Research article

Comparative study of PINNs and numerical methods in infectious disease reaction-diffusion models

  • Published: 28 November 2025
  • This study employed physics-informed neural networks (PINNs) and numerical methods to solve a two-dimensional spatial susceptible-infectious (SI) epidemic model incorporating nonlinear propagation terms and diffusion processes. By integrating governing equations, initial and boundary conditions, and sparse reference solution data, PINNs define a multi-objective loss function, forming a supervised learning framework grounded in physical mechanisms. The results demonstrated that PINNs can accurately capture the spatiotemporal evolution patterns and spatial distribution characteristics of the density field in the model. In terms of solution accuracy, the long time predictions of PINNs significantly outperformed those of the Euler method and the second-order Runge-Kutta method (RK2), showing strong agreement with the fourth-order Runge-Kutta method (RK4) benchmark solutions. This validates the effectiveness of PINNs in solving complex reaction-diffusion systems, offering an innovative approach for modeling the spatial dynamics of infectious diseases.

    Citation: Lingxi Xia, Bangsheng Han. Comparative study of PINNs and numerical methods in infectious disease reaction-diffusion models[J]. Big Data and Information Analytics, 2025, 9: 265-284. doi: 10.3934/bdia.2025012

    Related Papers:

  • This study employed physics-informed neural networks (PINNs) and numerical methods to solve a two-dimensional spatial susceptible-infectious (SI) epidemic model incorporating nonlinear propagation terms and diffusion processes. By integrating governing equations, initial and boundary conditions, and sparse reference solution data, PINNs define a multi-objective loss function, forming a supervised learning framework grounded in physical mechanisms. The results demonstrated that PINNs can accurately capture the spatiotemporal evolution patterns and spatial distribution characteristics of the density field in the model. In terms of solution accuracy, the long time predictions of PINNs significantly outperformed those of the Euler method and the second-order Runge-Kutta method (RK2), showing strong agreement with the fourth-order Runge-Kutta method (RK4) benchmark solutions. This validates the effectiveness of PINNs in solving complex reaction-diffusion systems, offering an innovative approach for modeling the spatial dynamics of infectious diseases.



    加载中


    [1] Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L, (2021) Physics-informed machine learning. Nat Rev Phys 3: 422–440. https://doi.org/10.1038/s42254-021-00314-5 doi: 10.1038/s42254-021-00314-5
    [2] Bengio Y, Lecun Y, Hinton G, (2021) Deep learning for AI. Commun ACM 64: 58–65. https://doi.org/10.1145/3448250 doi: 10.1145/3448250
    [3] Wang X, Yin ZY, Wu W, Zhu HH, (2025) Differentiable finite element method with Galerkin discretization for fast and accurate inverse analysis of multidimensional heterogeneous engineering structures. Comput Methods Appl Mech Eng 437: 117755. https://doi.org/10.1016/j.cma.2025.117755 doi: 10.1016/j.cma.2025.117755
    [4] Li Y, Wang F, (2025) Local randomized neural networks with finite difference methods for interface problems. J Comput Phys 529: 113847. https://doi.org/10.1016/j.jcp.2025.113847 doi: 10.1016/j.jcp.2025.113847
    [5] Cen J, Zou Q, (2024) Deep finite volume method for partial differential equations. J Comput Phys 517: 113307. https://doi.org/10.1016/j.jcp.2024.113307 doi: 10.1016/j.jcp.2024.113307
    [6] DiBenedetto E, Gianazza U, (2023) Partial Differential Equations, Springer Nature. https://doi.org/10.1007/978-3-031-46618-2
    [7] Bellman R, (1966) Dynamic programming. Science 153: 34–37. https://doi.org/10.1126/science.153.3731.34 doi: 10.1126/science.153.3731.34
    [8] Benner P, Goyal P, Kramer B, Peherstorfer B, Willcox K, (2020) Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms. Comput Methods Appl Mech Eng 372: 113433. https://doi.org/10.1016/j.cma.2020.113433 doi: 10.1016/j.cma.2020.113433
    [9] Raissi M, Perdikaris P, Karniadakis GE, (2019) PINN: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378: 686–707. https://doi.org/10.1016/j.jcp.2018.10.045 doi: 10.1016/j.jcp.2018.10.045
    [10] Cai S, Mao Z, Wang Z, Yin M, Karniadakis GE, (2021) PINN (PINNs) for fluid mechanics: A review. Acta Mech Sin 37: 1727–1738. https://doi.org/10.1007/s10409-021-01148-1 doi: 10.1007/s10409-021-01148-1
    [11] Hu B, McDaniel D, (2023) Applying PINN to solve Navier-Stokes equations for laminar flow around a particle. Math Comput Appl 28: 102. https://doi.org/10.3390/mca28050102 doi: 10.3390/mca28050102
    [12] Bai J, Rabczuk T, Gupta A, Alzubaidi L, Gu Y, (2023) A physics-informed neural network technique based on a modified loss function for computational 2D and 3D solid mechanics. Comput Mech 71: 543–562. https://doi.org/10.1007/s00466-022-02252-0 doi: 10.1007/s00466-022-02252-0
    [13] Haghighat E, Raissi M, Moure A, Gomez H, Juanes R, (2021) A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Comput Methods Appl Mech Eng 379: 113741. https://doi.org/10.1016/j.cma.2021.113741 doi: 10.1016/j.cma.2021.113741
    [14] Lee S, Popovics J, (2022) Applications of PINN for property characterization of complex materials. RILEM Tech Lett 7: 178–188. https://doi.org/10.21809/rilemtechlett.2022.174 doi: 10.21809/rilemtechlett.2022.174
    [15] Sarabian M, Babaee H, Laksari K, (2022) PINN for brain hemodynamic predictions using medical imaging. IEEE Trans Med Imaging 41: 2285–2303. https://doi.org/10.1109/TMI.2022.3161653 doi: 10.1109/TMI.2022.3161653
    [16] Kissas G, Yang Y, Hwuang E, Witschey WR, Detre JA, Perdikaris P, (2020) Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using PINN. Comput Methods Appl Mech Eng 358: 112623. https://doi.org/10.1016/j.cma.2019.112623 doi: 10.1016/j.cma.2019.112623
    [17] Lu L, Meng X, Mao Z, Karniadakis GE, (2020) A deep learning library for solving differential equations. SIAM Rev 63: 208–228. https://doi.org/10.1137/19M1274067 doi: 10.1137/19M1274067
    [18] Cuomo S, Schiano Di Cola V, Giampaolo F, Rozza G, Raissi M, Piccialli F, (2022) Scientific machine learning through physics-informed neural networks: Where we are and what's next. J Sci Comput 92: 88. https://doi.org/10.1007/s10915-022-01939-z doi: 10.1007/s10915-022-01939-z
    [19] Shaier S, Raissi M, Seshaiyer P, (2021) Data-driven approaches for predicting spread of infectious diseases through DINNs: Disease informed neural networks, preprint, arXiv: 2110.05445. https://doi.org/10.48550/arXiv.2110.05445
    [20] Chen X, Li F, Lian H, Wang P, (2025) A deep learning framework for predicting the spread of diffusion diseases. Electron Res Arch 33(4): 2475–2502.
    [21] Yin S, Wu J, Song P, (2023) Optimal control by deep learning techniques and its applications on epidemic models. J Math Biol 86: 36. https://doi.org/10.1007/s00285-023-01873-0 doi: 10.1007/s00285-023-01873-0
    [22] Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A, (2015) Epidemic processes in complex networks. Rev Mod Phys 87: 925–979. https://doi.org/10.1103/RevModPhys.87.925 doi: 10.1103/RevModPhys.87.925
    [23] Liu W, Hethcote HW, Levin SA, (1987) Dynamical behavior of epidemiological models with nonlinear incidence rates. J Math Biol 25: 359–380. https://doi.org/10.1007/BF00277162 doi: 10.1007/BF00277162
    [24] Liu W, Levin SA, Iwasa Y, (1986) Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J Math Biol 23: 187–204. https://doi.org/10.1007/BF00276956 doi: 10.1007/BF00276956
    [25] Sun GQ, (2012) Pattern formation of an epidemic model with diffusion. Nonlinear Dyn 69: 1097–1104. https://doi.org/10.1007/s11071-012-0330-5 doi: 10.1007/s11071-012-0330-5
    [26] Garvie MR, (2007) Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in MATLAB. Bull Math Biol 69: 931–956. https://doi.org/10.1007/s11538-006-9062-3 doi: 10.1007/s11538-006-9062-3
    [27] Arif MS, Abodayeh K, Nawaz Y, (2025) A hybrid finite difference approach for solving fuzzy stochastic SIR-$\beta$ model with diffusion and incidence rate. Eur J Pure Appl Math 18: 6292. https://doi.org/10.29020/nybg.ejpam.v18i3.6292 doi: 10.29020/nybg.ejpam.v18i3.6292
    [28] Madzvamuse A, Chung AHW, (2014) Fully implicit time-step schemes and non-linear solvers for systems of reaction-diffusion equations. Appl Math Comput 244: 361–374. https://doi.org/10.1016/j.amc.2014.07.004 doi: 10.1016/j.amc.2014.07.004
    [29] Boscarino S, Filbet F, Russo G, (2016) High order semi-implicit schemes for time dependent partial differential equations. J Sci Comput 68: 975–1001. https://doi.org/10.1007/s10915-016-0168-y doi: 10.1007/s10915-016-0168-y
    [30] Bochacik T, Przybyłowicz P, Stępień Ł, (2025) Convergence and stability of randomized implicit two-stage Runge-Kutta schemes. BIT Numer Math 65: 7. https://doi.org/10.1007/s10543-024-01050-9 doi: 10.1007/s10543-024-01050-9
    [31] Salah M, Matbuly MS, Civalek O, Ragb O, (2023) Calculation of four-dimensional unsteady gas flow via different quadrature schemes and Runge-Kutta 4th order method. Adv Appl Math Mech 15: 1–22. https://doi.org/10.4208/aamm.OA-2021-0373 doi: 10.4208/aamm.OA-2021-0373
    [32] Kelleci A, Yıldırım A, (2011) Numerical solution of the system of nonlinear ordinary differential equations arising in kinetic modeling of lactic acid fermentation and epidemic model. Int J Numer Methods Biomed Eng 27: 585–594. https://doi.org/10.1002/cnm.1321 doi: 10.1002/cnm.1321
    [33] Zhang Q, Wu C, Kahana A, Karniadakis GE, Kim Y, Li Y, Panda P, (2025) Artificial to spiking neural networks conversion with calibration in scientific machine learning. SIAM J Sci Comput 47: C559–C577. https://doi.org/10.1137/24M1643232 doi: 10.1137/24M1643232
    [34] Jiang Q, Gou Z, (2025) Solutions to two-and three-dimensional incompressible flow fields leveraging a physics-informed deep learning framework and Kolmogorov-Arnold networks. Int J Numer Methods Fluids 97: 665–673. https://doi.org/10.1002/fld.5374 doi: 10.1002/fld.5374
    [35] Chang L, Wang X, Sun G, Wang Z, Jin Z, (2024) A time independent least squares algorithm for parameter identification of Turing patterns in reaction-diffusion systems. J Math Biol 88: 5. https://doi.org/10.1007/s00285-023-02026-z doi: 10.1007/s00285-023-02026-z
    [36] Chang LL, Gao S, Wang Z, (2022) Optimal control of pattern formations for an SIR reaction–diffusion epidemic model. J Theor Biol 111003. https://doi.org/10.1016/j.jtbi.2022.111003 doi: 10.1016/j.jtbi.2022.111003
    [37] Chang LL, Gong W, Jin Z, Sun GQ, (2022) Sparse optimal control of pattern formations for an SIR reaction-diffusion epidemic model. SIAM J Appl Math 82: 1764–1790. https://doi.org/10.1137/22M1472127 doi: 10.1137/22M1472127
    [38] Zhou R, Wu S, Bao X, (2024) Propagation dynamics for space-time periodic and degenerate systems with nonlocal dispersal and delay. J Nonlinear Sci 34: 69. https://doi.org/10.1007/s00332-024-10048-0 doi: 10.1007/s00332-024-10048-0
    [39] Zhang X, Wu S, Zou L, Hsu C, (2025) Spreading dynamics for a time-periodic nonlocal dispersal epidemic model with delay and vaccination. J Math Biol 90: 54. https://doi.org/10.1007/s00285-025-02214-z doi: 10.1007/s00285-025-02214-z
    [40] Cao F, Fan K, Zhang H, Yuan D, Liu J, (2025) Adaptive residual splitting in PINNs for solving complex PDEs. J Comput Phys 114297. https://doi.org/10.1016/j.jcp.2025.114297 doi: 10.1016/j.jcp.2025.114297
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(395) PDF downloads(13) Cited by(0)

Article outline

Figures and Tables

Figures(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog