Review

A systematic review of data pre-processing methods and unsupervised mining methods used in profiling smart meter data

  • Received: 01 September 2021 Accepted: 18 November 2021 Published: 26 November 2021
  • The evolution of smart meters has led to the generation of high-resolution time-series data - a stream of data capable of unveiling valuable knowledge from consumption behaviours for different applications. The ability to extract hidden knowledge from such massive amounts of data requires that it be analysed intelligently. Hence, for a clear representation of the various consumption behaviours of consumers, a good number of data mining technologies are usually employed. This paper presents a systematic review of the various data mining techniques and methodologies employed while profiling energy data streams. The review identifies the strengths and shortcomings of existing data mining methods as applied in research, focusing more on data processing techniques and load clustering. Also discussed are data mining methods used to profile consumption data, their pros and cons. It was inferred during the research that the choice of data mining technique employed is highly dependent on the application it is intended for and the intrinsic nature of the dataset.

    Citation: Folasade M. Dahunsi, Abayomi E. Olawumi, Daniel T. Ale, Oluwafemi A. Sarumi. A systematic review of data pre-processing methods and unsupervised mining methods used in profiling smart meter data[J]. AIMS Electronics and Electrical Engineering, 2021, 5(4): 284-314. doi: 10.3934/electreng.2021015

    Related Papers:

  • The evolution of smart meters has led to the generation of high-resolution time-series data - a stream of data capable of unveiling valuable knowledge from consumption behaviours for different applications. The ability to extract hidden knowledge from such massive amounts of data requires that it be analysed intelligently. Hence, for a clear representation of the various consumption behaviours of consumers, a good number of data mining technologies are usually employed. This paper presents a systematic review of the various data mining techniques and methodologies employed while profiling energy data streams. The review identifies the strengths and shortcomings of existing data mining methods as applied in research, focusing more on data processing techniques and load clustering. Also discussed are data mining methods used to profile consumption data, their pros and cons. It was inferred during the research that the choice of data mining technique employed is highly dependent on the application it is intended for and the intrinsic nature of the dataset.



    加载中


    [1] Kabalci Y (2016) A survey on smart metering and smart grid communication. Renew Sustain Energy Rev 57: 302-318. doi: 10.1016/j.rser.2015.12.114. doi: 10.1016/j.rser.2015.12.114
    [2] Dileep G (2020) A survey on smart grid technologies and applications. Renew Energy 146: 2589-2625. doi: 10.1016/j.renene.2019.08.092. doi: 10.1016/j.renene.2019.08.092
    [3] Grolinger G, Capretz MAM, Seewald L (2016) Energy consumption prediction with big data: Balancing prediction accuracy and computational resources. Proc. - 2016 IEEE Int Congr. Big Data, BigData Congr 90: 157-164. doi: 10.1109/BigDataCongress.2016.27.
    [4] Yang T, Ren M, Zhou K (2017) Identifying household electricity consumption patterns: A case study of Kunshan, China. Renew Sustain Energy Rev 91: 861-868. doi: 10.1016/j.rser.2018.04.037. doi: 10.1016/j.rser.2018.04.037
    [5] Garcia FD, Marafao FP, De Souza WA, Da Silva LCP (2017) Power Metering: History and Future Trends. IEEE Green Technol Conf, 26-33. doi: 10.1109/GreenTech.2017.10.
    [6] Guerrero-Prado JS, Alfonso-Morales W, Caicedo-Bravo E, et al. (2020) The power of big data and data analytics for AMI data: A case study. Sensors (Switzerland) 20: 1-27. doi: 10.3390/s20113289. doi: 10.3390/s20113289
    [7] Wang Y, Qiu H, Tu Y, et al. (2018) A Review of Smart Metering for Future Chinese Grids. Energy Procedia 152: 1194-1199. doi: 10.1016/j.egypro.2018.09.158. doi: 10.1016/j.egypro.2018.09.158
    [8] Quilumba FL, Lee WJ, Huang H, et al. (2014) An overview of AMI data preprocessing to enhance the performance of load forecasting. 2014 IEEE Ind Appl Soc Annu Meet IAS 2014, 1-7. doi: 10.1109/IAS.2014.6978369.
