In the present work, combining machine learning and optimization theory, a novel framework is designed to optimize the process parameters of rare earth hard magnetic materials Nd7Fe67.5B21Nb2.5Zr2 with multi-objective performance. Considering the small dataset problem, the interpolation and extrapolation technique was introduced for data augmentation. Based on the expanded dataset, predictive models for coercivity (Hcj) and maximum magnetic energy product ((BH)max) concerning heat treatment parameters (annealing temperature and magnetic field strength) are established. Based on the enhanced data, the prediction accuracy of the model for Hcj and (BH)max reaches 0.980 and 0.997, respectively. After that, the NSGA-II algorithm is utilized for multi-objective optimization; the top 12 optimal process parameter combinations are recommended with higher coercivity and maximum magnetic energy product. This study provides a new way for the performance prediction and process optimization of rare earth hard magnetic materials, which can accelerate the design of materials with multi-objective performance.
Citation: Haozhen Hu, Mengxian Zhao, Cun Chen. Multi-objective optimization design of process parameters for rare earth hard magnetic materials based on machine learning[J]. Big Data and Information Analytics, 2025, 9: 285-301. doi: 10.3934/bdia.2025013
In the present work, combining machine learning and optimization theory, a novel framework is designed to optimize the process parameters of rare earth hard magnetic materials Nd7Fe67.5B21Nb2.5Zr2 with multi-objective performance. Considering the small dataset problem, the interpolation and extrapolation technique was introduced for data augmentation. Based on the expanded dataset, predictive models for coercivity (Hcj) and maximum magnetic energy product ((BH)max) concerning heat treatment parameters (annealing temperature and magnetic field strength) are established. Based on the enhanced data, the prediction accuracy of the model for Hcj and (BH)max reaches 0.980 and 0.997, respectively. After that, the NSGA-II algorithm is utilized for multi-objective optimization; the top 12 optimal process parameter combinations are recommended with higher coercivity and maximum magnetic energy product. This study provides a new way for the performance prediction and process optimization of rare earth hard magnetic materials, which can accelerate the design of materials with multi-objective performance.
| [1] |
Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP, (2011) Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv Mater 23: 821-42. https://doi.org/10.1002/adma.201002180 doi: 10.1002/adma.201002180
|
| [2] |
Chen J, J Liu, MJ Zhang, ZJ Dong, ZJ Peng, XY Ji, et al. (2023) Accelerated discovery of cost-effective Nd-Fe-B magnets through adaptive learning. J Mater Chem A 16: 8988-9001. https://doi.org/10.1039/d2ta10043f doi: 10.1039/d2ta10043f
|
| [3] |
Hono K, Sepehri-Amin H, (2018) Prospect for HRE-free high coercivity Nd-Fe-B permanent magnets. Scr Mater 151: 6-13. https://doi.org/10.1016/j.scriptamat.2018.03.012 doi: 10.1016/j.scriptamat.2018.03.012
|
| [4] |
AK Pathak, M Khan, K Gschneidner, R McCallum, L Zhou, K Sun, et al. (2016) Magnetic properties of bulk, and rapidly solidified nanostructured (Nd1-xCex)2Fe14-yCoyB ribbons. Acta Mater 103: 211-216. https://doi.org/10.1016/J.ACTAMAT.2015.09.049 doi: 10.1016/J.ACTAMAT.2015.09.049
|
| [5] |
Huang QF, Jiang QZ, Shi Y, Rehman SU, Wei X, Li ZX, et al. (2022) Enormous improvement of the coercivity of Ga and Cu co-doping Nd-Fe-B sintered magnet by post-sinter annealing. J Alloys Compd 894: 162418. https://doi.org/10.1016/j.jallcom.2021.162418 doi: 10.1016/j.jallcom.2021.162418
|
| [6] |
Baldissera AB, Pavez P, Wendhausen PAP, Ahrens CH, Mascheroni JM, (2017) Additive manufacturing of bonded Nd-Fe-B—Effect of process parameters on magnetic properties. IEEE Trans Magn 53: 1-4. https://doi.org/10.1109/TMAG.2017.2715722 doi: 10.1109/TMAG.2017.2715722
|
| [7] |
Vial F, Joly F, Nevalainen E, Sagawa M, Hiraga K, Park KT, (2002) Improvement of coercivity of sintered NdFeB permanent magnets by heat treatment. J Magn Magn Mater 242: 1329-1334. https://doi.org/10.1016/S0304-8853%2801%2900967-2 doi: 10.1016/S0304-8853%2801%2900967-2
|
| [8] |
Zhang TQ, Liu SS, Wu ZW, Zhang LT, Yu R, (2022) Coercivity and remanence enhancement in hot-deformed Nd-Fe-B magnets by high-temperature short-term annealing process. J Alloys Compd 903: 163975. https://doi.org/10.1016/j.jallcom.2022.163975 doi: 10.1016/j.jallcom.2022.163975
|
| [9] |
Tan XH, Tan YF, Tang YJ, Sun SB, Zhang SY, Xu H, (2021) The improvement of magnetic property by grain refinement using magnetic field annealing crystalline (Nd0.8Pr0.2)2.2Fe12Co2B ribbons. J Magn Magn Mater 518: 167434. https://doi.org/10.1016/j.jmmm.2020.167434 doi: 10.1016/j.jmmm.2020.167434
|
| [10] |
Jia P, Liu JM, Wang EG, Han K, (2013) The effects of high magnetic field on crystallization of Fe71(Nb0.8Zr0.2)6B23 bulk metallic glass. J Alloys Compd 581: 373-377. https://doi.org/10.1016/J.JALLCOM.2013.07.066 doi: 10.1016/J.JALLCOM.2013.07.066
|
| [11] |
Gu Y, Li Z, Tan XH, Pan MX, Xu H, (2018) Effect of magnetic field treatment on magnetic properties and microstructure of Fe69.5Nd7B21Nb2.5 bulk permanent magnets. Phys B 546: 15-20. https://doi.org/10.1016/J.PHYSB.2018.07.011 doi: 10.1016/J.PHYSB.2018.07.011
|
| [12] |
Qiao ZQ, Dong SZ, Li Q, Lu XM, Chen RJ, Guo S, et al. (2023) Performance prediction models for NdFeB using machine learning methods and interpretable studies. J Alloys Compd 963: 171250. https://doi.org/10.1016/j.jallcom.2023.171250 doi: 10.1016/j.jallcom.2023.171250
|
| [13] |
Herbst JF, (1991) R2Fe14B materials: Intrinsic properties and technological aspects. Rev Mod Phys 63: 819. https://doi.org/10.1103/RevModPhys.63.819 doi: 10.1103/RevModPhys.63.819
|
| [14] |
Delette G, (2023) Nd2Fe14B permanent magnets substituted with non-critical light rare earth elements (Ce, La): A review. J Magn Magn Mater 577: 170768. https://doi.org/10.1016/j.jmmm.2023.170768 doi: 10.1016/j.jmmm.2023.170768
|
| [15] |
Yu LP, Guo XX, Wang G, Sun BA, Han DX, Chen C, et al. (2022) Extracting governing system for the plastic deformation of metallic glasses using machine learning. Sci China Phys Mech Astron 65: 264611. https://doi.org/10.1007/s11433-021-1840-9 doi: 10.1007/s11433-021-1840-9
|
| [16] |
Jie X, Zhang TY, Shi SQ, (2020) Machine learning of mechanical properties of ateels. Sci China Technol Sci 63: 1247-1255. https://doi.org/10.1007/s11431-020-1599-5 doi: 10.1007/s11431-020-1599-5
|
| [17] |
Bertolucci CL, Torres D, Vangrunderbeek V, Bernal M, Paldino GM, Bontempi G, et al. (2023) Estimating pitting descriptors of 316 L stainless steel by machine learning and statistical analysis. NPJ Mate Degrad 7: 82. https://doi.org/10.1038/s41529-023-00403-z doi: 10.1038/s41529-023-00403-z
|
| [18] |
Shen C, Wang C, Rivera-Díaz-del-Castillo PEJ, Xu D, Zhang Q, Zhang C, et al. (2021) Discovery of marageing steels: Machine learning vs. physical metallurgical modelling. J Mater Sci Technol 87: 258-268. https://doi.org/10.1016/J.JMST.2021.02.017 doi: 10.1016/J.JMST.2021.02.017
|
| [19] |
Zhang M, Sun CN, Zhang X, Goh PC, Wei J, Hardacre D, et al. (2019) High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach. Int J Fatigue 128: 105194. https://doi.org/10.1016/J.IJFATIGUE.2019.105194 doi: 10.1016/J.IJFATIGUE.2019.105194
|
| [20] |
Lee JY, Kim M, Lee YK, (2022) Design of high strength medium-Mn steel using machine learning. Mater Sci Eng A 843: 143148. https://doi.org/10.1016/j.msea.2022.143148 doi: 10.1016/j.msea.2022.143148
|
| [21] |
Chen C, Zang DD, Ren JL, (2025) A new multi-objective optimization design framework for high-temperature alloy steel via machine learning. Materials Today Communications 49: 2352-4928. https://doi.org/10.1016/j.mtcomm.2025.113955. doi: 10.1016/j.mtcomm.2025.113955
|
| [22] |
Rao ZY, Tung PY, Xie RW, Wei Y, Zhang H, Ferrari A, et al, (2022) Machine learning-enabled high-entropy alloy discovery. Science 378 78-85. https://doi.org/10.1126/science.abo4940 doi: 10.1126/science.abo4940
|
| [23] |
Zhang HT, Fu HD, He XQ, Wang C, Jiang L, Chen LQ, et al. (2020) Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening. Acta Mater 200: 803-810. https://doi.org/10.2139/ssrn.3646448 doi: 10.2139/ssrn.3646448
|
| [24] |
Chen C, Ma LY, Zhang Y, Liaw PK, Ren JL, (2023) Accelerating the design of high-entropy alloys with high hardness by machine learning based on particle swarm optimization. Intermetallics 154: 107819. https://doi.org/10.1016/j.intermet.2022.107819 doi: 10.1016/j.intermet.2022.107819
|
| [25] |
Chen C, Zhou HR, Long WM, Wang G, Ren JL, (2023) Phase prediction for high-entropy alloys using generative adversarial network and active learning based on small datasets. Sci China Tech Sci 66: 3615-3627. https://doi.org/10.1007/s11431-023-2399-2 doi: 10.1007/s11431-023-2399-2
|
| [26] |
Wei QH, Cao B, Deng L, Sun A, Dong Z, Zhang TY, (2023) Discovering a formula for the high temperature oxidation behavior of FeCrAlCoNi based high entropy alloys by domain knowledge-guided machine learning. J Mater Sci Technol 149: 237-246. https://doi.org/10.1016/j.jmst.2022.11.040 doi: 10.1016/j.jmst.2022.11.040
|
| [27] | Chen C, Han XL, Zhang Y, Peter K. Liaw, Ren JL, (2024) Phase prediction of high-entropy alloys based on machine learning and an improved information fusion approach. Computational Materials Science 239: 112976. https://doi.org/10.1016/j.commatsci.2024.112976. |
| [28] |
Gu Y, Li Z, Wang CX, Wu Z, Feng X, Zhang Y, et al. (2020) Enhancing hard magnetic properties in Fe69.5-xNd7B21Nb2.5Zrx (x = 0-3) bulk magnets by magnetic field heat treatment. J Magn Magn Mater 499: 166215. https://doi.org/10.1016/j.jmmm.2019.166215 doi: 10.1016/j.jmmm.2019.166215
|
| [29] |
Tan X, Tan Y, Tang Y, Sun S, Zhang S, Xu H, (2021) The improvement of magnetic property by grain refinement using magnetic field annealing crystalline (Nd0.8Pr0.2)2.2Fe12Co2B ribbons. J Magn Magn Mater 518: 167434. https://doi.org/10.1016/j.jmmm.2020.167434 doi: 10.1016/j.jmmm.2020.167434
|
| [30] |
Wang YH, Tian YF, Kirk T, Laris O, Ross JH, Noebe RD, et al. (2020) Accelerated design of Fe-based soft magnetic materials using machine learning and stochastic optimization. Acta Mater 194: 144-155. https://doi.org/10.1016/j.actamat.2020.05.006 doi: 10.1016/j.actamat.2020.05.006
|
| [31] |
Lambard G, Sasaki TT, Sodeyama K, Ohkubo T, Hono K, (2022) Optimization of direct extrusion process for Nd-Fe-B magnets using active learning assisted by machine learning and Bayesian optimization. Scripta Mater 209: 114341. https://doi.org/10.1016/j.scriptamat.2021.114341 doi: 10.1016/j.scriptamat.2021.114341
|
| [32] |
Deb K, Pratap A, Agarwal S, Meyarivan T, (2002) A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ. IEEE Trans Evol Comput 6: 182-197. https://doi.org/10.1109/4235.996017 doi: 10.1109/4235.996017
|
| [33] |
Kim Y, Kim Y, Yang C, Park K, Gu GX, Ryu S, (2021) Deep learning framework for material design space exploration using active transfer learning and data augmentation. NPJ Comput Mater 7: 140. https://doi.org/10.1038/s41524-021-00609-2 doi: 10.1038/s41524-021-00609-2
|
| [34] |
Sutojo T, Rustad S, Akrom M, Syukur A, Shidik GF, Dipojono HK, (2023) A machine learning approach for corrosion small datasets. NPJ Mater Degrad 7: 18-10. https://doi.org/10.1038/s41529-023-00336-7 doi: 10.1038/s41529-023-00336-7
|
| [35] |
Xu PC, Ji XB, Li MJ, Lu WC, (2023) Small data machine learning in materials science. NPJ Comput Mater 9: 42. https://doi.org/10.1038/s41524-023-01000-z doi: 10.1038/s41524-023-01000-z
|
| [36] |
Hua Y, Zhu H, Xu Y, (2020) Multi-objective optimization design of bearingless permanent magnet synchronous generator, IEEE Trans Appl Supercond 30: 1-5. https://doi.org/10.1109/TASC.2020.2970661 doi: 10.1109/TASC.2020.2970661
|
| [37] |
Wei QF, Cao B, Yuan H, Chen Y, You K, Yu S, et al., (2023) Divide and conquer: Machine learning accelerated design of lead-free solder alloys with high strength and high ductility. NPJ Comput Mater 9: 201. https://doi.org/10.1038/s41524-023-01150-0 doi: 10.1038/s41524-023-01150-0
|
| [38] |
Faheem AB, Hasan F, Khan AA, Singh B, Ayaz M, Shamim FA, et al. (2023) Parametric optimization of electric discharge machining of Ni55.65Ti based shape memory alloy using NSGA Ⅱ with TOPSIS. J Mater Res Technol 26: 1306-1324. https://doi.org/10.1016/j.jmrt.2023.07.259 doi: 10.1016/j.jmrt.2023.07.259
|