Citation: Robert J. Henning, Qing Zhu, Xiao Wang. Therapeutic effects of paracrine factors secreted by human umbilical cord blood mononuclear cells in myocardial infarctionsParacrine effects of cord blood cells[J]. AIMS Cell and Tissue Engineering, 2018, 2(4): 220-237. doi: 10.3934/celltissue.2018.4.220
[1] | Klug M, Soonpaa M, Koh G, et al. (1996) Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest 98: 216–224. doi: 10.1172/JCI118769 |
[2] | Mummery C, Ward‐van Oostwaard D, Doevendans P, et al. (2003) Differentiation of human embryonic stem cells to cardiomyocytes: Role of coculture with visceral endoderm-like cells. Circulation 107: 2733–2740. doi: 10.1161/01.CIR.0000068356.38592.68 |
[3] | Kehat I, Kenyagin-Karsenti D, Snir M, et al. (2011) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108: 407–414. |
[4] | Kinnaird T, Stabile E, Burnett MS, et al. (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in-vitro and in-vivo angiogenesis through paracrine mechanisms. Circ Res 94: 678–685. doi: 10.1161/01.RES.0000118601.37875.AC |
[5] | Gnecchi M, He H, Liang OD, et al. (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11: 367–368. doi: 10.1038/nm0405-367 |
[6] | Gnecchi M, He H, Noiseux N, et al. (2006). Evidence supporting the paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20: 661–669. doi: 10.1096/fj.05-5211com |
[7] | Broxmeyer HE (2010) Cord blood hematopoietic stem cell transplantation. In: Broxmeyer HE, StemBook, Cambridge (MA), Harvard Stem Cell Institute, USA. |
[8] | Margossian T, Reppel L, Makdissy N, et al. (2012) Mesenchymal stem cells derived from Wharton's jelly: comparative phenotype analysis between tissue and in-vitro expansion. Biomed Mater Eng 22: 243–254. |
[9] | Gluckman E (2009) History of cord blood transplantation. Bone Marrow Transpl 44: 621–626. doi: 10.1038/bmt.2009.280 |
[10] | Zhang J, Chen GH, Wang YW, et al. (2012) Hydrogen peroxide preconditioning enhances the therapeutic efficacy of Wharton's Jelly mesenchymal stem cells after myocardial infarction. Chin Med J 125: 3472–3478. |
[11] | Morgan E, Faullx M, McElfresh T, et al. (2004) Validation of echocardiographic methods for assessing left ventricular dysfunction in rats with myocardial infarction. Am J Physiol Heart Circ Physiol 287:2049–2053. doi: 10.1152/ajpheart.00393.2004 |
[12] | Adegboyega P, Adesokan A, Haque AK, et al. (1997) Sensitivity and specificity of triphenyl tetrazolium chloride in the gross diagnosis of acute myocardial infarcts. Arch Pathol Lab Med 121: 1063–1068. |
[13] | Deten, A, Volz H, Briest W, et al. (2002) Cardiac cytokine expression is unregulated in infarction. Cardiovasc Res 55: 329–340. doi: 10.1016/S0008-6363(02)00413-3 |
[14] | Lin Y, Huang R, Chen L, et al. (2003) Profiling of cytokine expression by biotin-labeled-based protein arrays. Proteom 3:1750–1757. doi: 10.1002/pmic.200300530 |
[15] | Hescheler J, Meyer R, Plant S, et al. (1991). Morphological, biochemical and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res 61: 1476–1486. |
[16] | Zordoky B, El-Kadi A (2007) H9c2 cell line is a valuable in-vitro model to study the drug metabolizing enzymes in the heart. J Pharmacol Toxicol Methods 56: 317–322. doi: 10.1016/j.vascn.2007.06.001 |
[17] | Yang L, Dan H, Sun M, et al. (2004). Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res 64: 4394–4399. doi: 10.1158/0008-5472.CAN-04-0343 |
[18] | Bennett B, Sasaki D, Murray B, et al. (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A 98: 13681–13686. doi: 10.1073/pnas.251194298 |
[19] | Remondino A, Kwon S, Communal C, et al. (2003) β-Adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ Res 92: 136–138. doi: 10.1161/01.RES.0000054624.03539.B4 |
[20] | Mackay K, Mochly-Rosen D (1999) An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes from ischemia. J Biol Chem 274: 6272–6279. doi: 10.1074/jbc.274.10.6272 |
[21] | Liao P, Wang SQ, Wang S, et al. (2002) p38 mitogen-activated protein kinase mediates a negative inotropic effect in cardiac myocytes. Circ Res 90: 190–196. doi: 10.1161/hh0202.104220 |
[22] | Prabhu SD, Frangogiannis NG (2016) The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ Res 119: 91–112. doi: 10.1161/CIRCRESAHA.116.303577 |
[23] | Kain V, Prabhu SD, Halade GV (2014) Inflammation revisited: inflammation versus resolution of inflammation following myocardial infarction. Basic Res Cardiol 109: 444. doi: 10.1007/s00395-014-0444-7 |
[24] | Tsai C, Wu C, Lee J, et al. (2015) NF-α down-regulates sarcoplasmic reticulum Ca²⁺ ATPase expression and leads to left ventricular diastolic dysfunction through binding of NF-κB to promoter response element. Cardiovasc Res 105: 318–329. doi: 10.1093/cvr/cvv008 |
[25] | Ridker P, Rifai N, Pfeffer M, et al. (2000) Elevation of tumor necrosis factor-a and increased risk of recurrent coronary events after myocardial infarction. Circulation 101: 2149–2153. doi: 10.1161/01.CIR.101.18.2149 |
[26] | Maekawa N, Wada H, Kanda T, et al. (2002) Improved myocardial ischemia/reperfusion injury in mice lacking tumor necrosis factor-alpha. J Am Coll Cardiol 39: 1229–1235. doi: 10.1016/S0735-1097(02)01738-2 |
[27] | Nian M, Lee P, Khaper N, et al. (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94: 1543–1553. doi: 10.1161/01.RES.0000130526.20854.fa |
[28] | Schiopu A, Bengtsson E, Gonçalves I, et al. (2016) Associations between macrophage colony-stimulating factor and monocyte chemotactic protein 1 in plasma and first-time coronary events: A nested case-control study. J Am Heart Assoc 5: e002851. |
[29] | Dewald O, Zymek P, Winkelmann K, et al. (2005) CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res 96: 881–889. doi: 10.1161/01.RES.0000163017.13772.3a |
[30] | de Lemos JA, Morrow DA, Sabatine MS, et al. (2003) Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes. Circulation 107: 690–695. doi: 10.1161/01.CIR.0000049742.68848.99 |
[31] | White D, Fang L, Chan W, et al. (2013) Pro-Inflammatory action of MIF in acute myocardial infarction via activation of peripheral blood mononuclear cells. PLoS One 8: e76206. doi: 10.1371/journal.pone.0076206 |
[32] | Parissis JT, Adamopoulos S, Venetsanou KF, et al. (2002) Serum profiles of C-C chemokines in acute myocardial infarction: possible implication in postinfarction left ventricular remodeling. J Interferon Cytokine Res 22: 223–229. doi: 10.1089/107999002753536194 |
[33] | Van Tassell BW, Toldo S, Mezzaroma E, et al. (2013) Targeting interleukin-1 in heart disease. Circulation 128: 1910–1923. doi: 10.1161/CIRCULATIONAHA.113.003199 |
[34] | Ridker PM, Everett BM, Thuren T, et al. (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131. doi: 10.1056/NEJMoa1707914 |
[35] | Ishikawa K, Fish K, Aguero J, et al. (2015) Stem cell factor gene transfer improves cardiac function after myocardial infarction in swine. Circ Heart Fail 8: 167–174. doi: 10.1161/CIRCHEARTFAILURE.114.001711 |
[36] | Awada HK, Johnson NR, Wang Y (2015) Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction. J Control Release 207: 7–17. doi: 10.1016/j.jconrel.2015.03.034 |
[37] | Tao Z, Chen B, Tan X, et al. (2011) Coexpression of VEGF and angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction (MI) heart. Proc Natl Acad Sci U S A 108: 2064–2069. doi: 10.1073/pnas.1018925108 |
[38] | Iwasaki H, Kawamoto A, Tjwa M, et al. (2011) Placental growth factor repairs myocardial ischemia through mechanisms of angiogenesis, cardioprotection and recruitment of myo-angiogenic competent marrow progenitors. PLoS One 6: e24872. doi: 10.1371/journal.pone.0024872 |
[39] | Koudstaal S, Bastings M, Feyen D, et al. (2014) Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J Cardiovasc Transl Res 7:232–241. doi: 10.1007/s12265-013-9518-4 |
[40] | Kandalam V, Basu R, Abraham T, et al. (2010). Early activation of matrix metalloproteinases underlies the exacerbated systolic and diastolic dysfunction in mice lacking TIMP3 following myocardial infarction. Am J Physiol Heart Circ Physiol 299: H1012–1023. doi: 10.1152/ajpheart.00246.2010 |
[41] | Rophael J, Craft R, Palmer J, et al. (2007) Angiogenic growth factor synergism in a murine tissue engineering model of angiogenesis and adipogenesis. Am J Pathol 171: 2048–2057. doi: 10.2353/ajpath.2007.070066 |
[42] | Cao R, Brakenhielm E, Pawliuk R, et al. (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9: 604–613. doi: 10.1038/nm848 |
[43] | Henning RJ (2016) Therapeutic angiogenesis: angiogenic growth factors for ischemic heart disease. Future Cardiol 12: 585–599. doi: 10.2217/fca-2016-0006 |
[44] | Jung M, Ma Y, Iyer R, et al. (2017) IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Res Cardiol 112: 33–44. doi: 10.1007/s00395-017-0622-5 |
[45] | Jones S, Trocha S (2001) Cardioprotective actions of IL-10 are independent of iNOS. Am J Physiol Heart Circ Physiol 281: H48–52. doi: 10.1152/ajpheart.2001.281.1.H48 |
[46] | Frangogiannis N (2012) Regulation of the Inflammatory Response in Cardiac Repair. Circ Res 110: 159–173. doi: 10.1161/CIRCRESAHA.111.243162 |
[47] | Ito T, Ikeda U (2003) Inflammatory cytokines and cardiovascular disease. Curr Drug Targets Inflamm Allergy 2: 257–263. doi: 10.2174/1568010033484106 |
[48] | Sussman M, Volkers M, Fischer K, et al. (2011) Myocardial Akt: the omnipresent nexus. Physiol Rev 91: 1023–1070. doi: 10.1152/physrev.00024.2010 |
[49] | Oudit G, Penninger J (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res 82: 250–260. |
[50] | Datta S, Dudek, H, Tao X, et al. (1997) Akt phosphorylation of BAD couples survival signals to cell intrinsic death machinery. Cell 91: 231–241. doi: 10.1016/S0092-8674(00)80405-5 |
[51] | Ronnebaum S, Patterson C (2010). The FoxO family in cardiac function and dysfunction. Annu Rev Physiol 72: 81–94. doi: 10.1146/annurev-physiol-021909-135931 |
[52] | Fulton D, Gratton JP, McCabe T (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nat 399: 597–601. doi: 10.1038/21218 |
[53] | Cittadini A, Monti M, Iaccarino G, et al. (2006) Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling. Gene Ther 3: 8–19. |
[54] | Crackower M, Oudit G, Kozieradzki I, et al. (2002) Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 110:737–749. doi: 10.1016/S0092-8674(02)00969-8 |
[55] | Tateishi K, Ashihara E, Honsho S, et al. (2007) Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3beta signaling. Biochem Biophys Res Commun 352: 635–641. doi: 10.1016/j.bbrc.2006.11.096 |
[56] | Shi B, Wang Y, Zhao R, et al. (2018) Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit+ cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis. PLoS One 13: e0191616. doi: 10.1371/journal.pone.0191616 |
[57] | O'Neal W, Griffin WF, Kent SD, et al. (2012) Cellular Pathways of Death and Survival in Acute Myocardial Infarction. Clin Exp Cardiolog 6: 003. |
[58] | Aoki H, Kang P, Hampe J, et al. (2002) Direct activation of mitochondrial apoptosis machinery by c-jun n-terminal kinase in adult cardiac myocytes. J Biol Chem 277: 10244-10250. doi: 10.1074/jbc.M112355200 |
[59] | Ferrandi C, Ballerio R, Gaillard P, et al. (2004) Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats. Br J Pharmacol 142: 953–960. doi: 10.1038/sj.bjp.0705873 |
[60] | Kwon S, Pimentel D, Remondino A, et al. (2003) H2O2 regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol 35: 615-621. doi: 10.1016/S0022-2828(03)00084-1 |
[61] | Singh M, Sharma H, Singh N (2007) Hydrogen peroxide induces apoptosis in HeLa cells through mitochondrial pathway. Mitochondria 7: 367–373. doi: 10.1016/j.mito.2007.07.003 |
[62] | Tournier C, Hess P, Yang DD, et al. (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Sci 288: 870–874. doi: 10.1126/science.288.5467.870 |
[63] | Levresse V, Butterfield L, Zentrich E, et al. (2000) Akt negatively regulates the cJun N-terminal kinase pathway in PC12 cells. J Neurosci Res 62: 799–808. doi: 10.1002/1097-4547(20001215)62:6<799::AID-JNR6>3.0.CO;2-1 |
[64] | Zhao HF, Wang J, Tony To SS (2015) The phosphatidylinositol 3-kinase/Akt and c-Jun N-terminal kinase signaling in cancer: Alliance or contradiction? Int J Oncol 47: 429–436. doi: 10.3892/ijo.2015.3052 |
[65] | Porras A, Zuluaga S, Black E, et al. (2004) Mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli. Mol Biol Cell 15: 922–933. doi: 10.1091/mbc.e03-08-0592 |
[66] | Scneider S, Chen W, Hou J, et al. (2001) Inhibition of p38 MAPK reduces ischemic injury and does not block the protective effect of preconditioning. Am J Physiol Heart Circ Physiol 280: H499–508. doi: 10.1152/ajpheart.2001.280.2.H499 |