    [9] Khan I, Huang JZ, Masud A, et al. (2016) Segmentation of Factories on Electricity Consumption Behaviors Using Load Profile Data. IEEE Access 4: 8394-8406. doi: 10.1109/ACCESS.2016.2619898. doi: 10.1109/ACCESS.2016.2619898
    [10] Ali U, Buccella C, Cecati C (2016) Households electricity consumption analysis with data mining techniques. IECON Proc Industrial Electron Conf, 3966-3971. doi: 10.1109/IECON.2016.7793118.
    [11] Wang Y, Chen Q, Hong T, et al. (2019) Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. IEEE Trans Smart Grid 10: 3125-3148. doi: 10.1109/TSG.2018.2818167. doi: 10.1109/TSG.2018.2818167
    [12] Tshikomba SC, Estrice M, Ojo E, et al. (2020) Curbing Electricity Theft Using Wireless Technique with Communication Constraints. 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), 1-6. doi: 10.1109/icABCD49160.2020.9183812.
    [13] Zala HN, Abhyankar AR (2014) A Novel Approach to Design Time Of Use Tariff using Load Profiling and Decomposition. 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 1-6.
    [14] Cembranel SS, Lezama F, Soares J, et al. (2019) A Short Review on Data Mining Techniques for Electricity Customers Characterization. 2019 IEEE Power and Energy Society, 194-199.
    [15] Colley D, Mahmoudi N, Eghbal D, et al. (2014) Queensland Load Profiling by Using Clustering Techniques. 2014 Australasian Universities Power Engineering Conference (AUPEC), 1-6.
    [16] Martinez-Pabon M, Eveleigh T, Tanju B (2017) Smart Meter Data Analytics for Optimal Customer Selection in Demand Response Programs. Energy Procedia 107: 49-59. doi: 10.1016/j.egypro.2016.12.128. doi: 10.1016/j.egypro.2016.12.128
    [17] Liao SH, Chu PH, Hsiao PY (2012) Data mining techniques and applications - A decade review from 2000 to 2011. Expert Syst Appl 39: 11303-11311. doi: 10.1016/j.eswa.2012.02.063. doi: 10.1016/j.eswa.2012.02.063
    [18] Khan ZA, Jayaweera D (2017) Approach for smart meter load profiling in Monte Carlo simulation applications. IET Gener Transm Dis 11: 1856-1864. doi: 10.1049/iet-gtd.2016.2084. doi: 10.1049/iet-gtd.2016.2084
    [19] Granell R, Axon CJ, Wallom DCH (2015) Impacts of Raw Data Temporal Resolution Using Selected Clustering Methods on Residential Electricity Load Profiles. IEEE Trans POWER Syst 30: 3217-3224. doi: 10.1109/TPWRS.2014.2377213. doi: 10.1109/TPWRS.2014.2377213
    [20] Lu S, Lin G, Liu H, et al. (2019) A Weekly Load Data Mining Approach Based on Hidden Markov Model. IEEE Access 7: 34609-34619. doi: 10.1109/ACCESS.2019.2901197. doi: 10.1109/ACCESS.2019.2901197
    [21] Gautam A (2015) Load Profile Determination of Consumer in a Smart Grid by Using Matrix Based Approach. 2015 Annu IEEE India Conf, 1-6.
    [22] Mcloughlin F, Duffy A, Conlon M (2015) A clustering approach to domestic electricity load profile characterisation using smart metering data. Appl Energy 141: 190-199. doi: 10.1016/j.apenergy.2014.12.039. doi: 10.1016/j.apenergy.2014.12.039
    [23] Liu X, Ding Y, Tang H, et al. (2021) A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data. Energy Build 231: 110601. doi: 10.1016/j.enbuild.2020.110601. doi: 10.1016/j.enbuild.2020.110601
    [24] Kelly J, Knottenbelt W (2015) The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Nature 2: 1-14. doi: 10.1038/sdata.2015.7. doi: 10.1038/sdata.2015.7
    [25] Manembu P (2015) Missing Data Solution of Electricity Consumption based on Lagrange Interpolation Case Study : IntelligEnSia data monitoring. The 5th International Conference on Electrical Engineering and Informatics 2015, 511-516.
    [26] Khan ZA, Jayaweera D (2018) Approach for Forecasting Smart Customer Demand With Significant Energy Demand Variability. 2018 1st International Conference on Power, Energy and Smart Grid (ICPESG), 1-5. doi: 10.1109/ICPESG.2018.8384528.
    [27] Zhao Y, Zhang C, Zhang Y, et al. (2020) A review of data mining technologies in building energy systems: Load prediction, pattern identification, fault detection and diagnosis. Energy Built Environ 1: 149-164. doi: 10.1016/j.enbenv.2019.11.003. doi: 10.1016/j.enbenv.2019.11.003
    [28] Fan C, Xiao F, Li Z, et al. (2018) Unsupervised data analytics in mining big building operational data for energy efficiency enhancement : A review. Energy Build 159: 296-308. doi: 10.1016/j.enbuild.2017.11.008. doi: 10.1016/j.enbuild.2017.11.008
    [29] Choksi KA, Jain S, Pindoriya NM (2020) Feature based clustering technique for investigation of domestic load profiles and probabilistic variation assessment: Smart meter dataset. Sustain Energy Grids Networks 22: 1-11. doi: 10.1016/j.segan.2020.100346. doi: 10.1016/j.segan.2020.100346
    [30] Zhan S, Liu Z, Chong A, et al. (2020) Building categorization revisited : A clustering-based approach to using smart meter data for building energy benchmarking. Appl Energy 269. doi: 10.1016/j.apenergy.2020.114920.
    [31] Wang Y, Chen Q, Kang C, et al. (2015) Load Profiling and Its Application to Demand Response : A Review. Tsinghua Sci Technol 20: 117-129. doi: 10.1109/TST.2015.7085625. doi: 10.1109/TST.2015.7085625
    [32] Funde NA, Dhabu MM, Paramasivam A, et al. (2019) Motif-based association rule mining and clustering technique for determining energy usage patterns for smart meter data. Sustain Cities Soc 46. doi: 10.1016/j.scs.2018.12.043.
    [33] Liberati A, Altman DG, Tetzlaff J, et al. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62: e1‒e34.
    [34] Kolehmainen M, Mononen M, Niska H (2015) A Data Mining Approach for Producing Small Area Statistics-based Load Profiles for Distribution Network Planning. 2015 IEEE International Conference on Industrial Technology (ICIT), 1236-1240. doi: 10.1109/ICIT.2015.7125266.
    [35] Manembu P, Engineering I, Nielsen PS, et al. (2018) Multi-grained Household Load Profile Analysis using Smart Meter Data : The Case of Indonesia. 2018 2nd Borneo International Conference on Applied Mathematics and Engineering (BICAME), 213-217. doi: 10.1109/BICAME45512.2018.1570503357.
    [36] Viegas JL, Vieira SM, Melício R, et al. (2016) Classification of new electricity customers based on surveys and smart metering data. Energy 107: 804-817. doi: 10.1016/j.energy.2016.04.065. doi: 10.1016/j.energy.2016.04.065
    [37] Azad SA, Ali ABMS, Wolfs P (2014) Identification of Typical Load Profiles using K -Means Clustering Algorithm. Asia-Pacific World Congress on Computer Science and Engineering, 1-6. doi: 10.1109/APWCCSE.2014.7053855.
    [38] Gunsay M, Bilir C, Poyrazoglu G (2020) Load Profile Segmentation for Electricity Market Settlement. 2020 17th International Conference on the European Energy Market (EEM), 1-5. doi: 10.1109/EEM49802.2020.9221889.
    [39] Wang Y, Chen Q, Kang C, et al. (2016) Residential smart meter data compression and pattern extraction via non-negative K-SVD. IEEE Power Energy Soc Gen Meet, 1‒5. doi: 10.1109/PESGM.2016.7741464.
    [40] Tureczek A, Nielsen PS, Madsen H (2018) Electricity consumption clustering using smart meter data. Energies 11: 1-18. doi: 10.3390/en11040859. doi: 10.3390/en11040859
    [41] Ramos S, Duarte JM, Duarte FJ, et al. (2013) A data mining framework for electric load profiling. 2013 IEEE PES Conf Innov Smart Grid Technol ISGT LA, 1‒6. doi: 10.1109/ISGT-LA.2013.6554489.
    [42] Gouveia JP, Seixas J, Mestre A (2017) Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling. Energy 141: 108‒122. doi: 10.1016/j.energy.2017.09.049. doi: 10.1016/j.energy.2017.09.049
    [43] Su T, Shi Y, Yu J, et al. (2021) Nonlinear compensation algorithm for multidimensional temporal data: A missing value imputation for the power grid applications. Knowledge-Based Syst 215: 106743. doi: 10.1016/j.knosys.2021.106743. doi: 10.1016/j.knosys.2021.106743
    [44] Mutanen A, Ruska M, Repo S, et al. (2011) Customer Classification and Load Profiling Method for Distribution Systems. IEEE Trans Power Deliv 26: 1755-1763. doi: 10.1109/TPWRD.2011.2142198
    [45] Ramos S, Duarte JMM, Soares J, et al. (2012) Typical load profiles in the smart grid context a clustering methods comparison. IEEE Power and Energy Society General Meeting, 1-8. doi: 10.1109/PESGM.2012.6345565.
    [46] Mononen M, Saarenpä ä J, Johansson M, et al. (2014) Data-driven method for providing feedback to households on electricity consumption. 2014 IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, 1-6. doi: 10.1109/ISSNIP.2014.6827661.
    [47] Wang Y, Member S, Chen Q, et al. (2016) Clustering of Electricity Consumption Behavior Dynamics toward Big Data Applications. IEEE Trans Smart Grid 3053: 1-11. doi: 10.1109/TSG.2016.2548565. doi: 10.1109/TSG.2016.2548565
    [48] Trotta G (2020) An empirical analysis of domestic electricity load profiles: Who consumes how much and when? Appl Energy 275: 115399. doi: 10.1016/j.apenergy.2020.115399.
    [49] Kim N, Kim M, Choi JK (2018) LSTM Based Short-term Electricity Consumption Forecast with Daily Load Profile Sequences. 2018 IEEE 7th Global Conference on Consumer Electronics, GCCE, 834-835. doi: 10.1109/GCCE.2018.8574484.
    [50] Jain S, Choksi KA, Pindoriya NM (2019) Rule-based classification of energy theft and anomalies in consumers load demand profile. IET Smart Grid 2: 612-624. doi: 10.1049/iet-stg.2019.0081. doi: 10.1049/iet-stg.2019.0081
    [51] Frost AE, Azaza M, Li H, et al. (2017) Patterns and temporal resolution in commercial and industrial typical load profiles. 8th International Conference on Applied Energy - ICAE2016, 105: 2684-2689. doi: 10.1016/j.egypro.2017.03.775. doi: 10.1016/j.egypro.2017.03.775
    [52] Ndiaye D, Gabriel K (2011) Principal component analysis of the electricity consumption in residential dwellings. Energy Build 43: 446-453. doi: 10.1016/j.enbuild.2010.10.008. doi: 10.1016/j.enbuild.2010.10.008
    [53] Yilmaz S, Chambers J, Patel MK (2019) Comparison of clustering approaches for domestic electricity load pro fi le characterisation - Implications for demand side management. Energy 180: 665-677. doi: 10.1016/j.energy.2019.05.124. doi: 10.1016/j.energy.2019.05.124
    [54] Xu C, Chen H (2020) A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data. Energy Build 215: 109864. doi: 10.1016/j.enbuild.2020.109864. doi: 10.1016/j.enbuild.2020.109864
    [55] Wang MC, Tsai CF, Lin WC (2021) Towards missing electric power data imputation for energy management systems. Expert Syst Appl 174: 114743. doi: 10.1016/j.eswa.2021.114743. doi: 10.1016/j.eswa.2021.114743
    [56] Mateos G, Giannakis GB (2012) Spatiotemporal Load Curve Data Cleansing and Imputation via Sparsity and Low Rank. IEEE Smard Grid Communication, 653-658.
    [57] Peppanen J, Zhang X, Grijalva S, et al. (2016) Handling Bad or Missing Smart Meter Data through Advanced Data Imputation. 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 1-5. doi: 10.1109/ISGT.2016.7781213.
    [58] Tkachenko R, Mishchuk O, Izonin I, et al. (2019) A non-iterative neural-like framework for missing data imputation. Procedia Comput Sci 155: 319-326. doi: 10.1016/j.procs.2019.08.046. doi: 10.1016/j.procs.2019.08.046
    [59] Che Z, Purushotham S, Cho K, et al. (2018) Recurrent Neural Networks for Multivariate Time Series with Missing Values. Sci Rep 8: 1-12. doi: 10.1038/s41598-018-24271-9. doi: 10.1038/s41598-018-24271-9
    [60] Ma J, Cheng JCP, Jiang F, et al. (2016) A bi-directional missing data imputation scheme based on LSTM and transfer learning for building energy data. Energy Build 216: 109941. doi: 10.1016/j.enbuild.2020.109941. doi: 10.1016/j.enbuild.2020.109941
    [61] Bourdeau M, Basset P, Beauchene S, et al. (2021) Classification of daily electric load profiles of non-residential buildings. Energy Build 233: 110670. doi: 10.1016/j.enbuild.2020.110670. doi: 10.1016/j.enbuild.2020.110670
    [62] Jurj DI, Micu DD, Czumbil L, et al. (2020) Analysis of Data Cleaning Techniques for Electrical Energy Consumption of a Public Building. UPEC 2020 - 2020 55th International Universities Power Engineering Conference, Proceedings, 1-6. doi: 10.1109/UPEC49904.2020.9209781.
    [63] Zheng K, Chen Q, Wang Y, et al. (2019) A Novel Combined Data-Driven Approach for Electricity Theft Detection. IEEE Trans Ind Informatics 15: 1809-1819. doi: 10.1109/TⅡ.2018.2873814. doi: 10.1109/TⅡ.2018.2873814
    [64] Piscitelli MS, Brandi S, Capozzoli A (2019) Recognition and classification of typical load profiles in buildings with non- intrusive learning approach. Appl Energy 255: 113727. doi: 10.1016/j.apenergy.2019.113727. doi: 10.1016/j.apenergy.2019.113727
    [65] Shi Y, Yu TAO, Liu Q, et al. (2020) An approach of electrical load profile analysis based on time series data mining. IEEE Access 8: 209915-209925. doi: 10.1109/ACCESS.2020.3019698. doi: 10.1109/ACCESS.2020.3019698
    [66] Lin X, Wu W, Zeng B, et al. (2018) Analysis of large-scale electricity load profile using clustering method. ICNSC 2018 - 15th IEEE Int. Conf. Networking, Sens. Control, 1-5. doi: 10.1109/ICNSC.2018.8361335.
    [67] Ma Z, Yan R, Nord N (2017) A variation focused cluster analysis strategy to identify typical daily heating load profiles of higher education buildings. Energy 134: 90-102. doi: 10.1016/j.energy.2017.05.191. doi: 10.1016/j.energy.2017.05.191
    [68] Yang J, Member S, Zhao J, et al. (2018) A Model of Customizing Electricity Retail Prices Based on Load Profile Clustering Analysis. IEEE Trans Smart Grid 10: 3374‒3386. doi: 10.1109/TSG.2018.2825335. doi: 10.1109/TSG.2018.2825335
    [69] Li K, Ma Z, Robinson D, et al. (2018) Identification of typical building daily electricity usage pro fi les using Gaussian mixture model-based clustering and hierarchical clustering. Appl Energy 231: 331-342. doi: 10.1016/j.apenergy.2018.09.050. doi: 10.1016/j.apenergy.2018.09.050
    [70] Celis S, Giraldo LF, De Oliveira-De Jesus P, et al. (2018) A Clustering Approach for Domestic Smart Metering Data Preprocessing. 2018 IEEE ANDESCON, ANDESCON 2018 - Conf. Proc., 1-3. doi: 10.1109/ANDESCON.2018.8564597.
    [71] Khan ZA, Jayaweera D, Alvarez-alvarado MS (2018) A novel approach for load pro filing in smart power grids using smart meter data. Electr Power Syst Res 165: 191-198. doi: 10.1016/j.epsr.2018.09.013. doi: 10.1016/j.epsr.2018.09.013
    [72] Chicco G (2012) Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy 42: 68-80. doi: 10.1016/j.energy.2011.12.031. doi: 10.1016/j.energy.2011.12.031
    [73] Aggarwal CC, Reddy CK (2014) DATA Algorithms and Applications. Minnesota, USA.
    [74] Zucker G, Habib U, Blö chle M, et al. (2015) Sanitation and analysis of operation data in energy systems. Energies 8: 12776-12794. doi: 10.3390/en81112337. doi: 10.3390/en81112337
    [75] Kim YI, Ko JM, Choi SH (2011) Methods for generating TLPs (Typical Load Profiles) for smart grid-based energy programs. IEEE SSCI 2011 - Symp. Ser. Comput. Intell. - CIASG 2011 2011 IEEE Symp Comput Intell Appl Smart Grid, 49-54. doi: 10.1109/CIASG.2011.5953331.
    [76] Haq R, Ni Z (2019) Classification of Electricity Load Profile Data and The Prediction of Load Demand Variability. 2019 IEEE International Conference on Electro Information Technology (EIT), 304-309.
    [77] Jeong HC, Kang BO (2019) Development of Characterization and Clustering Method of Daily Load Profiles for Time-of-Use (TOU) Tariff Structure. 2019 IEEE Power & Energy Society General Meeting (PESGM), 1-5. doi: 10.1109/PESGM40551.2019.8973623.
    [78] Azaza M, Fournier J, Lacarrière B, et al. (2017) Smart meter data clustering using consumption indicators : responsibility factor and consumption variability. Energy Procedia 142: 2236-2242. doi: 0.1016/j.egypro.2017.12.624. doi: 10.1016/j.egypro.2017.12.624
    [79] Sun M, Konstantelos I, Strbac G (2017) C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data. IEEE T Power Syst 32: 2382‒2393. doi: 10.1109/TPWRS.2016.2614366. doi: 10.1109/TPWRS.2016.2614366
    [80] Ryu S, Choi H, Lee H, et al. (2019) Convolutional Autoencoder based Feature Extraction and Clustering for Customer Load Analysis. IEEE Trans Power Syst 35: 1048‒1060. doi: 10.1109/TPWRS.2019.2936293. doi: 10.1109/TPWRS.2019.2936293
    [81] Rajabi A, Eskandari M, Ghadi MJ, et al. (2019) A pattern recognition methodology for analyzing residential customers load data and targeting demand response applications. Energy Build 203: 109455. doi: 10.1016/j.enbuild.2019.109455. doi: 10.1016/j.enbuild.2019.109455
    [82] Rhodes JD, Cole WJ, Upshaw CR, et al. (2014) Clustering analysis of residential electricity demand profiles. Appl Energy 135: 461-471. doi: 10.1016/j.apenergy.2014.08.111. doi: 10.1016/j.apenergy.2014.08.111
    [83] Westermann P, Deb C, Schlueter A, et al. (2020) Unsupervised learning of energy signatures to identify the heating system and building type using smart meter data. Appl Energy 264: 114715. doi: 10.1016/j.apenergy.2020.114715. doi: 10.1016/j.apenergy.2020.114715
    [84] Satre-meloy A, Diakonova M, Grünewald P (2020) Cluster analysis and prediction of residential peak demand profiles using occupant activity data. Appl Energy 260: 114246. doi: 10.1016/j.apenergy.2019.114246. doi: 10.1016/j.apenergy.2019.114246
    [85] Jin L, Lee D, Sim A, et al. (2017) Comparison of clustering techniques for residential energy behavior using smart meter data. AAAI Work. - Tech Rep, 260-266.
    [86] Wang Y, Chen Q, Kang C, et al. (2017) Sparse and Redundant Representation-Based Smart Meter Data Compression and Pattern Extraction. IEEE Trans Power Syst 32: 2142-2151. doi: 10.1109/TPWRS.2016.2604389. doi: 10.1109/TPWRS.2016.2604389
    [87] Savvopoulos A, Kalogeras G, Anagnostopoulos C, et al. (2020) Cluster-based Energy Load Profiling on Residential Smart Buildings. 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 821-828. doi: 10.1109/ETFA46521.2020.9212161.
    [88] Wen L, Zhou K, Yang S, et al. (2018) Compression of smart meter big data: A survey. Renew Sustain Energy Rev 91: 59-69. doi: 10.1016/j.rser.2018.03.088. doi: 10.1016/j.rser.2018.03.088
    [89] Rä sä nen T, Voukantsis D, Niska H, et al. (2010) Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data. Appl Energy 87: 3538-3545. doi: 10.1016/j.apenergy.2010.05.015. doi: 10.1016/j.apenergy.2010.05.015
    [90] Semeraro L, Giunta G (2014) Electrical Load Clustering : the Italian case. IEEE PES Innovative Smart Grid Technologies, Europe, 1-6. doi: 10.1109/ISGTEurope.2014.7028919.
    [91] Wang Y, Chen Q, Gan D, et al. (2018) Deep Learning-Based Socio-demographic Information Identification from Smart Meter Data. IEEE Trans Smart Grid 10: 2593-2602. doi: 10.1109/TSG.2018.2805723. doi: 10.1109/TSG.2018.2805723
    [92] Choksi KA, Jain S, Pindoriya NM (2020) Feature based clustering technique for investigation of domestic load profiles and probabilistic variation assessment: Smart meter dataset. Sustain Energy Grids 22: 100346. doi: 10.1016/j.segan.2020.100346. doi: 10.1016/j.segan.2020.100346
    [93] Ozawa A, Furusato R, Yoshida Y (2016) Determining the relationship between a household ' s lifestyle and its electricity consumption in Japan by analyzing measured electric load profiles. Energy Build 119: 200-210. doi: 10.1016/j.enbuild.2016.03.047. doi: 10.1016/j.enbuild.2016.03.047
    [94] Panapakidis IP, Papadopoulos TA, Christoforidis GC, et al. (2014) Pattern recognition algorithms for electricity load curve analysis of buildings. Energy Build 73: 137-145. doi: 10.1016/j.enbuild.2014.01.002. doi: 10.1016/j.enbuild.2014.01.002
    [95] Motlagh O, Berry A, Neil LO (2019) Clustering of residential electricity customers using load time series. Appl Energy 237: 11-24. doi: 10.1016/j.apenergy.2018.12.063. doi: 10.1016/j.apenergy.2018.12.063
    [96] Freire VA, De Arruda LVR (2016) Identification of Residential Load patterns based on neural networks and PCA. 12th IEEE International Conference on Industry Applications (INDUSCON), 1-6. doi: 10.1109/INDUSCON.2016.7874495.
    [97] Drechny M (2018) The method of consumers identification based on compressed power load profiles. 2018 Innovative Materials and Technologies in Electrical Engineering, i-MITEL 2018, 1-4. doi: 10.1109/IMITEL.2018.8370464.
    [98] Cai X, Wang Y, Zhang J, et al. (2019) Data-Driven Load Data Cleaning and Its Impacts on Forecasting Performance. iSPEC 2019 - 2019 IEEE Sustain Power Energy Conf Grid Mod Energy Revolution, 1755-1760. doi: 10.1109/iSPEC48194.2019.8975047.
    [99] Capozzoli A, Savino M, Brandi S (2017) Mining typical load profiles in buildings to support energy management in the smart city context. Energy Procedia 134: 865-874. doi: 10.1016/j.egypro.2017.09.545. doi: 10.1016/j.egypro.2017.09.545
    [100] Wang S, Chen H, Wu L, et al. (2020) A novel smart meter data compression method via stacked convolutional sparse auto-encoder. Int J Electr Power Energy Syst 118: 105761. doi: 10.1016/j.ijepes.2019.105761. doi: 10.1016/j.ijepes.2019.105761
    [101] Selvam MM, Gnanadass R, Padhy NP (2017) Fuzzy based clustering of smart meter data using real power and THD patterns. Energy Procedia 117: 401-408. doi: 10.1016/j.egypro.2017.05.158. doi: 10.1016/j.egypro.2017.05.158
    [102] Gavrilas M, Gavrilas G (2010) Application of Honey Bee Mating Optimization Algorithm to Load Profile Clustering. IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 113-118. doi: 10.1109/CIMSA.2010.5611759.
    [103] Kim YI, Kang SJ, Ko JM, et al. (2011) A Study for Clustering Method to generate Typical Load Profile for Smart Grid. 8th International Conference on Power Electronics - ECCE Asia, 1102-1109.
    [104] Rajabi A, Li L, Zhang J, et al. (2017) A Review on Clustering of Residential Electricity Customers and Its Applications. 20th International Conference on Electrical Machines and Systems (ICEMS), 1-6. doi: 10.1109/ICEMS.2017.8056062.
    [105] Qiu W, Zhai F, Bao Z, et al. (2016) Clustering Approach and Characteristic Indices for Load Profiles of Customers Using Data from AMI. China International Conference on Electricity Distribution, 10-13.
    [106] Muthamizh M (2017) Fuzzy based clustering of smart meter data using power and THD Fuzzy based based clustering clustering of smart smart meter data using using real power and THD meter real power clustering of smart meter data using real power of smart meter data using real. Energy Procedia 117: 401-408. doi: 10.1016/j.egypro.2017.05.158. doi: 10.1016/j.egypro.2017.05.158
    [107] Sarikprueck P, Attaphong C, Lumyong P, et al. (2017) Analyzing technique for electrical energy monitoring system in Thailand hospital. Conf Proc - 2017 17th IEEE Int Conf Environ Electr Eng 2017 1st IEEE Ind Commer Power Syst Eur EEEIC / I CPS Eur, 7-10. doi: 10.1109/EEEIC.2017.7977465.
    [108] Al-wakeel A, Wu J, Jenkins N (2017) k -means based load estimation of domestic smart meter measurements q. Appl Energy 194: 333-342. doi: 10.1016/j.apenergy.2016.06.046. doi: 10.1016/j.apenergy.2016.06.046
    [109] Xiang Y, Hong J, Yang Z, et al. (2020) Slope-based Shape Cluster Method for Smart Metering Load Profiles. IEEE Trans Smart Grid 11: 1809‒1811. doi: 10.1109/TSG.2020.2965801. doi: 10.1109/TSG.2020.2965801
    [110] Zarabie AK, Member S, Lashkarbolooki S, et al. (2019) Load Profile Based Electricity Consumer Clustering Using Affinity Propagation. IEEE International Conference on Electro Information Technology (EIT), 474-478.
    [111] Labeeuw W, Member GS, Deconinck G, et al. (2013) Residential Electrical Load Model based on Mixture Model Clustering and Markov Models. 2013 IEEE, 1-9.
    [112] Oprea SV, Bara A, Lungu I (2015) Methods for electricity load profile calculation within deregulated markets. 2015 19th Int Conf Syst Theory, Control Comput. ICSTCC 2015 - Jt. Conf. SINTES 19, SACCS 15, SIMSIS 19, 848-853. doi: 10.1109/ICSTCC.2015.7321400.
    [113] Mutanen A, Niska H, Jarventausta P (2016) Mining Smart Meter Data - Case : Finland. CIRED, 1-4.
    [114] Al-wakeel A, Wu J (2016) K-means based cluster analysis of residential smart meter measurements. Energy Procedia 88: 754-760. doi: 10.1016/j.egypro.2016.06.066. doi: 10.1016/j.egypro.2016.06.066
    [115] Mamchych T, Wallin F (2014) Looking for patterns in residential electricity consumption. Energy Procedia 61: 1768-1771. doi: 10.1016/j.egypro.2014.12.208. doi: 10.1016/j.egypro.2014.12.208
    [116] Nystrup P, Madsen H, Blomgren EMV, et al. (2021) Clustering commercial and industrial load patterns for long-term energy planning. Smart Energy 2: 100010. doi: 10.1016/j.segy.2021.100010. doi: 10.1016/j.segy.2021.100010
    [117] Gouveia JP, Seixas J (2016) Unraveling electricity consumption profiles in households through clusters : Combining smart meters and door-to-door surveys. Energy Build 116: 666-676. doi: 10.1016/j.enbuild.2016.01.043. doi: 10.1016/j.enbuild.2016.01.043
    [118] Desgraupes B (2013) Clustering Indices. CRAN Packag, Available from: https://cran.r-project.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf.
    [119] Panapakidis IP, Christoforidis GC (2018) Optimal selection of clustering algorithm via Multi- Criteria Decision Analysis (MCDA) for load profiling applications. Appl Sci 8: 1-43. doi: 10.3390/app8020237. doi: 10.3390/app8020237
    [120] Czétány L, Vamos V, Horvath M, et al. (2021) Development of electricity consumption profiles of residential buildings based on smart meter data clustering. Energy Build 252: 111376. doi: 10.1016/j.enbuild.2021.111376. doi: 10.1016/j.enbuild.2021.111376
    [121] Steinley D, Brusco MJ (2011) Choosing the Number of Clusters in K-Means Clustering. Psychol Methods 16: 285-297. doi: 10.1037/a0023346. doi: 10.1037/a0023346
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3214) PDF downloads(246) Cited by(6)

Article outline

Figures and Tables

Figures(4)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog