011.02.016
    [20] Khoshnevisan B, Rafiee S, Omid M, et al. (2013) Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach. Energy 55: 676-682. doi: 10.1016/j.energy.2013.04.021
    [21] Mohammadshirazi A, Akram A, Rafiee S, et al. (2015) On the study of energy and cost analyses of orange production in Mazandaran province. Sustain Energy Technol Ass 10: 22-28.
    [22] Kordkheili PQ, Asoodar MA, Kazemi N (2014) Application of a non-parametric method to analyze energy consumption for orange production. Agri Eng Int: CIGR Journal 16: 157-166.
    [23] Khoshroo A, Mulwa R, Emrouznejad A, et al. (2013) A non-parametric Data Envelopment Analysis approach for improving energy efficiency of grape production. Energy 63(Supplement C): 189-194. doi: 10.1016/j.energy.2013.09.021
    [24] Sattari-Yuzbashkandi S, Khalilian S, Abolghasem-Mortazavi S (2014) Energy efficiency for open-field grape production in Iran using Data Envelopment Analysis (DEA) approach. Int J Farm Allied Sci 3: 637-646.
    [25] Banaeian N, Omid M, Ahmadi H (2011) Energy and economic analysis of greenhouse strawberry production in Tehran province of Iran. Energy Convers Manag 52: 1020-1025. doi: 10.1016/j.enconman.2010.08.030
    [26] Castella J-C, Dang DQ, Long TD, et al. (2002) Scaling up local diagnostic studies to understand development issues in a heterogeneous mountain environment: An introduction to the SAM Program. DoiMoi in the Mountains. Land use changes and farmers' livelihood strategies in Bac Kan Province, Viet Nam. The Agricultural Publishing House, Hanoi: 1-18.
    [27] Son HN, Chi DTL, Kingsbury A (2019) Indigenous knowledge and climate change adaptation of ethnic minorities in the mountainous regions of Vietnam: A case study of the Yao people in Bac Kan Province. Agr Syst 176: 102-683.
    [28] BKSO (2019) Backan Statistical Yearbook 2018. Statistical Publishing House, Hanoi.
    [29] Mousavi-Avval SH, Rafiee S, Jafari A, et al. (2011) Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach. Appl Energy 88: 3765-3772. doi: 10.1016/j.apenergy.2011.04.021
    [30] Al-Snafi AE (2015) Bioactive components and pharmacological effects of Canna indica-An Overview. Int J Pharmacol Toxicol 5: 71-75.
    [31] Cooper WW, Seiford LM, Zhu J (2011) Handbook on data envelopment analysis. Int Ser Oper Res Manage Sci. Available from: https://link.springer.com/book/10.1007%2F978-1-4419-6151-8.
    [32] Ali Q, Khan M, Ashfaq M (2018) Efficiency analysis of off-season Capsicum/Bell pepper production in Punjab-Pakistan: A DEA approach. J Anim Plant Sci 28: 1508-1515.
    [33] Mobtaker HG, Akram A, Keyhani A, et al. (2012) Optimization of energy required for alfalfa production using data envelopment analysis approach. Energy sus Dev 16: 242-248. doi: 10.1016/j.esd.2012.02.001
    [34] Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2: 429-444. doi: 10.1016/0377-2217(78)90138-8
    [35] Avkiran NK (2001) Investigating technical and scale efficiencies of Australian universities through data envelopment analysis. Soc econ plann sci 35: 57-80. doi: 10.1016/S0038-0121(00)00010-0
    [36] Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag Sci 30: 1078-1092. doi: 10.1287/mnsc.30.9.1078
    [37] Chauhan NS, Mohapatra PK, Pandey KP (2006) Improving energy productivity in paddy production through benchmarking-An application of data envelopment analysis. Energy convers Manag 47: 1063-1085. doi: 10.1016/j.enconman.2005.07.004
  • This article has been cited by:

    1. Benjamin Wacker, Jan Schlüter, Time-continuous and time-discrete SIR models revisited: theory and applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02995-1
    2. Yanyan Du, Qimin Zhang, Anke Meyer-Baese, The positive numerical solution for stochastic age-dependent capital system based on explicit-implicit algorithm, 2021, 165, 01689274, 198, 10.1016/j.apnum.2021.02.015
    3. Benjamin Wacker, Jan Christian Schlüter, A cubic nonlinear population growth model for single species: theory, an explicit–implicit solution algorithm and applications, 2021, 2021, 1687-1847, 10.1186/s13662-021-03399-5
    4. Benjamin Wacker, Jan Christian Schlüter, Qualitative analysis of two systems of nonlinear first‐order ordinary differential equations for biological systems, 2022, 45, 0170-4214, 4597, 10.1002/mma.8056
    5. Eleonora Messina, Mario Pezzella, Antonia Vecchio, Nonlocal finite difference discretization of a class of renewal equation models for epidemics, 2023, 20, 1551-0018, 11656, 10.3934/mbe.2023518
    6. Benjamin Wacker, Framework for solving dynamics of Ca2+ ion concentrations in liver cells numerically: Analysis of a non‐negativity‐preserving non‐standard finite‐difference method, 2023, 46, 0170-4214, 16625, 10.1002/mma.9464
    7. Haoyu Wu, David A. Stephens, Erica E. M. Moodie, An SIR‐based Bayesian framework for COVID‐19 infection estimation, 2024, 52, 0319-5724, 10.1002/cjs.11817
    8. Benjamin Wacker, Jan Christian Schlüter, A non-standard finite-difference-method for a non-autonomous epidemiological model: analysis, parameter identification and applications, 2023, 20, 1551-0018, 12923, 10.3934/mbe.2023577
    9. Benjamin Wacker, Revisiting the classical target cell limited dynamical within-host HIV model - Basic mathematical properties and stability analysis, 2024, 21, 1551-0018, 7805, 10.3934/mbe.2024343
    10. Benjamin Wacker, Qualitative Study of a Dynamical System for Computer Virus Propagation—A Nonstandard Finite‐Difference‐Methodological View, 2025, 0170-4214, 10.1002/mma.10798
    11. Benjamin Wacker, Analysis of a Finite‐Difference Method Based on Nonlocal Approximations for a Nonlinear, Extended Three‐Compartmental Model of Ethanol Metabolism in the Human Body, 2025, 0170-4214, 10.1002/mma.10858
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2757) PDF downloads(120) Cited by(0)

Figures and Tables

Figures(1)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog