Research article Special Issues

Managing extreme cryptocurrency volatility in algorithmic trading: EGARCH via genetic algorithms and neural networks

  • Received: 26 November 2023 Revised: 13 March 2024 Accepted: 21 March 2024 Published: 26 March 2024
  • JEL Codes: C63, C45, G15, G12

  • The blockchain ecosystem has seen a huge growth since 2009, with the introduction of Bitcoin, driven by conceptual and algorithmic innovations, along with the emergence of numerous new cryptocurrencies. While significant attention has been devoted to established cryptocurrencies like Bitcoin and Ethereum, the continuous introduction of new tokens requires a nuanced examination. In this article, we contribute a comparative analysis encompassing deep learning and quantum methods within neural networks and genetic algorithms, incorporating the innovative integration of EGARCH (Exponential Generalized Autoregressive Conditional Heteroscedasticity) into these methodologies. In this study, we evaluated how well Neural Networks and Genetic Algorithms predict "buy" or "sell" decisions for different cryptocurrencies, using F1 score, Precision, and Recall as key metrics. Our findings underscored the Adaptive Genetic Algorithm with Fuzzy Logic as the most accurate and precise within genetic algorithms. Furthermore, neural network methods, particularly the Quantum Neural Network, demonstrated noteworthy accuracy. Importantly, the X2Y2 cryptocurrency consistently attained the highest accuracy levels in both methodologies, emphasizing its predictive strength. Beyond aiding in the selection of optimal trading methodologies, we introduced the potential of EGARCH integration to enhance predictive capabilities, offering valuable insights for reducing risks associated with investing in nascent cryptocurrencies amidst limited historical market data. This research provides insights for investors, regulators, and developers in the cryptocurrency market. Investors can utilize accurate predictions to optimize investment decisions, regulators may consider implementing guidelines to ensure fairness, and developers play a pivotal role in refining neural network models for enhanced analysis.

    Citation: David Alaminos, M. Belén Salas, Ángela M. Callejón-Gil. Managing extreme cryptocurrency volatility in algorithmic trading: EGARCH via genetic algorithms and neural networks[J]. Quantitative Finance and Economics, 2024, 8(1): 153-209. doi: 10.3934/QFE.2024007

    Related Papers:

  • The blockchain ecosystem has seen a huge growth since 2009, with the introduction of Bitcoin, driven by conceptual and algorithmic innovations, along with the emergence of numerous new cryptocurrencies. While significant attention has been devoted to established cryptocurrencies like Bitcoin and Ethereum, the continuous introduction of new tokens requires a nuanced examination. In this article, we contribute a comparative analysis encompassing deep learning and quantum methods within neural networks and genetic algorithms, incorporating the innovative integration of EGARCH (Exponential Generalized Autoregressive Conditional Heteroscedasticity) into these methodologies. In this study, we evaluated how well Neural Networks and Genetic Algorithms predict "buy" or "sell" decisions for different cryptocurrencies, using F1 score, Precision, and Recall as key metrics. Our findings underscored the Adaptive Genetic Algorithm with Fuzzy Logic as the most accurate and precise within genetic algorithms. Furthermore, neural network methods, particularly the Quantum Neural Network, demonstrated noteworthy accuracy. Importantly, the X2Y2 cryptocurrency consistently attained the highest accuracy levels in both methodologies, emphasizing its predictive strength. Beyond aiding in the selection of optimal trading methodologies, we introduced the potential of EGARCH integration to enhance predictive capabilities, offering valuable insights for reducing risks associated with investing in nascent cryptocurrencies amidst limited historical market data. This research provides insights for investors, regulators, and developers in the cryptocurrency market. Investors can utilize accurate predictions to optimize investment decisions, regulators may consider implementing guidelines to ensure fairness, and developers play a pivotal role in refining neural network models for enhanced analysis.



    加载中


    [1] Abakah EJA, Gil-Alana LA, Madigu G, et al. (2020) Volatility persistence in cryptocurrency markets under structural breaks. Int Rev Econ Financ 69: 680–691. https://doi.org/10.1016/j.iref.2020.06.035. doi: 10.1016/j.iref.2020.06.035
    [2] Abdallah A, Maarof MA, Zainal A (2016) Fraud detection system: A survey. J Netw Comput Appl 68: 90–113. https://doi.org/10.1016/j.jnca.2016.04.007 doi: 10.1016/j.jnca.2016.04.007
    [3] Adcock R, Gradojevic N (2019) Non-fundamental, non-parametric Bitcoin forecasting. Physica A 531: 121727. https://doi.org/10.1016/j.physa.2019.121727 doi: 10.1016/j.physa.2019.121727
    [4] Akyildirim E, Goncu A, Sensoy A (2021) Prediction of cryptocurrency returns using machine learning. Ann Oper Res 297: 3–36. https://doi.org/10.1007/s10479-020-03575-y doi: 10.1007/s10479-020-03575-y
    [5] Alameer Z, Elaziz MA, Ewees AA, et al. (2019) Forecasting copper prices using hybrid adaptive neuro-fuzzy inference system and genetic algorithms. Nat Resour Res 28: 1385–1401. https://doi.org/10.1007/s11053-019-09473-w doi: 10.1007/s11053-019-09473-w
    [6] Alaminos D, Esteban I, Salas MB (2023) Neural networks for estimating Macro Asset Pricing model in football clubs. Intell Syst Account Financ Manage 30: 57–75. https://doi.org/10.1002/isaf.1532 doi: 10.1002/isaf.1532
    [7] Alaminos D, Esteban I, Salas MB, et al. (2020) Quantum Neural Networks for Forecasting Inflation Dynamics. J Sci Ind Res 79: 103–106. https://doi.org/10.56042/jsir.v79i2.68439 doi: 10.56042/jsir.v79i2.68439
    [8] Alaminos D, Salas MB, Fernandez-Gámez MA (2022) Forecasting Stock Market Crashes via Real-Time Recession Probabilities: A Quantum Computing Approach. Fractals 30: 1–16. https://doi.org/10.1142/S0218348X22401624 doi: 10.1142/S0218348X22401624
    [9] Alonso-Monsalve S, Suárez-Cetrulo AL, Cervantes A, et al. (2020) Convolution on neural networks for high-frequency trend prediction of cryptocurrency exchange rates using technical indicators. Expert Syst Appl 149: 113250. https://doi.org/10.1016/j.eswa.2020.113250 doi: 10.1016/j.eswa.2020.113250
    [10] Aloud ME, Alkhamees N (2021) Intelligent Algorithmic Trading Strategy Using Reinforcement Learning and Directional Change. IEEE Access 9: 114659–114671. https://doi.org/10.1109/ACCESS.2021.3105259 doi: 10.1109/ACCESS.2021.3105259
    [11] Appel G (2005) Technical analysis: power tools for active investors, FT Press.
    [12] Arévalo A, Niño J, Hernández G, et al. (2016) High-frequency trading strategy based on deep neural networks. In International conference on intelligent computing, 424–436. Springer, Cham. https://doi.org/10.1007/978-3-319-42297-8_40
    [13] Atsalakis GS, Atsalaki IG, Pasiouras F, et al. (2019) Bitcoin price forecasting with neuro-fuzzy techniques. Eur J Oper Res 276: 770–780. https://doi.org/10.1016/j.ejor.2019.01.040 doi: 10.1016/j.ejor.2019.01.040
    [14] Bhattacharyya S, Jha S, Tharakunnel K, et al. (2011) Data mining for credit card fraud: A comparative study. Decis support syst 50: 602–613. https://doi.org/10.1016/j.dss.2010.08.008 doi: 10.1016/j.dss.2010.08.008
    [15] Bianchi D, Babiak M, Dickerson A (2022) Trading volume and liquidity provision in cryptocurrency markets. J Bank Financ 142: 106547. https://doi.org/10.1016/j.jbankfin.2022.106547 doi: 10.1016/j.jbankfin.2022.106547
    [16] Binns R (2018) Fairness in machine learning: Lessons from political philosophy. In Conference on Fairness, Accountability and Transparency, 149–159. PMLR.
    [17] Bishop CM (1995) Neural networks for pattern recognition, Oxford university press. https://doi.org/10.1093/oso/9780198538493.001.0001
    [18] Borovkova S, Tsiamas I (2019) An ensemble of LSTM neural networks for high-frequency stock market classification. J Forecasting 38: 600–619. https://doi.org/10.1002/for.2585 doi: 10.1002/for.2585
    [19] Bouri E, Gupta R, Roubaud D (2019) Herding behaviour in cryptocurrencies. Financ Res Lett 29: 216–221. https://doi.org/10.1016/j.frl.2018.07.008. doi: 10.1016/j.frl.2018.07.008
    [20] Bouri E, Lau CKM, Lucey BM, et al. (2019) Trading volume and the predictability of return and volatility in the cryptocurrency market. Financ Res Lett 29: 340–346. https://doi.org/10.1016/j.frl.2018.08.015 doi: 10.1016/j.frl.2018.08.015
    [21] Bouri E, Lucey B, Roubaud D (2020) The volatility surprise of leading cryptocurrencies: Transitory and permanent linkages. Financ Res Lett 33: 101188. https://doi.org/10.1016/j.frl.2019.05.006 doi: 10.1016/j.frl.2019.05.006
    [22] Bouri E, Shahzad S, Roubaud D (2019) Co-explosivity in the cryptocurrency market. Financ Res Lett 29: 178–183. https://doi.org/10.1016/j.frl.2018.07.005 doi: 10.1016/j.frl.2018.07.005
    [23] Briola A, Turiel J, Marcaccioli R, et al. (2021) Deep reinforcement learning for active high frequency trading.
    [24] Bustos O, Pomares-Quimbaya A (2020) Stock market movement forecast: A systematic review. Expert Syst Appl 156: 113464. https://doi.org/10.1016/j.eswa.2020.113464 doi: 10.1016/j.eswa.2020.113464
    [25] Cao M, Shang F (2010) Double chains quantum genetic algorithm with application in training of process neural networks. In 2010 Second International Workshop on Education Technology and Computer Science, 19–22, IEEE. https://doi.org/10.1109/ETCS.2010.88
    [26] Cheng Y, Zheng Z, Wang J, et al. (2019) Attribute reduction based on genetic algorithm for the coevolution of meteorological data in the industrial internet of things. Wirel Commun Mob Com 2019: 1–8. https://doi.org/10.1155/2019/3525347 doi: 10.1155/2019/3525347
    [27] Chih-Hung W, Gwo-Hshiung T, Rong-Ho L (2009) A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst Appl 36: 4725–4735. https://doi.org/10.1016/j.eswa.2008.06.046 doi: 10.1016/j.eswa.2008.06.046
    [28] Corbet S, Eraslan V, Lucey B, et al. (2019) The effectiveness of technical trading rules in cryptocurrency markets. Financ Res Lett 31: 32–37. https://doi.org/10.1016/j.frl.2019.04.027 doi: 10.1016/j.frl.2019.04.027
    [29] Corbet S, Katsiampa P (2018). Asymmetric mean reversion of Bitcoin price returns. Int Rev Financ Anal. https://doi.org/10.1016/j.irfa.2018.10.004. doi: 10.1016/j.irfa.2018.10.004
    [30] Corbet S, Larkin CJ, Lucey BM, et al. (2020) Kodakcoin: a blockchain revolution or exploiting a potential cryptocurrency bubble? Appl Econ Lett 27: 518–524. https://doi.org/10.1080/13504851.2019.1637512 doi: 10.1080/13504851.2019.1637512
    [31] Demir E, Gozgor G, Lau CKM, et al. (2018) Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation. Financ Res Lett 26: 145–149. https://doi.org/10.1016/j.frl.2018.01.005 doi: 10.1016/j.frl.2018.01.005
    [32] Demir S, Mincev K, Kok K, et al. (2019) Introducing technical indicators to electricity price forecasting: A feature engineering study for linear, ensemble, and deep machine learning models. Appl Sci 10: 255. https://doi.org/10.3390/app10010255 doi: 10.3390/app10010255
    [33] Drachal K, Pawłowski M (2021) A review of the applications of genetic algorithms to forecasting prices of commodities. Economies 9: 6. https://doi.org/10.3390/economies9010006 doi: 10.3390/economies9010006
    [34] Drezner Z, Misevičius A (2013) Enhancing the performance of hybrid genetic algorithms by differential improvement. Com Oper Res 40: 1038–1046. https://doi.org/10.1016/j.cor.2012.10.014 doi: 10.1016/j.cor.2012.10.014
    [35] Egger DJ, Gambella C, Marecek J, et al. (2020) Quantum computing for finance: State-of-the-art and future prospects. IEEE Trans Quantum Eng 1: 1–24. https://doi.org/10.1109/TQE.2020.3030314 doi: 10.1109/TQE.2020.3030314
    [36] Fang F, Ventre C, Basios M, et al. (2022) Cryptocurrency trading: a comprehensive survey. Financial Innovation 8: 1–59. https://doi.org/10.1186/s40854-021-00321-6 doi: 10.1186/s40854-021-00321-6
    [37] Feng W, Wang Y, Zhang Z (2018) Informed trading in the Bitcoin market. Financ Res Lett 26: 63–70. https://doi.org/10.1016/j.frl.2017.11.009. doi: 10.1016/j.frl.2017.11.009
