Citation: R. S. Solaiman, T. G. Kherbek, A. S. Ahmad. Defining a new method to set certainty factors to improve power systems prognosis with fuzzy petri nets[J]. AIMS Energy, 2020, 8(4): 686-700. doi: 10.3934/energy.2020.4.686
[1] | Chang L, Wu Z (2011) Performance and reliability of electrical power grids under cascading failures. Int J Electr Power Energy Syst 33: 1410-1419. doi: 10.1016/j.ijepes.2011.06.021 |
[2] | Innal F (2008) Contribution to modelling safety instrumented systems and to assessing their performance-critical analysis of IEC 61508 standard. PhD thesis, University of Bordeaux. |
[3] | Cardoso G, Rolim JG, Zurn HH (2004) Application of neural network modules to electric power system fault section estimation. IEEE Trans Power Del 19: 1034-41. doi: 10.1109/TPWRD.2004.829911 |
[4] | Leao FB, Pereira RAF, Mantovani JRS (2014) Fast fault section estimation in distribution control centers using adaptive genetic algorithm. Int J Electr Power Energy Syst 63: 787-805. doi: 10.1016/j.ijepes.2014.06.052 |
[5] | Sang-Won M, Jin-Man S, Jong-Keun P, et al. (2004) Adaptive fault section estimation using matrix representation with fuzzy relations. IEEE Trans Power Syst 19: 842-848. doi: 10.1109/TPWRS.2003.821036 |
[6] | Liu HC, Lin QL, Ren ML (2013) Fault diagnosis and cause analysis using fuzzy evidential reasoning approach and dynamic adaptive fuzzy Petri nets. Comput Ind Eng 66: 899-908. doi: 10.1016/j.cie.2013.09.004 |
[7] | Yang JW, HeZheng Y, Tan XJ, et al. (2010) A distributed fault diagnosis approach in power system based on fuzzy reasoning Petri net. IEEE Fund project: Project Supported by National Science Foundation of China. |
[8] | Yan Z, Yong Z, Fushuan W, et al. (2016) A fuzzy Petri net based approach for fault diagnosis in power systems considering temporal constraints. Electr Power Energy Syst J 78: 215-224. doi: 10.1016/j.ijepes.2015.11.095 |
[9] | Yang J, He Z (2011) Power system fault diagnosis approach based on time sequence fuzzy Petri net. Autom Electr Power Syst 35: 46-51. |
[10] | Jagabondhu H, Sinha AK (2006) Prognosis of catastrophic failures in electric power systems. IEEE international conference on industrial technology ICIT. |
[11] | David L, Zhaoyin C, Oliver S, et al. (2019) A neural network evolutionary computational framework for remaining useful life estimation of mechanical systems. Neural Netw 116: 178-187. doi: 10.1016/j.neunet.2019.04.016 |
[12] | Malhi A, Yan R, Gao RX (2011) Prognosis of defect propagation based on recurrent neural networks. IEEE Trans Instrum Meas 60: 703-711. doi: 10.1109/TIM.2010.2078296 |
[13] | Jun Z, Nan C, Weiwen P (2019) Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE Trans Ind Electr 66: 3208-3216. doi: 10.1109/TIE.2018.2844856 |
[14] | Yun SL, Goran S (2002) Analytical approach to probabilistic prediction of voltage sags on transmission networks. IEE Proc-gener Transm Distrib 149: 7-14. doi: 10.1049/ip-gtd:20020008 |
[15] | Mojtaba K, Amir Z, Marcos O, et al. (2019) A modular fault diagnosis and prognosis method for hydro-control valve system based on redundancy in multisensor data information. IEEE Trans 68: 330-341. |
[16] | Ammour R, Leclercq E, Sanlaville E, et al. (2016) Faults prognosis using partially observed stochastic Petri nets. Proceedings of the 13th International Workshop on Discrete Event Systems, Xi'an, China. |
[17] | Balaje T, Miles F, Jagannathan S (2014) A model-based fault detection and prognostics scheme for Takagi-Sugeno fuzzy systems. IEEE Trans Fuzzy Syst 22: 736-748. doi: 10.1109/TFUZZ.2013.2272584 |
[18] | Wang Z, Hu C, Wang W, et al. (2012) An off-online fuzzy modelling method for fault prognosis with an application. Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing), 1-7. |
[19] | Panita P, Poj T, Kanokchai N (2007) Evaluation of road traffic congestion using fuzzy techniques. TENCON, IEEE Region 10 International Conference. |
[20] | Mojtaba K, Foad S, Mehrdad S (2020) A new hybrid fault prognosis method for MFS systems based on distributed neural networks and recursive bayesian algorithm. IEEE Syst J. |
[21] | Mariana D (2013) Combined Fuzzy-Petri nets hybrid model for power system performability analysis. Computing Science and Automatic Control (CCE) Mexico City, Mexico. |
[22] | Chen SM (2000) Fuzzy backward reasoning using fuzzy Petri nets. IEEE Trans Syst Ma Cybern Part B: Cybern 30: 846-856. doi: 10.1109/3477.891146 |
[23] | Mojtaba K, Mehrdad S, Marcos O, et al. (2019) Failure prognosis and applications-A survey of recent literature. IEEE Trans Reliab. |
[24] | Zhao XL, Zhou JZ, Liu H (2008) Research of fault diagnostic model based on probability Petri nets. Comput Eng 24: 7-224. |
[25] | Hongbo C, Zhengyou H, Qi W, et al. (2015) Fault diagnosis method based on Petri nets considering service feature of information source devices. Comput Electr Eng 46:1-13. doi: 10.1016/j.compeleceng.2015.06.016 |
[26] | Iman K, Saeed L (2020) Fault section identification in smart distribution systems using Multi-Source data based on fuzzy Petri nets. IEEE Trans Smart Grid. |
[27] | Dhananjay K, Shivam P, Akash T, et al. (2018) Identification of weak bus using load variation. Int Res J Eng Technol 5: 841-847. |
[28] | Vdokuments khnowledge project. Available from: https://vdocuments.mx/fuzzy-logic-toolbox-users-guide.html. Accessed on 13-Jan-2017. |
[29] | Vdokuments khnowledge project. Available from: https://vdocuments.mx/psat-eecswsuedu-ee521material20120927psat-psat-power-system-analysis.html. Accessed on 19-Jul-2018. |