Citation: Shihori Tanabe, Ryuichi Ono. The gene and microRNA networks of stem cells and reprogramming[J]. AIMS Cell and Tissue Engineering, 2018, 2(4): 238-245. doi: 10.3934/celltissue.2018.4.238
[1] | Salim A, Amjesh R, Chandra SS (2017) An approach to forecast human cancer by profiling microRNA expression from NGS data. BMC Cancer 17: 77. doi: 10.1186/s12885-016-3042-2 |
[2] | Bartel DP (2009) microRNAs: target recognition and regulatory functions. Cell 136: 215–233. doi: 10.1016/j.cell.2009.01.002 |
[3] | Bartel DP (2004) microRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297. doi: 10.1016/S0092-8674(04)00045-5 |
[4] | Agarwal V, Bell GW, Nam JW, et al. (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4: e05005. doi: 10.7554/eLife.05005 |
[5] | Siciliano V, Garzilli I, Fracassi C, et al. (2013) miRNAs confer phenotypic robustness to gene networks by suppressing biological noise. Nat Commun 4: 2364. doi: 10.1038/ncomms3364 |
[6] | Cuccato G, Polynikis A, Siciliano V, et al. (2011) Modeling RNA interference in mammalian cells. BMC Syst Biol 5: 19. doi: 10.1186/1752-0509-5-19 |
[7] | Santpere G, Lopez-Valenzuela M, Petit-Marty N, et al. (2016) Differences in molecular evolutionary rates among microRNAs in the human and chimpanzee genomes. BMC Genomics 17: 528. doi: 10.1186/s12864-016-2863-3 |
[8] | Beg F, Wang R, Saeed Z, et al. (2017) Inflammation-associated microRNA changes in circulating exosomes of heart failure patients. BMC Res Notes 10: 751. doi: 10.1186/s13104-017-3090-y |
[9] | Hannafon BN, Trigoso YD, Calloway CL, et al. (2016) Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res 18: 90. doi: 10.1186/s13058-016-0753-x |
[10] | Bengoa-Vergniory N, Gorroño-Etxebarria I, González-Salazar I, et al. (2014) A switch from canonical to noncanonical Wnt signaling mediates early differentiation of human neural stem cells. Stem Cells 32: 3196–3208. |
[11] | Zhou R, Yuan Z, Liu J, et al. (2016) Calcitonin gene-related peptide promotes the expression of osteoblastic genes and activates the WNT signal transduction pathway in bone marrow stromal stem cells. Mol Med Rep 13: 4689–4696. doi: 10.3892/mmr.2016.5117 |
[12] | Dokanehiifard S, Yasari A, Najafi H, et al. (2017) A novel microRNA located in the TrkC gene regulates the Wnt signaling pathway and is differentially expressed in colorectal cancer specimens. J Biol Chem 292: 7566–7577. doi: 10.1074/jbc.M116.760710 |
[13] | Cheleschi S, De Palma A, Pecorelli A, et al. (2017) Hydrostatic pressure regulates microRNA expression levels in osteoarthritic chondrocyte cultures via the Wnt/b-catenin pathway. Int J Mol Sci 18: 133. doi: 10.3390/ijms18010133 |
[14] | Liang J, Huang W, Cai W, et al. (2017) Inhibition of microRNA-495 enhances therapeutic angiogenesis of human induced pluripotent stem cells. Stem Cells 35: 337–350. doi: 10.1002/stem.2477 |
[15] | Yata K, Beder LB, Tamagawa S, et al. (2015) microRNA expression profiles of cancer stem cells in head and neck squamous cell carcinoma. Int J Oncol 47:1249–1256. doi: 10.3892/ijo.2015.3145 |
[16] | Hodges WM, O'Brien F, Fulzele S, et al. (2017) Function of microRNAs in the osteogenic differentiation and therapeutic application of adipose-derived stem cells (ASCs). Int J Mol Sci 18: 2597. doi: 10.3390/ijms18122597 |
[17] | Yang CL, Zheng XL, Ye K, et al. (2018) microRNA-183 acts as a tumor suppressor in human non-small cell lung cancer by down-regulating MTA1. Cell Physiol Biochem 46: 93–106. doi: 10.1159/000488412 |
[18] | Zheng J, Wang W, Yu F, et al. (2018) microRNA-30a suppresses the activation of hepatic stellate cells by inhibiting epithelial-to-mesenchymal transition. Cell Physiol Biochem 46: 82–92. doi: 10.1159/000488411 |
[19] | Liu W, Li M, Chen X, et al. (2018) microRNA-1 suppresses proliferation, migration and invasion by targeting Notch2 in esophageal squamous cell carcinoma. Sci Rep 8: 5183. doi: 10.1038/s41598-018-23421-3 |
[20] | Yu T, Wang LN, Li W, et al. (2018) Downregulation of miR-491-5p promotes gastric cancer metastasis by regulating SNAIL and FGFR4. Cancer Sci 109: 1393–1403. doi: 10.1111/cas.13583 |
[21] | Li Y, Huo J, Pan X, et al. (2018) microRNA 302b-3p/302c-3p/302d-3p inhibits epithelial-mesenchymal transition and promotes apoptosis in human endometrial carcinoma cells. Onco Targets Ther 11: 1275–1284. doi: 10.2147/OTT.S154517 |
[22] | Xu R, Zhu X, Chen F, et al. (2018) LncRNA XIST/miR-200c regulates the stemness properties and tumourigenicity of human bladder cancer stem cell-like cells. Cancer Cell Int 18: 41. doi: 10.1186/s12935-018-0540-0 |
[23] | Liu X, Wang S, Xu J, et al. (2018) Extract of Stellerachamaejasme L(ESC) inhibits growth and metastasis of human hepatocellular carcinoma via regulating microRNA expression. BMC Complement Altern Med 18: 99. doi: 10.1186/s12906-018-2123-y |
[24] | Zhang J, Chen D, Liang S, et al. (2018) miR-106b promotes cell invasion and metastasis via PTEN mediated EMT in ESCC. Oncol Lett 15: 4619–4626. |
[25] | Ma J, Zhang L, Hao J, et al. (2018) Up-regulation of microRNA-93 inhibits TGF-β1-induced EMT and renal fibrogenesis by down-regulation of Orai1. J Pharmacol Sci 136: 218–227. doi: 10.1016/j.jphs.2017.12.010 |
[26] | Yin C, Mou Q, Pan X, et al. (2018) miR-577 suppresses epithelial-mesenchymal transition and metastasis of breast cancer by targeting Rab25. Thorac Cancer 9: 472–479. doi: 10.1111/1759-7714.12612 |
[27] | Miyazaki H, Takahashi RU, Prieto-Vila M, et al. (2018) CD44 exerts a functional role during EMT induction in cisplatin-resistant head and neck cancer cells. Oncotarget 9: 10029–10041. |
[28] | Li D, Zhang Y, Zhang H, et al. (2018) CADM2, as a new target of miR-10b, promotes tumor metastasis through FAK/AKT pathway in hepatocellular carcinoma. J Exp Clin Cancer Res 37: 46. doi: 10.1186/s13046-018-0699-1 |
[29] | Li J, Zou K, Yu L, et al. (2018) microRNA-140 inhibits the epithelial-mesenchymal transition and metastasis in colorectal cancer. Mol Ther Nucleic Acids 10: 426–437. doi: 10.1016/j.omtn.2017.12.022 |
[30] | Clark RJ, Craig MP, Agrawal S, et al. (2018) microRNA involvement in the onset and progression of Barrett's esophagus: a systematic review. Oncotarget 9: 8179–8196. |
[31] | Gao Y, Ma H, Gao C, et al. (2018) Tumor-promoting properties of miR-8084 in breast cancer through enhancing proliferation, suppressing apoptosis and inducing epithelial-mesenchymal transition. J Transl Med 16: 38. doi: 10.1186/s12967-018-1419-5 |
[32] | Chen J, Gao F, Liu N (2018) L1CAM promotes epithelial to mesenchymal transition and formation of cancer initiating cells in human endometrial cancer. Exp Ther Med 15: 2792–2797. |
[33] | Xu M, Li J, Wang X, et al. (2018) miR-22 suppresses epithelial-mesenchymal transition in bladder cancer by inhibiting Snail and MAPK1/Slug/vimentin feedback loop. Cell Death Dis 9: 209. doi: 10.1038/s41419-017-0206-1 |
[34] | Guo H, Zhang X, Chen Q, et al. (2018) miR-132 suppresses the migration and invasion of lung cancer cells by blocking USP9X-induced epithelial-mesenchymal transition. Am J Transl Res 10: 224–234. |
[35] | Li J, Huang Y, Deng X, et al. (2018) Long noncoding RNA H19 promotes transforming growth factor-β-induced epithelial-mesenchymal transition by acting as a competing endogenous RNA of miR-370-3p in ovarian cancer cells. Onco Targets Ther 11: 427–440. doi: 10.2147/OTT.S149908 |
[36] | Yáñez-Mó M, Siljander PR, Andreu Z,et al. (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4: 27066. doi: 10.3402/jev.v4.27066 |
[37] | de Jong OG, Verhaar MC, Chen Y, et al. (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 1. |
[38] | Raposo G, Nijman HW, Stoorvogel W, et al. (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183: 1161–1172. doi: 10.1084/jem.183.3.1161 |
[39] | Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200: 373–383. doi: 10.1083/jcb.201211138 |
[40] | Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30: 255–289. doi: 10.1146/annurev-cellbio-101512-122326 |
[41] | Yoshioka Y, Konishi Y, Kosaka N, et al. (2013) Comparative marker analysis of extracellular vesicles in different human cancer types. J Extracell Vesicles 2. |
[42] | Valadi H, Ekstrom K, Bossios A, et al. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9: 654–659. doi: 10.1038/ncb1596 |
[43] | Kosaka N, Iguchi H, Yoshioka Y, et al. (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285: 17442–17452. doi: 10.1074/jbc.M110.107821 |
[44] | Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, et al. (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107: 6328–6333. doi: 10.1073/pnas.0914843107 |
[45] | Zhang Y, Liu D, Chen X, et al. (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39: 133–144. doi: 10.1016/j.molcel.2010.06.010 |
[46] | Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6: 392–401. doi: 10.1038/nrc1877 |
[47] | Fang T, Lv H, Lv G, et al. (2018) Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun 9: 191. doi: 10.1038/s41467-017-02583-0 |
[48] | Tominaga N, Kosaka N, Ono M, et al. (2015) Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun 6: 6716. doi: 10.1038/ncomms7716 |
[49] | Sieuwerts AM, Mostert B, Bolt-de Vries J, et al. (2011) mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clin Cancer Res 17: 3600–3618. doi: 10.1158/1078-0432.CCR-11-0255 |
[50] | Ohshima K, Inoue K, Fujiwara A, et al. (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5: e13247. doi: 10.1371/journal.pone.0013247 |
[51] | Taylor DD, Gercel-Taylor C (2008) microRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110: 13–21. doi: 10.1016/j.ygyno.2008.04.033 |
[52] | Jones CI, Zabolotskaya MV, King AJ, et al. (2012) Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma. Br J Cancer 107: 1987–1996. doi: 10.1038/bjc.2012.525 |
[53] | Tanaka M, Oikawa K, Takanashi M, et al. (2009) Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS One 4: e5532. doi: 10.1371/journal.pone.0005532 |
[54] | Hu Z, Chen X, Zhao Y, et al. (2010) Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28: 1721–1726. doi: 10.1200/JCO.2009.24.9342 |
[55] | Aushev VN, Zborovskaya IB, Laktionov KK, et al. (2013) Comparisons of microRNA patterns in plasma before and after tumor removal reveal new biomarkers of lung squamous cell carcinoma. PLoS One 8: e78649. doi: 10.1371/journal.pone.0078649 |
[56] | Ho AS, Huang X, Cao H, et al. (2010) Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl Oncol 3: 109–113. doi: 10.1593/tlo.09256 |
[57] | Wang J, Chen J, Chang P, et al. (2009) microRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila) 2: 807–813. doi: 10.1158/1940-6207.CAPR-09-0094 |
[58] | Camacho L, Guerrero P, Marchetti D (2013) microRNA and protein profiling of brain metastasis competent cell-derived exosomes. PLoS One 8: e73790. doi: 10.1371/journal.pone.0073790 |
[59] | Cheng HH, Mitchell PS, Kroh EM, et al. (2013) Circulating microRNA profiling identifies a subset of metastatic prostate cancer patients with evidence of cancer-associated hypoxia. PLoS One 8: e69239. doi: 10.1371/journal.pone.0069239 |
[60] | Jones K, Nourse JP, Keane C, et al. (2014) Plasma microRNA are disease response biomarkers in classical Hodgkin lymphoma. Clin Cancer Res 20: 253–264. doi: 10.1158/1078-0432.CCR-13-1024 |
[61] | Shimomura A, Shiino S, Kawauchi J, et al. (2016) Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer Sci 107: 326–334. doi: 10.1111/cas.12880 |
[62] | Carter JV, Roberts HL, Pan J, et al. (2016) A highly predictive model for diagnosis of colorectal neoplasms using plasma microRNA: improving specificity and sensitivity. Ann Surg 264: 575–584. doi: 10.1097/SLA.0000000000001873 |