    [38] Fernández-Blanco P, Bodas-Sagi DJ, Soltero FJ, et al. (2008) Technical market indicators optimization using evolutionary algorithms. In Proceedings of the 10th annual conference companion on Genetic and evolutionary computation. 1851–1858. https://doi.org/10.1145/1388969.1388989
    [39] Frino A, Garcia M, Zhou Z (2020) Impact of algorithmic trading on speed of adjustment to new information: Evidence from interest rate derivatives. J Futures Mark 40: 749–760. https://doi.org/10.1002/fut.22104 doi: 10.1002/fut.22104
    [40] Gandal N, Hamrick J, Moore T, et al. (2018) Price manipulation in the Bitcoin ecosystem. J Monetary Econ 95: 86–96. https://doi.org/10.1016/j.jmoneco.2017.12.004 doi: 10.1016/j.jmoneco.2017.12.004
    [41] Gao X, Li X, Zhao B, et al. (2019) Short-term electricity load forecasting model based on EMD-GRU with feature selection. Energies 12: 1140. https://doi.org/10.3390/en12061140 doi: 10.3390/en12061140
    [42] García EAC (2004) An Application of Gibbons-Ross-Shanken'S Test of The Efficiency of A Given Portfolio. Revista Mexicana de Economía y Finanzas Nueva Época REMEF (Mexican J Econ Financ) 3. https://doi.org/10.21919/remef.v3i1.161
    [43] Gerritsen DF, Bouri E, Ramezanifar E, et al. (2020) The profitability of technical trading rules in the bitcoin market. Financ Res Lett 34: 101263. https://doi.org/10.1016/j.frl.2019.08.011 doi: 10.1016/j.frl.2019.08.011
    [44] Giudici P, Abu-Hashish I (2019). What determines Bitcoin exchange prices? a network var approach. Financ Res Lett 28: 309–318. https://doi.org/10.1016/j.frl.2018.05.013. doi: 10.1016/j.frl.2018.05.013
    [45] Goldberg DE (1990) A note on Boltzmann tournament selection for genetic algorithms and populationoriented simulated annealing. Complex Syst 4: 44
    [46] Goldblum M, Schwarzschild A, Patel A, et al. (2021) Adversarial attacks on machine learning systems for high-frequency trading. In Proceedings of the Second ACM International Conference on AI in Finance, 1–9. https://doi.org/10.1145/3490354.3494367
    [47] Gonçalves DSCP (2019) Quantum neural machine learning: Theory and experiments. Machine Learning in Medicine and Biology, 95–115. IntechOpen. https://doi.org/10.5772/intechopen.84149 doi: 10.5772/intechopen.84149
    [48] Goodell JW, Kumar S, Lim WM, et al. (2021) Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis. J Behav Expl Financ 32: 100577. https://doi.org/10.1016/j.jbef.2021.100577 doi: 10.1016/j.jbef.2021.100577
    [49] Gradojevic N, Kukolj D, Adcock R, et al. (2023) Forecasting Bitcoin with technical analysis: A not-so-random forest? Int J Forecast 39: 1–17. https://doi.org/10.1016/j.ijforecast.2021.08.001 doi: 10.1016/j.ijforecast.2021.08.001
    [50] Granville JE (1976). Granville's new strategy of daily stock market timing for maximum profit. Prentice-Hall. Hoboken, New Jersey, U.S.
    [51] Greaves A, Au B (2015) Using the Bitcoin Transaction graph to predict the price of bitcoin. Available from: htpp://snap.standord.edu/class/cs224w-2015/projects_2015/.
    [52] Griffin JM, Shams A (2018) Is Bitcoin really un-tethered? SSRN. Available from: https://ssrn.com/abstract=3195066.
    [53] Grobys K, Sapkota N (2020) Predicting cryptocurrency defaults. Appl Econ 52: 5060–5076. https://doi.org/10.1080/00036846.2020.1752903 doi: 10.1080/00036846.2020.1752903
    [54] Grover LK (2005) Fixed-point quantum search. Phys Rev Lett 95: 150501. https://doi.org/10.1103/PhysRevLett.113.210501 doi: 10.1103/PhysRevLett.113.210501
    [55] Guerreschi GG (2019) Repeat-until-success circuits with fixed-point oblivious amplitude amplification. Phys Rev A 99: 022306. https://doi.org/10.1103/PhysRevA.99.022306 doi: 10.1103/PhysRevA.99.022306
    [56] Guidi B, Michienzi A (2022) Social games and blockchain: exploring the metaverse of decentraland. In 2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops, 199–204. https://doi.org/10.1109/ICDCSW56584.2022.00045
    [57] Gupta N, Jalal AS (2020) Integration of textual cues for fine-grained image captioning using deep CNN and LSTM. Neural Comput Appl 32: 17899–17908. https://doi.org/10.1007/s00521-019-04515-z doi: 10.1007/s00521-019-04515-z
    [58] Hasan M, Naeem MA, Arif M, et al. (2022) Liquidity connectedness in cryptocurrency market. Financial Innovation 8: 1–25. https://doi.org/10.1186/s40854-021-00308-3 doi: 10.1186/s40854-021-00308-3
    [59] Hassan MK, Hudaefi FA, Caraka RE (2022) Mining netizen's opinion on cryptocurrency: sentiment analysis of Twitter data. Stud Econ Financ 39: 365–385. https://doi.org/ 10.1108/SEF-06-2021-0237 doi: 10.1108/SEF-06-2021-0237
    [60] Hendershott T, Jones CM, Menkveld AJ (2011) Does algorithmic trading improve liquidity? J Financ 66: 1–33. https://doi.org/10.1111/j.1540-6261.2010.01624.x doi: 10.1111/j.1540-6261.2010.01624.x
    [61] Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9: 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735
    [62] Huang B, Huan Y, Xu LD, et al. (2019) Automated trading systems statistical and machine learning methods and hardware implementation: a survey. Enterp Inf Syst 13: 132–144. https://doi.org/10.1080/17517575.2018.1493145 doi: 10.1080/17517575.2018.1493145
    [63] Huang CW, Narayanan SS (2017) Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In 2017 IEEE international conference on multimedia and expo (ICME), 583–588. IEEE. https://doi.org/10.1109/ICME.2017.8019296
    [64] Huang JZ, Huang W, Ni J (2019). Predicting Bitcoin returns using high-dimensional technical indicators. J Financ Data Sci 5:140–155. https://doi.org/10.1016/j.jfds.2018.10.001 doi: 10.1016/j.jfds.2018.10.001
    [65] Jia WU, Chen WANG, Xiong L, et al. (2019) Quantitative trading on stock market based on deep reinforcement learning. In 2019 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE. https://doi.org/10.1109/IJCNN.2019.8851831 doi: 10.1109/IJCNN.2019.8851831
    [66] Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimedia Tools Appl 80: 8091–8126. https://doi.org/10.1007/s11042-020-10139-6 doi: 10.1007/s11042-020-10139-6
    [67] Katsiampa P, Corbet S, Lucey B (2019). Volatility spillover effects in leading cryptocurrencies: a BEKK-MGARCH analysis. Financ Res Lett 29: 68–74. https://doi.org/10.1016/j.frl.2019.03.009. doi: 10.1016/j.frl.2019.03.009
    [68] Kim BS, Kim TG (2019). Cooperation of simulation and data model for performance analysis of complex systems. Int J Simulation Model 18: 608–619. https://doi.org/10.2507/IJSIMM18(4)491 doi: 10.2507/IJSIMM18(4)491
    [69] King T, Koutmos D (2021) Herding and feedback trading in cryptocurrency markets. Ann Oper Res 300: 79–96. https://doi.org/10.1007/s10479-020-03874-4 doi: 10.1007/s10479-020-03874-4
    [70] Kirkpatrick S, Gelatt CDJ, Vecchi MP (1983) Optimization by simulated annealing. Science 220: 671–680. https://doi.org/10.1126/science.220.4598.671 doi: 10.1126/science.220.4598.671
    [71] Klaus T, Elzweig B (2017) The market impact of high-frequency trading systems and potential regulation. Law Financ Mark Rev 11: 13–19. https://doi.org/10.1080/17521440.2017.1336397 doi: 10.1080/17521440.2017.1336397
    [72] Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI'95) 2: 1137–1143.
    [73] Kristoufek L (2015) What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis. PLoS One 10: e0123923. https://doi.org/10.1371/journal.pone.0123923 doi: 10.1371/journal.pone.0123923
    [74] Lahmiri S, Bekiros S (2019) Cryptocurrency forecasting with deep learning chaotic neural networks. Chaos Soliton Fract 118: 35–40. https://doi.org/10.1016/j.chaos.2018.11.014 doi: 10.1016/j.chaos.2018.11.014
    [75] Lane GC (1984) Lane's stochastics. Tech Anal Stocks Commodities 2: 80.
    [76] LeCun Y, Bottou L, Bengio Y, et al. (1998) Gradient-based learning applied to document recognition. Proceedings of the IEEE 86: 2278–2324. https://doi.org/10.1109/5.726791 doi: 10.1109/5.726791
    [77] Lewis J, Hart E, Ritchie G (1998) A comparison of dominance mechanisms and simple mutation on non-stationary problems. Parallel Problem Solving from Nature (PPSN V) 1498: 139–148. https://doi.org/10.1007/BFb0056857 doi: 10.1007/BFb0056857
    [78] Livieris IE, Pintelas E, Stavroyiannis S, et al. (2020) Ensemble deep learning models for forecasting cryptocurrency time-series. Algorithms 13: 121. https://doi.org/10.3390/a13050121 doi: 10.3390/a13050121
    [79] Lu W, Li J, Li Y, et al. (2020) A CNN-LSTM-based model to forecast stock prices. Complexity https://doi.org/10.1155/2020/6622927 doi: 10.1155/2020/6622927
    [80] Ma M, Mao Z (2019) Deep recurrent convolutional neural network for remaining useful life prediction. In 2019 IEEE International Conference on Prognostics and Health Management (ICPHM), 1–4. IEEE. https://doi.org/10.1109/ICPHM.2019.8819440
    [81] Madan I, Saluja S, Zhao A (2015) Automated Bitcoin trading via machine learning algorithms. Available from: http://cs229.stanford.edu/projects2014.html.
    [82] Maghsoodi AI (2023) Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system. Omega 115: 102787. https://doi.org/10.1016/j.omega.2022.102787 doi: 10.1016/j.omega.2022.102787
    [83] Mahajan RP (2011) Hybrid quantum inspired neural model for commodity price prediction. In 13th International Conference on Advanced Communication Technology (ICACT2011), 1353–1357. IEEE.
    [84] Makarov I, Schoar A (2022) Cryptocurrencies and Decentralized Finance (DeFi). Brookings Pap Econ Ac 2022: 141–215. https://doi.org/10.1353/eca.2022.0014 doi: 10.1353/eca.2022.0014
    [85] Makrichoriti P, Moratis G (2016) BitCoin's roller coaster: systemic risk and market sentiment. http://dx.doi.org/10.2139/ssrn.2808096.
    [86] Makridis CA, Fröwis M, Sridhar K, et al. (2023) The rise of decentralized cryptocurrency exchanges: evaluating the role of airdrops and governance tokens. J Corp Financ 79: 102358. https://doi.org/10.1016/j.jcorpfin.2023.102358 doi: 10.1016/j.jcorpfin.2023.102358
    [87] Marzo GD, Pandolfelli F, Servedio VD (2022) Modeling innovation in the cryptocurrency ecosystem. Sci Reports 12: 1–12. https://doi.org/10.1038/s4159802216924-7 doi: 10.1038/s4159802216924-7
    [88] McNally S, Roche J, Caton S (2018) Predicting the price of bitcoin using machine learning. In 2018 26th euromicro international conference on parallel, distributed and network-based processing (PDP). IEEE, 339–343. https://doi.org/10.1109/PDP2018.2018.00060
    [89] Mensi W, Al-Yahyaee K, Kang S (2019) Structural breaks and double long memory of cryptocurrency prices: a comparative analysis from Bitcoin and ethereum. Financ Res Lett 29: 222–230. https://doi.org/10.1016/j.frl.2018.07.011. doi: 10.1016/j.frl.2018.07.011
    [90] Mensi W, Lee YJ, Al-Yahyaee KH, et al. (2019). Intraday downward/upward multifractality and long memory in Bitcoin and ethereum markets: an asymmetric multifractal detrended fluctuation analysis. Financ Res Lett. https://doi.org/10.1016/j.frl.2019.03.029. doi: 10.1016/j.frl.2019.03.029
    [91] Milana C, Ashta A (2021) Artificial intelligence techniques in finance and financial markets: a survey of the literature. Strat Change 30: 189–209. https://doi.org/10.1002/jsc.2403 doi: 10.1002/jsc.2403
    [92] Mirkamol S, Mansur E (2023) Cryptocurrencies as the Money of the Future, In: Koucheryavy, Y., Aziz, A. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems, NEW2AN 2022, Lecture Notes in Computer Science, 13772. https://doi.org/10.1007/978-3-031-30258-9_21
    [93] Murray-Rust D, Elsden C, Nissen B, et al. (2023) Blockchain and Beyond: Understanding Blockchains through Prototypes and Public Engagement. ACM T Comput Hum Int 29: 1–73. https://doi.org/10.1145/3503462 doi: 10.1145/3503462
    [94] Murphy JJ (1999) Technical analysis of the financial markets: A comprehensive guide to trading methods and application, Penguin. London, U.K.
    [95] Nakano M, Takahashi A, Takahashi S (2018) Bitcoin technical trading with artificial neural network. Physica A 510: 587–609. https://doi.org/10.1016/j.physa.2018.07.017 doi: 10.1016/j.physa.2018.07.017
    [96] Nica O, Piotrowska K, Schenk-Hoppé KR (2022) Cryptocurrencies: Concept and Current Market Structure. In Cryptofinance: A New Currency for a New Economy, 1–28. https://doi.org/10.1007/978-3-031-30258-9_21
    [97] Nielsen MA, Chuang IL (2001) Quantum computation and quantum information. Phys Today 54: 60. https://doi.org/10.1063/1.1428442 doi: 10.1063/1.1428442
    [98] Ortu M, Uras N, Conversano C, et al. (2022) On technical trading and social media indicators for cryptocurrency price classification through deep learning. Expert Syst Appl 198: 116804. https://doi.org/10.1016/j.eswa.2022.116804 doi: 10.1016/j.eswa.2022.116804
    [99] Othman AHA, Kassim S, Rosman RB, et al. (2020) Prediction accuracy improvement for Bitcoin market prices based on symmetric volatility information using artificial neural network approach. J Revenue Pricing Ma 19: 314–330. https://doi.org/10.1057/s41272-020-00229-3 doi: 10.1057/s41272-020-00229-3
    [100] Panagiotidis T, Stengos T, Vravosinos O (2018) On the determinants of Bitcoin returns: a lasso approach. Financ Res Lett 27: 235–240. https://doi.org/10.1016/j.frl.2018.03.016. doi: 10.1016/j.frl.2018.03.016
    [101] Patel MM, Tanwar S, Gupta R, et al. (2020) A deep learning-based cryptocurrency price prediction scheme for financial institutions. J Inf Security Appl 55: 102583. https://doi.org/10.1016/j.jisa.2020.102583 doi: 10.1016/j.jisa.2020.102583
    [102] Paule-Vianez J, Prado-Román C, Gómez-Martínez R (2020) Economic policy uncertainty and Bitcoin. Is Bitcoin a safe-haven asset? European Journal of Management and Business Economics 29 (3): 347-363. https://doi.org/10.1108/EJMBE-07-2019-0116 doi: 10.1108/EJMBE-07-2019-0116
    [103] Petukhina AA, Reule RC, Härdle WK (2021) Rise of the machines? Intraday high-frequency trading patterns of cryptocurrencies. Eur J Financ 27: 8–30. https://doi.org/10.1080/1351847X.2020.1789684 doi: 10.1080/1351847X.2020.1789684
    [104] Ping-Feng P, Chih-Shen L, Wei-Chiang H, et al. (2006) A hybrid support vector machine regression for exchange rate prediction. Int J Inf Manage Sci 17: 19–32.
    [105] Polasik M, Piotrowska AI, Wisniewski TP, et al. (2015) Price fluctuations and the use of Bitcoin: An empirical inquiry. International J Electron Comm 20: 9–49. https://doi.org/10.1080/10864415.2016.1061413 doi: 10.1080/10864415.2016.1061413
    [106] Qin L, Yu N, Zhao D (2018) Applying the convolutional neural network deep learning technology to behavioural recognition in intelligent video. Tehnički vjesnik 25: 528–535. https://doi.org/10.17559/TV-20171229024444 doi: 10.17559/TV-20171229024444
    [107] Refaeilzadeh P, Tang L, Liu H (2009) Cross-validation. Encyclopedia Database Syst, 532–538. https://doi.org/10.1007/978-0-387-39940-9_565. doi: 10.1007/978-0-387-39940-9_565
    [108] Ren YS, Ma CQ, Kong XL, et al. (2022) Past, present, and future of the application of machine learning in cryptocurrency research. Res Int Bus Financ 63: 101799. https://doi.org/10.1016/j.ribaf.2022.101799 doi: 10.1016/j.ribaf.2022.101799
    [109] Saad M, Choi J, Nyang D, et al. (2019) Toward characterizing blockchain-based cryptocurrencies for highly accurate predictions. IEEE Syst J 14: 321–332. https://doi.org/10.1109/INFCOMW.2018.8406859 doi: 10.1109/INFCOMW.2018.8406859
    [110] Sensoy A (2018) The inefficiency of Bitcoin revisited: a high-frequency analysis with alternative currencies. Finance Res Lett. https://doi.org/10.1016/j.frl.2018.04.002. doi: 10.1016/j.frl.2018.04.002
    [111] Sezer OB, Gudelek MU, Ozbayoglu AM (2020) Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Appl Soft Comput 90: 106181. https://doi.org/10.1016/j.asoc.2020.106181 doi: 10.1016/j.asoc.2020.106181
    [112] Sinha D (2022) https://www.analyticsinsight.net/top-10-new-cryptocurrencies-of-2022-to-buy-for-good-returns/.
    [113] Ta VD, Liu CM, Tadesse DA (2020) Portfolio optimization-based stock prediction using long-short term memory network in quantitative trading. Appl Sci 10: 437. https://doi.org/10.3390/app10020437 doi: 10.3390/app10020437
    [114] Tacchino F, Macchiavello C, Gerace D, et al. (2019) An artificial neuron implemented on an actual quantum processor. npj Quantum Inf 5: 1–8. https://doi.org/10.1038/s41534-019-0140-4 doi: 10.1038/s41534-019-0140-4
    [115] Trimborn S, Li M, Härdle WK (2020) Investing with cryptocurrencies—A liquidity constrained investment approach. J Financ Econometrics 18: 280–306. https://doi.org/10.1093/jjfinec/nbz016 doi: 10.1093/jjfinec/nbz016
    [116] Tsang WW H, Chong TTL (2009) Profitability of the on-balance volume indicator. Econ Bull 29: 2424–2431.
    [117] Vargas MR, Dos Anjos CE, Bichara GL, et al. (2018) Deep leaming for stock market prediction using technical indicators and financial news articles. In 2018 international joint conference on neural networks (IJCNN), 1–8. IEEE. https://doi.org/10.1109/IJCNN.2018.8489208
    [118] Vidal-Tomas D, Ibanez A, Farinos J (2018) Herding in the cryptocurrency market: cssd and csad approaches. Financ Res Lett. https://doi.org/10.1016/j.frl.2018.09.008 doi: 10.1016/j.frl.2018.09.008
    [119] Vidal-Tomás D (2022) Which cryptocurrency data sources should scholars use? Int Rev Financ Anal 81: 102061. https://doi.org/10.1016/j.irfa.2022.102061 doi: 10.1016/j.irfa.2022.102061
    [120] Vo A, Yost-Bremm C (2020) A high-frequency algorithmic trading strategy for cryptocurrency. J Comput Inf Syst 60: 555–568. https://doi.org/10.1080/08874417.2018.1552090 doi: 10.1080/08874417.2018.1552090
    [121] Wan KH, Dahlsten O, Kristjánsson H, et al. (2017) Quantum generalisation of feedforward neural networks. npj Quantum Inf 3: 1–8. https://doi.org/10.1038/s41534-017-0032-4 doi: 10.1038/s41534-017-0032-4
    [122] Wang J, Gao L, Zhang H, et al. (2011) Adaboost with SVM-based classifier for the classification of brain motor imagery tasks. In International Conference on Universal Access in Human-Computer Interaction, 629–634, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21663-3_68
    [123] Wang J, Ma F, Bouri E, et al. (2023) Which factors drive Bitcoin volatility: Macroeconomic, technical, or both? J Forecast 42: 970–988. https://doi.org/10.1002/for.2930 doi: 10.1002/for.2930
    [124] Weng F, Hou M, Zhang T, et al. (2018) Application of regularized extreme learning machine based on BIC criterion and genetic algorithm in iron ore price forecasting. In 2018 3rd International Conference on Modelling, Simulation and Applied Mathematics (MSAM 2018), 212–217. Atlantis Press. https://doi.org/10.2991/msam-18.2018.45
    [125] Westland JC (2023) Determinants of liquidity in cryptocurrency markets. Digital Financ 5: 261–293. https://doi.org/10.1007/s42521-022-00073-7 doi: 10.1007/s42521-022-00073-7
    [126] Wilder JW (1978) New concepts in technical trading systems, Bloomington, IN: Trend Research.
    [127] Yang B, Sun Y, Wang S (2020) A novel two-stage approach for cryptocurrency analysis. Int Rev Financ Anal. https://doi.org/10.1016/j.irfa.2020.101567. doi: 10.1016/j.irfa.2020.101567
    [128] Zhengyang W, Xingzhou L, Jinjin R, et al. (2019) Prediction of cryptocurrency price dynamics with multiple machine learning techniques. In Proceedings of the 2019 4th International Conference on Machine Learning Technologies, 15–19. https://doi.org/10.1145/3340997.3341008
    [129] Zhu Y, Dickinson D, Li J (2017) Analysis on the influence factors of Bitcoin's price based on VEC model. Financial Innovation 3: 3. https://doi.org/10.1186/s40854-017-0054-0. doi: 10.1186/s40854-017-0054-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1397) PDF downloads(148) Cited by(1)

Article outline

Figures and Tables

Figures(1)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog