Processing math: 70%
Research article Special Issues

Managing extreme cryptocurrency volatility in algorithmic trading: EGARCH via genetic algorithms and neural networks

  • The blockchain ecosystem has seen a huge growth since 2009, with the introduction of Bitcoin, driven by conceptual and algorithmic innovations, along with the emergence of numerous new cryptocurrencies. While significant attention has been devoted to established cryptocurrencies like Bitcoin and Ethereum, the continuous introduction of new tokens requires a nuanced examination. In this article, we contribute a comparative analysis encompassing deep learning and quantum methods within neural networks and genetic algorithms, incorporating the innovative integration of EGARCH (Exponential Generalized Autoregressive Conditional Heteroscedasticity) into these methodologies. In this study, we evaluated how well Neural Networks and Genetic Algorithms predict "buy" or "sell" decisions for different cryptocurrencies, using F1 score, Precision, and Recall as key metrics. Our findings underscored the Adaptive Genetic Algorithm with Fuzzy Logic as the most accurate and precise within genetic algorithms. Furthermore, neural network methods, particularly the Quantum Neural Network, demonstrated noteworthy accuracy. Importantly, the X2Y2 cryptocurrency consistently attained the highest accuracy levels in both methodologies, emphasizing its predictive strength. Beyond aiding in the selection of optimal trading methodologies, we introduced the potential of EGARCH integration to enhance predictive capabilities, offering valuable insights for reducing risks associated with investing in nascent cryptocurrencies amidst limited historical market data. This research provides insights for investors, regulators, and developers in the cryptocurrency market. Investors can utilize accurate predictions to optimize investment decisions, regulators may consider implementing guidelines to ensure fairness, and developers play a pivotal role in refining neural network models for enhanced analysis.

    Citation: David Alaminos, M. Belén Salas, Ángela M. Callejón-Gil. Managing extreme cryptocurrency volatility in algorithmic trading: EGARCH via genetic algorithms and neural networks[J]. Quantitative Finance and Economics, 2024, 8(1): 153-209. doi: 10.3934/QFE.2024007

    Related Papers:

    [1] Rina Su, Chunrui Zhang . The generation mechanism of Turing-pattern in a Tree-grass competition model with cross diffusion and time delay. Mathematical Biosciences and Engineering, 2022, 19(12): 12073-12103. doi: 10.3934/mbe.2022562
    [2] Yue Xing, Weihua Jiang, Xun Cao . Multi-stable and spatiotemporal staggered patterns in a predator-prey model with predator-taxis and delay. Mathematical Biosciences and Engineering, 2023, 20(10): 18413-18444. doi: 10.3934/mbe.2023818
    [3] Mingzhu Qu, Chunrui Zhang, Xingjian Wang . Analysis of dynamic properties on forest restoration-population pressure model. Mathematical Biosciences and Engineering, 2020, 17(4): 3567-3581. doi: 10.3934/mbe.2020201
    [4] Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857
    [5] Ranjit Kumar Upadhyay, Swati Mishra . Population dynamic consequences of fearful prey in a spatiotemporal predator-prey system. Mathematical Biosciences and Engineering, 2019, 16(1): 338-372. doi: 10.3934/mbe.2019017
    [6] Sourav Kumar Sasmal, Jeet Banerjee, Yasuhiro Takeuchi . Dynamics and spatio-temporal patterns in a prey–predator system with aposematic prey. Mathematical Biosciences and Engineering, 2019, 16(5): 3864-3884. doi: 10.3934/mbe.2019191
    [7] Swadesh Pal, Malay Banerjee, Vitaly Volpert . Spatio-temporal Bazykin’s model with space-time nonlocality. Mathematical Biosciences and Engineering, 2020, 17(5): 4801-4824. doi: 10.3934/mbe.2020262
    [8] Meiling Zhu, Huijun Xu . Dynamics of a delayed reaction-diffusion predator-prey model with the effect of the toxins. Mathematical Biosciences and Engineering, 2023, 20(4): 6894-6911. doi: 10.3934/mbe.2023297
    [9] Tingting Ma, Xinzhu Meng . Global analysis and Hopf-bifurcation in a cross-diffusion prey-predator system with fear effect and predator cannibalism. Mathematical Biosciences and Engineering, 2022, 19(6): 6040-6071. doi: 10.3934/mbe.2022282
    [10] Xiaomei Bao, Canrong Tian . Turing patterns in a networked vegetation model. Mathematical Biosciences and Engineering, 2024, 21(11): 7601-7620. doi: 10.3934/mbe.2024334
  • The blockchain ecosystem has seen a huge growth since 2009, with the introduction of Bitcoin, driven by conceptual and algorithmic innovations, along with the emergence of numerous new cryptocurrencies. While significant attention has been devoted to established cryptocurrencies like Bitcoin and Ethereum, the continuous introduction of new tokens requires a nuanced examination. In this article, we contribute a comparative analysis encompassing deep learning and quantum methods within neural networks and genetic algorithms, incorporating the innovative integration of EGARCH (Exponential Generalized Autoregressive Conditional Heteroscedasticity) into these methodologies. In this study, we evaluated how well Neural Networks and Genetic Algorithms predict "buy" or "sell" decisions for different cryptocurrencies, using F1 score, Precision, and Recall as key metrics. Our findings underscored the Adaptive Genetic Algorithm with Fuzzy Logic as the most accurate and precise within genetic algorithms. Furthermore, neural network methods, particularly the Quantum Neural Network, demonstrated noteworthy accuracy. Importantly, the X2Y2 cryptocurrency consistently attained the highest accuracy levels in both methodologies, emphasizing its predictive strength. Beyond aiding in the selection of optimal trading methodologies, we introduced the potential of EGARCH integration to enhance predictive capabilities, offering valuable insights for reducing risks associated with investing in nascent cryptocurrencies amidst limited historical market data. This research provides insights for investors, regulators, and developers in the cryptocurrency market. Investors can utilize accurate predictions to optimize investment decisions, regulators may consider implementing guidelines to ensure fairness, and developers play a pivotal role in refining neural network models for enhanced analysis.



    Mosquito-borne infectious diseases, a common type of vector-borne infections diseases, are primarily caused by pathogens, which are transmitted from mosquitoes to humans or other animals [1]. Mosquitoes are one of the most widely distributed vectors in the world, transmitting a variety of parasites and viruses. While the vector organisms may not develop the disease themselves, they serve as a means for the pathogen to spread among hosts. With mosquitoes found in various locations from tropical to temperate zones, mosquito-borne infections have a wide and diverse geographic distribution [2]. Diseases such as malaria, lymphatic filariasis, West Nile Virus, Zika virus, and dengue fever are commonly transmitted by mosquitoes, with no specific vaccine or medication available for treatment. These diseases pose a significant threat to human health and socio-economic development worldwide.

    Malaria is an infectious disease caused by a protozoan parasite that is mainly transmitted to humans through the bite of a mosquito [3]. The disease is widespread in tropical and subtropical regions, particularly in poorer areas of Africa, Asia, and Latin America. Globally, malaria remains a major public health problem, resulting in millions of infections and hundreds of thousands of deaths annually. Apart from malaria, as the classic mosquito-borne infectious disease, dengue fever also attracts considerable attention. Dengue fever is a serious infectious disease caused by the dengue virus, primarily transmitted to humans by the Aedes aegypti mosquito, but also through blood transfusion, organ transplantation, and vertical transmission [4]. In addition, both yellow fever and West Nile disease are also caused by mosquitoes carrying the corresponding viral infections [5,6]. Yellow fever is a rare disease among U.S. travelers. Conversely, West Nile virus is the primary mosquito-borne disease in the continental U.S., commonly transmitted through the bite of an infected mosquito.

    Research on mosquito-borne diseases has proliferated [7,8,9,10]. Mathematical models have been increasingly used for experimental and observational studies of different biological phenomena, and a wide range of techniques and applications have been developed to study epidemic diseases. For example, Newton and Reiter [8] developed a deterministic Susceptibility, Exposure, Infection, Resistance, and Removal (SEIR) model of dengue transmission to explore the behavior of epidemics and realistically reproduce epidemic transmission in immunologically unmade populations. Moreover, Pandey et al. [9] proposed a Caputo fractional order derivative mathematical model of dengue disease to study the transmission dynamics of the disease and to make reliable conclusions about the behavior of dengue epidemics. In addition, in order to investigate the effect of the vector on the dynamics of the disease, Shi and Zhao et al. [10] proposed a differential system with saturated incidence to model a vector-borne disease

    {˙SH=μK+dIHμSH(¯β1IV1+η1IV+¯β2IH1+η2IH)SH,˙IH=(¯β1IV1+η1IV+¯β2IH1+η2IH)SH(d+μ+γ)IH,˙RH=γIHμRH,˙SV=Λβ3IHSV1+η3IHmSV,˙IV=β3IHSV1+η3IHmIV, (1.1)

    the biological significance of the model (1.1) parameters are shown in Table 1. In this model, there are two populations, namely mosquito vector population and human host population. The mosquito vector population is divided into two categories, SV and IV, and N=SV+IV, while human host population is divided into three categories, SH,IH and RH. According to [10], it is reasonable to assume that the total number of human K=SH+IH+RH is a positive constant.

    Table 1.  Variables and parameters in model (1.1).
    Variables and Parameters Description
    SH number of the susceptible human host
    IH number of the infected human host
    RH number of the recovered human host
    K sum of the total human host
    SV density of the susceptible mosquito vectors
    IV density of the infected mosquito vectors
    N sum of the total mosquito vectors density
    ¯β1 biting rate of an infected vector on the susceptible human
    ¯β2 infection incidence between infected and susceptible hosts
    β3 infection ratio between infected hosts and susceptible vectors
    η1 determines the level at which the force of infection saturates
    η2 determines the level at which the force of infection saturates
    η3 determines the level at which the force of infection saturates
    γ the conversion rate of infected hosts to recovered hosts
    μ natural death rate of human
    Λ birth or immigration of human
    m natural death rate of mosquito vectors
    d disease-induced mortality of infected hosts

     | Show Table
    DownLoad: CSV

    Obviously, we can get that there always exists a compact positively invariant set for model (1.1) as follows

    Γ0={(SH,IH,RH,SV,IV)R5+:SH+IH+RHK,SV+IVΛm}. (1.2)

    The incidence rate has various forms and plays an important role in the study of epidemic dynamics. In addition to the saturated incidence used in model (1.1) of this paper, other forms of the incidence rate have been widely used. For example, Chong, Tchuenche, and Smith [11] studied a mathematical model of avian influenza with half-saturated incidence rate SbIbHb+Ib, SHIaHa+Ia and ShImHm+Im. In addition, Li et al. [12] also carried out numerical analysis of friteral order pine wilt disease model with bilinear incidence rate ShIv and IhSv. In order to make the model (1.1) have wider research significance and apply to more infectious diseases, we consider replacing the saturated incidence rate with the general incidence rate ϕ1(IV), ϕ2(IH) and ϕ3(IH), and then give the epidemic model with the general incidence as follows

    {˙SH=μ(KSH)¯β1ϕ1(IV)SH¯β2ϕ2(IH)SH+dIH,˙IH=¯β1ϕ1(IV)SH+¯β2ϕ2(IH)SHωIH,˙RH=γIHμRH,˙SV=Λβ3Φ3(IH)SVmSV˙IV=β3ϕ3(IH)SVmIV. (1.3)

    Furthermore, the incidence rate in model (1.3) are assumed to meet the following conditions

    (A1) ϕ1(0)=ϕ2(0)=ϕ3(0)=0,

    (A2) ϕ1(IV)0,ϕ2(IH)0,ϕ3(IH)0, IV,IH0,

    (A3) 0(IVϕ1(IV))m0,0(IHϕ2(IH))m0,0(IHϕ3(IH))m0, where m0 is a positive constant.

    By looking at the model (1.3), the following equation is valid, dNdt=ΛmN, that indicates, N(t)Λm as t. Note that SH+IH+RH=K, SV+IV=Λm, this means that RH=KSHIH, SV=ΛmIV, let ω=d+μ+γ, thus the host population and pathogen population system are equivalent to the following system

    {˙SH=μ(KSH)¯β1ϕ1(IV)SH¯β2ϕ2(IH)SH+dIH,˙IH=¯β1ϕ1(IV)SH+¯β2ϕ2(IH)SHωIH,˙IV=β3ϕ3(IH)(ΛmIV)mIV. (1.4)

    Noise is ubiquitous in real life, and the spread of infectious diseases will inevitably be affected by the environment and other external factors. With the unpredictable environment, some key parameters in the infectious disease model are inevitably affected by external environmental factors. Therefore, in order to more accurately describe the transmission process, we use a stochastic model to describe and predict the epidemic trend of diseases. For the perturbation term of the parameter, two methods are commonly used, including linear function of Gaussian noise and mean-reverting stochastic process [13,14,15,16,17]. For Gaussian noise, when the time interval is very small, the variance of the parameter will become infinite, indicating that the parameter has changed greatly in a short time, which is unreasonable [18]. So we mainly consider the mean-reverting Ornstein–Uhlenbeck process. Let βi(i=1,2) take the following form

    dβi(t)=αi(¯βiβi(t))dt+σidBi(t), (1.5)

    where αi represent the speed of reversal and σi represent the intensity of fluctuation. Solve the Eq (1.5), we can get

    βi(t)=eαitβi(0)+¯βi(1eαit)+σit0eαi(ts)dBi(s),

    where βi(0) is the initial value of βi(t). For arbitrary initial value βi(0), βi(t) follows a Gaussian distribution βi(t)N(¯βi,σ2i2αi)(t). Furthermore, setting βi(0)=¯βi, then the average value of βi(t) satisfies

    ¯βi(t)=1tt0βi(s)ds=¯βi+1tt0σiαi(1eαi(st))dBi(s),

    it is known that the mathematical expectation and variance of βi(t) are ¯βi and σ2it3+O(t2), respectively, where O(t2) is the higher order infinitesimal of t2. Obviously, the variance becomes zero instead of infinity as t0. This shows the universality of the Ornstein–Uhlenbeck process. Moreover, in order to ensure the positivity of the parameter values after adding the perturbation, the log-normal Ornstein-Uhlenbeck process for the noise perturbation to the transmission rates β1 and β2 of the system (1.4) is used, then following stochastic model is obtained

    {dSH(t)=[μ(KSH(t))β1ϕ1(IV(t))SH(t)β2(t)ϕ2(IH(t))SH(t)+dIH(t)]dt,dIH(t)=[β1(t)ϕ1(IV(t))SH(t)+β2(t)ϕ2(IH(t))SH(t)ωIH(t)]dt,dIV(t)=[β3ϕ3(IH(t))(ΛmIV(t))mIV(t)]dt,dlogβ1(t)=α1(log¯β1logβ1(t))dt+σ1dB1(t),dlogβ2(t)=α2(log¯β2logβ2(t))dt+σ2dB2(t). (1.6)

    In this paper, we extend the saturated incidence rate of model (1.1) to the general incidence ϕ1(IV), ϕ2(IH) and ϕ3(IH) to obtain models (1.3) and (1.4), and investigate the global asymptotic stability of the equilibrium point of model (1.3). Furthermore, we choose to modify the parameter β1 and β2 to satisfy the log-normal Ornstein-Uhlenbeck process to obtain the stochastic model (1.6), and study its stationary distribution, exponential extinction, probability density function near the quasi-equilibrium point and other dynamic properties.

    The rest of this article is organized as follows. In Section 2, some necessary mathematical symbols and lemmas are introduced. In Section 3, some conclusions of deterministic model (1.3) are obtained and the global stability of equilibrium point in this model is proved. In Section 4, we obtain some theoretical results for the stochastic system (1.6) where we prove the existence of a unique global positive solution for the stochastic system (1.6). In addition, through the ergodic properties of parameters βi(t),i=1,2 and the construction of a series of suitable Lyapunov functions, sufficient criterion for the existence of stationary distribution is obtained, which indicates that the disease in the system will persist. Next, we have sufficient conditions for the disease to go extinct. Further, we solve the corresponding matrix equation to obtain an expression for the probability density function near the quasi-local equilibrium point of the stationary distribution. Next, in Section 5, some theoretical results are verified by several numerical simulations. Finally, several conclusions are given in Section 6.

    To make it easier to understand, denote Rn+={(y1,y2,...yn)Rn|yj>0,1jn}. In represents the n-dimensional unit matrix. IA denotes the indicator function of set A, and it means that when xA,IA=1, otherwise, IA=0. If A is a matrix or vector, then AT stands for its inverse matrix, and A1 stands for its inverse matrix.

    Lemma 2.1. (Itˆo's formula [19]) Consider the n-dimensional stochastic differential equation

    dx(t)=f(t)dt+g(t)dB(t), (2.1)

    where B(t)=(B1(t),B2(t),...,Bn(t)) and it represents n-dimensional Brownian motion defined on a complete probability space, let L act on a function VC2,1(Rn×R+;R), then we have

    dV(x(t),t)=LV(x(t),t)dt+Vx(x(t),t)g(t)dB(t),a.s.,

    where

    LV(x(t),t)=Vt(x(t),t)+Vx(x(t),t)f(t)+12trace(gT(t)Vxx(x(t),t)g(t)),

    it represents the differential operator, and

    Vt=Vt,Vx=(Vx1,...,Vxn),Vxx=(2Vxixj)n×n.

    Lemma 2.2. (Ma et al. [20]) Letting ϕ(λ)=λn+a1λn1+a2λn2++an1λ+an is the characteristic polynomial of the square matrix A, the matrix A is called a Hurwitz matrix if and only if all characteristic roots of A are negative real parts, that is equivalent to the following conditions being true

    Hk=|a1a3a5a2k11a2a4a2k20a1a3a2k301a2a2k4000ak|>0,

    k=1,2,,n, among them j>n, replenishing definition aj=0.

    Lemma 2.3. ([21]) For five-dimension algebraic equation G20+LΘ+ΘLT=0, where Θ is a symmetric matrix, G0=diag(1,0,0,0,0) and

    L=(l1l2l3l4l51000001000001000000l6).

    If l1>0,l2>0,l3>0,l4>0 and l1l2l3l23l21l4>0, then the symmetric matrix Θ is a positive semi-definite matrix. Thus, we have

    Θ=(l1l4l2l3l0l3l000l3l0l1l0l3l0l1l000l1l0l3l1l2ll4000000),

    where l=2(l4l21l1l2l3+l23).

    Lemma 2.4. ([22,23]) For n-dimension stochastic process (1.6), X(t)Rn and its initial value X(0)Rn, if there is a bounded closed domain U in Rn with a regular boundary and

    lim inft+1tt0P(τ,X(0),U)dτ>0,a.s.,

    in which P(τ,X(0),U) represents the transition probability of X(t), then X(t) has an invariant probability measure on Rn, then it admits at least one stationary distribution.

    In this section, we focus on the local stability of the equilibrium point of the deterministic model (1.3). Initially, we verify the existence and uniqueness of equilibria model (1.3). We can calculate the basic reproduction number of the deterministic model (1.3) by the next generation method [24], define

    F=(¯β2ϕ2(0)K¯β1ϕ1(0)K00),V=(ω0β3Λϕ3(0)mm),

    therefore, the next generation matrix is

    FV1=(¯β2Kϕ2(0)ω+¯β1β3ΛKϕ1(0)ϕ3(0)m2ω¯β1ϕ1(0)Km00),

    then, the basic reproduction number for system (1.3) is obtained

    R0=ρ(FV1)=¯β2Kϕ2(0)ω+¯β1β3ΛKϕ1(0)ϕ3(0)m2ω.

    Based on the key value of the basic reproduction number R0, the conditions for the existence of local equilibrium point for the model (1.3) can be found.

    Theorem 3.1. The disease-free equilibrium E0 of model (1.3) is E0=(SH0, 0, 0, SV0, 0)=(K, 0, 0, Λm, 0) which always exists. If R0>1, there is a unique local equilibrium E=(SH, IH, RH, SV, IV).

    After finding the conditions for the existence of the equilibrium point of model (1.3), next we verify that the global stability of equilibria.

    Theorem 3.2. (i) If R0<1, the disease-free equilibrium point E0 is globally asymptotically stable. If R0>1, E0 is unstable. (ii) If R0>1, the endemic equilibrium point E is globally asymptotically stable.

    Remark 3.2 The global stability of E0 in this theorem can be referred to the method in the literature [10]. By constructing a series of suitable Lyapunov functions, we prove the global stability of E.

    Initially, we verify that the stochastic model (1.6) has a unique global positive solution. This provides preparation for the dynamic behavior of the model. For model (1.6), it is easy to see that

    Γ={(SH,IH,IV,β1,β2)R5+:SH+IH<K,IV<Λm}

    is the positive invariant set, and the subsequent research will be discussed in Γ.

    Theorem 4.1. For any initial value (SH(0),IH(0),IV(0),β1(0),β2(0))Γ, there exists a unique solution (SH(t),IH(t),IV(t),β1(t),β2(t)) of system (1.6) and the solution will remain in Γ with probability one (a.s.).

    The stationary distribution of stochastic model (1.6) plays a key role in regulating the dynamics of disease and analyzing the sustainable development of disease. Next, sufficient conditions for the existence of stationary distribution will be obtained. We define

    Rs0=~β2Kϕ2(0)ω+~β1β3ΛKϕ1(0)ϕ3(0)m2ω,

    where

    ~β1=¯β1eσ2120α1,~β2=¯β2eσ2212α2.

    Theorem 4.2. If Rs0>1, then stochastic system (1.6) has a stationary distribution.

    Remark 4.2 The Theorem 4.2 is proved by constructing the Lyapunov functions. It is observed that when Rs0>1, a stationary distribution exists and the disease will be endemic for a long period of time.

    Furthermore, disease propagation and extinction are two major areas of research in stochastic system dynamics. After establishing the conditions under which a disease reaches a stable state, it is also essential to understand the conditions under which the disease becomes extinct. In addition, we discuss the sufficient condition for disease extinction in the model (1.6), define

    RE0=R0+mR0(eσ21α12eσ214α1+1)12+ϕ2(0)K¯β2(eσ22α22eσ224α2+1)12min{m,¯β2ϕ2(0)KR0}.

    Theorem 4.3. If RE0<1, then the disease of the system (1.6) will become exponentially extinct with probability 1.

    Remark 4.3 Theorem 4.3 gives the sufficient condition for the exponential extinction of diseases IH, IV. From the expressions of Rs0 and RE0, the relationships Rs0R0 and RE0R0 are deduced, and the equal sign holds if and only if σ1=σ2=0.

    Additionally, the density function of a continuous distribution is essential to understanding a stochastic system, making the precise determination of its expression a crucial challenge. Through the matrix analysis method, we have successfully derived the expression for the probability density function in the vicinity of the equilibrium point for model (1.6). Linearize the model (1.6) before calculate the probability density function. Define a quasi-endemic equilibrium point P=(SH,IH,IV,logβ1,logβ2), it satisfies

    {μKμSβ1ϕ1(IV)SHβ2ϕ2(IH)S+dIH=0,β1ϕ1(IV)SH+β2ϕ2(IH)SωIH=0,β3ϕ3(IH)(ΛmIV)mIV=0,α1(log¯β1logβ1)=0,α2(log¯β2logβ2)=0. (4.1)

    Let (z1,z2,z3,x1,x2)T=(SHSH,IHIH,IVIV,logβ1logβ1,logβ2logβ2)T, then system (4.1) can be linearized around P as follows

    {dz1=[a11z1a12z2a13z3a14x1a15x2]dt,dz2=[a21z1a22z2+a13z3+a14x1+a15x2]dt,dz3=[a32z2a33z3]dt,dx1=a44x1dt+σ1dB1(t),dx2=a55x2dt+σ2dB2(t), (4.2)

    where a11=μ+¯β1ϕ1(IV)+¯β2ϕ2(IH), a12=¯β2ϕ2(IH)SHd, a13=¯β1ϕ1(IV)SH, a14=¯β1ϕ1(IV)SH, a15=¯β2ϕ2(IH)SH, a21=¯β1ϕ1(IV)+¯β2ϕ2(IH), a22=ω¯β2ϕ2(IH)SH, a32=β3ϕ3(IH)(ΛmIV), a33=β3ϕ3(IH)+m, a44=α1, a55=α2. Apparently, aij>0.

    By denoting

    A=(a11a12a13a14a15a21a22a13a14a150a32a3300000a4400000a55), G=(000σ1σ2),
    B(t)=(0,0,0,B1(t),B2(t))T, Z(t)=(z1,z2,z3,x1,x2)T.

    Then system (4.1) can be expressed as

    dZ(t)=AZ(t)dt+GdB(t), (4.3)

    then, the solution of (4.3) can be calculated as

    X(t)=eAtX(0)+t0eA(ts)GdB(t),

    since t0eA(ts)GdB(t) obeys a normal distribution N(0,ˆΣ(t)) at time t, where ˆΣ(t)=t0eA(ts)GGTeAT(ts)ds, then, we can get X(t)N(eAtX(0),ˆΣ(t)).

    First, we need to verify that matrix A is Hurwitz matrix [25], the characteristic polynomial of A can be obtained as follows

    φA(λ)=|λ+a11a12a13a14a15a21λ+a22a13a14a150a32λ+a3300000λ+a4400000λ+a55|=(λ+a44)(λ+a55)|λ+a11a12a13a21λ+a22a230a32λ+a33|.

    Obviously there are λ1=a44,λ2=a55, other characteristic roots can also be found with negative real part according to Section 3. Therefore, matrix A is a Hurwitz matrix by Lemma 2.2. According to the stability theory of zero solution to the general linear equation [20], we have

    limt+eAtX(0)=0,
    Σlimt+ˆΣ=limt+t0eA(ts)GGTeAT(ts)ds=+0eATtG2eAtdt.

    Based on the solution of Gardiner [26], it follows

    G2+AΣ+ΣAT=0. (4.4)

    Second, we will solve the Eq (4.4) to get the exact expression of probability density function near the quasi-endemic equilibrium.

    Theorem 4.4. For any initial value (SH(0),IH(0),IV(0),β1(0),β2(0))Γ, if R0>1 and mμ+β3ϕ3(IH)>0, then the stationary distribution of stochastic system (1.6) near the P approximately admits a normal probability density function as follows

    Φ(SH,IH,IV,logβ1,logβ2)=(2π)52|Σ|12exp[12(SHSH,IHIH,IVIV,logβ1log¯β1,logβ2log¯β2)Σ1(SHSH,IHIH,IVIV,logβ1log¯β1,logβ2log¯β2)T].

    The exact expression of covariance matrix Σ is shown in the proof.

    Remark 4.4 In Theorem 4.4, by defining the quasi-endemic equilibrium P, we derive an exact expression of probability density function of the stationary distribution around a quasi-positive equilibrium P.

    In order to illustrate the above theoretical results, we perform several numerical simulations in this section. Consider bilinear incidence rate ϕ1(IV)=IV, ϕ2(IH)=IH, ϕ3(IH)=IH, letting xi(t)=logβi(t)logˉβi,i=1,2, then according to the method in [27], the following is the corresponding discretized equation for the system (1.6)

    {Sj+1H=SjH+[μ(KSjH)¯β1exj1IjVSjH+¯β2exj2IjHSjH+dIjH]Δt,Ij+iH=IjH+[¯β1exj1IjVSjH+¯β2exj2IjHSjHωIjH]Δt,Ij+1V=IjV+[β3IjH(ΛmIjV)mIjV]Δt,xj+11=xj1α1xj1Δt+σ1Δtξ1,j+σ212(ξ21,j1)Δt,xj+12=xj2α2xj2Δt+σ2Δtξ2,j+σ222(ξ22,j1)Δt,

    let ξi,j be random variables that follow a Gaussian distribution N(0,1) for i=1,2 and j=1,2,...,n. The time interval is denoted by Δt>0. The values (SjH,IjH,IjV,xj1,xj2) correspond to the j-th iteration of the discretization equation.

    First and foremost, taking into consideration the importance of parameter selection, rationality, and the visual effectiveness of theoretical results, we choose the following appropriate parameters, referring to [10,28,29], and denoted them as Number 1

    μ=0.05,K=100,¯β1=0.15,¯β2=0.1,β3=0.1,ω=0.8,d=0.5,
    γ=0.25,Λ=5,m=0.5,α1=0.8,α2=0.8,σ1=0.1,σ2=0.1,

    after calculation, we can get mμ+β3IH=2.0391>0 and the indexes of deterministic system and stochastic system can be obtained respectively, as shown below

    R0=¯β2Kω+¯β1β3Λkm2ω=50>1, Rs0=~β2Kω+~β1β3Λkm2ω=50.0365>1,

    which satisfies the condition in Theorem 4.2. More importantly, we can calculate the quasi-endemic equilibrium and the covariance matrix Σ, which have the following forms

    (SH, IH, IV, logβ1, logβ2)=(4.6565, 15.8906, 7.6066, log0.15, log0.1),
    Σ=(0.05290.03770.00380.00930.01300.03770.03520.00310.00720.01000.00380.00310.00040.00060.00080.00930.00720.00060.006200.01300.01000.000800.0062).

    Therefore, we can get that the solution (SH(t),IH(t),IV(t),β1(t),β2(t)) obeys the normal density function

    Φ(SH,IH,IV,β1,β2)N((4.6565, 15.8906, 7.6066,0.15,0.1)T,Σ).

    The marginal density functions are as follows

    ΦSH=1.7345e9.4518(SH4.6565)2, ΦIH=2.1264e14.2045(IH15.8906)2, ΦIV=19.9471e1250(IV7.6066)2.

    Using the above parameters, we can get trajectories of SH(t), IH(t) and IV(t) respectively, which are present in Figure 1. It is used to represent the variation of the solution (SH(t),IH(t),IV(t)) in the deterministic model (1.4) and the stochastic model (1.6). Frequency histograms and marginal density function curves for SH(t),IH(t) and IV(t) are also given in the right column of the Figure 1.

    Figure 1.  The left and right columns show the trajectories of the solutions (SH(t),IH(t),IV(t)) of the stochastic and deterministic systems under perturbations σ1=0.1,σ2=0.1, as well as histograms of the solutions and the marginal density functions, respectively.

    In addition, the frequency fitted density functions and the marginal density functions for SH(t),IH(t) and IV(t) are given in Figure 2, respectively, which are highly consistent. Therefore, we deduce that the solutions (SH(t),IH(t),IV(t)) have a smooth distribution and their density functions follow a normal distribution. As we can see, the disease eventually spreads, which is consistent with Theorem 4.2.

    Figure 2.  The frequency fitting density functions and marginal density functions of SH(t),IH(t) and IV(t), respectively.

    On the other hand, we select that a part of parameters are shown below, and the remaining parameters are consistent with Number 1, ¯β1=0.015,¯β2=0.001,β3=0.015. These are denoted as Number 2. The crucial value RE0 takes the form

    RE0=R0+(eσ21α12eσ214α1+1)12+K¯β2m(eσ22α22eσ224α2+1)12=0.7986<1

    which satisfies the condition in Theorem 4.3. Figure 3 represents the trajectory of the solution (SH(t),IH(t),IV(t)), and it is clearly visible that the eventual trend of the disease is towards extinction.

    Figure 3.  The trajectory of solution (SH(t),IH(t),IV(t)) under the condition RE0<1.

    Further, by choosing the parameters in Numbers 1 and 2, respectively, the left panel in Figure 4 satisfies the condition Rs0>1 and the right panel satisfies RE0<1. It can be seen that the disease exhibits a trend towards stabilization and extinction as conditions Theorems 4.2 and 4.3 are satisfied, respectively.

    Figure 4.  The left panel shows the trajectories of the solution (SH(t),IH(t),IV(t)) in the stochastic model (1.6) for Rs0>1, and the right panel shows the trajectories of the solutions of the stochastic model (1.6) for RE0<1.

    Now, we study the effect of perturbations for a mosquito-borne epidemic model. Assuming that all parameters take the values in Number 1, we choose different reversion speed α and volatility intensity σ to plot the graphs, respectively. Taking α1=α2=0.8 and different volatility intensity as shown in the Figure 5, the icons are red line σi=0.05, blue line σi=0.1 and green line σi=0.15, i=1,2, the trends of the solution (SH(t),IH(t),IV(t)) of the stochastic model (1.6) are represented by the figure. It shows that the fluctuation decrease as the volatility intensity decreases. Then, we set the volatility intensity σ1=σ2=0.1, the reversion speed αi=0.1 as shown by the red line in the figure, the blue line shows αi=1.0, and similarly, the green line indicates αi=1.5, i=1,2, then the same insightful changes in Figure 6 indicate that the fluctuation decreases with the increase of the reversion speed.

    Figure 5.  Trajectory plots of the solution (SH(t),IH(t),IV(t)) of the stochastic model (1.6) at the reversion speed αi=0.8, i=1,2 and different volatility intensity is shown in the icon with the red line σ1=σ2=0.05, the blue line σ1=σ2=0.1 and the green line σ1=σ2=0.15.
    Figure 6.  Trajectory plots of the solution (SH(t),IH(t),IV(t)) of the stochastic model (1.6) at the volatility intensity σi=0.1, i=1,2 and different reversion is shown in the icon with the red line α1=α2=0.1, the blue line α1=α2=1 and the green line α1=α2=1.5.

    Further, we make the rest of the parameter assumptions consistent with Numbers 1 and 2, respectively, except for the the volatility intensity and reversion speed. Figures 7 and 8 depict the trends of R0,Rs0, and RE0 under different volatility intensity and different reversion speed, respectively, and the range of the two variables we choose is [0,1]. Combining the information in the two figures, it can be concluded that higher reversion speed and lower volatility intensity can make RE0 and Rs0 smaller.

    Figure 7.  Trend plots of R0,Rs0, and RE0 at fixed reversion speed α1=α2=0.8 and volatility intensity σ1[0.01,1], σ2=0.1. The rest of the parameter values in the left figure are consistent with those in Number 1, and the rest of the parameter values in the right figure are consistent with those in Number 2.
    Figure 8.  Trend plots of R0,Rs0, and RE0 at fixed volatility intensity σ1=σ2=0.1 and reversion speed α1[0.01,1], α2=0.8. The rest of the parameter values in the left figure are consistent with those in Number 1, and the rest of the parameter values in the right figure are consistent with those in Number 2.

    Next, we continue to discuss the effects of reversion speed α and volatility intensity σ on Rs0 and RE0 and their magnitude relationships under different conditions.

    (i) Assuming that α1, σ1 are the variables, and the other parameters are consistent with Number 1, The Figure 9 shows the three-dimensional chromatograms of Rs0 and RE0, which are consistent with the results of Figures 7 and 8, where Rs0 increases with increasing σ1, and decreases with increasing α1. This indicates that the disease stabilizes as the reversion speed decreases or volatility intensity increases. In addition, it can be seen that both Rs0 and RE0 are greater than 1 and RE0 is greater than Rs0 in the range where α1 belongs to [0.5,0.6] and σ1 belongs to [0.005,0.09];

    Figure 9.  Color plot of the trend of RE0 and Rs0 with variables (α1,σ1)[0.5,0.6]×[0.005,0.09], with the rest of the parameters consistent with those in Number 1.

    (ii) Conditionally the same as in (i), we set the other parameters are consistent with Number 2, it is noted that RE0 increases with the increase of σ1 and decreases with the increase of α1 in Figure 10, implying that the diseases in the stochastic model (1.6) tend to become extinct when the volatility intensity decreases. Moreover, in the parameter range of the plot, both Rs0 and RE0 are less than 1, and RE0 is greater than Rs0.

    Figure 10.  Color plot of the trend of RE0 and Rs0 with variables (α1,σ1)[0.5,0.6]×[0.005,0.09], with the rest of the parameters consistent with those in Number 2.

    Next, we will discuss the mean first passage time, the moment a stochastic process first transitions from one state to another is termed the first passage time (FPT) [30]. The mean first passage time (MFPT) is then defined as the average of these first passage times [31]. Starting with an initial value of (SH(0),IH(0),IV(0)), we aim to examine the time it takes for the system to evolve from this initial state to either a stationary state (MFPT1) or to an extinction state (MFPT2).

    Then we define τ1 as the FPT from the initial state to the persistent state, and τ2 as the FPT from the initial state to the extinct state

    τ1=inf{t:SH<SH,IH>IH,IV>IV},
    τ2=inf{t:IH0<0.0001,IV0<0.0001}.

    Then we have

    MFPT1=E(τ1), MFPT2=E(τ2).

    Using Monte Carlo numerical simulation method, if SH(nΔt)<SH, IH(nΔt)>IH, IV(nΔt)>IV, then τ1=nΔt, assuming that the number of simulations is N, then

    MFPT1=Ni=1niΔtN.

    Similarly, if IH0<0.0001 and IV0<0.0001, then τ2=mΔt and

    MFPT2=Ni=1niΔtN.

    Here, we set N = 2000, σi and αi, i=1,2 are random variables. Figures 11 and 12 depict the relationship between MFPT1 and MFPT2 and the speed of reversion αi and the volatility intensity σi, i=1,2 in stochastic system (1.6) with the bilinear incidence rate, respectively. Figure 11 reveals the values of MFPT1 with N=2000,σi[0.01,0.1] and αi=4,5,6, i=1,2, respectively. It shows that MFPT1 decreases with decreasing reversion speed αi or increasing voltility intensity σi, implying that the disease is much easier to arrive the stable state. Similarly, Figure 12 shows the trend of MFPT2 at N=2000, σi[0.01,0.1] and αi=0.1,0.15,0.2. Through the figure it can be noted that MFPT2 increases with αi decrease and σi increase.

    Figure 11.  The mean first passage time for transitioning from the initial state values (SH(0),IH(0),IV(0)) = (3, 1, 1) to the state of stationary with σi[0.01,0.1], αi=4,5,6, i=1,2. The other fixed parameter values are consistent with those in Number 1.
    Figure 12.  The mean first passage time for transitioning from the initial state values (SH(0),IH(0),IV(0)) = (5,200, 10) to the state of extinction with σi[0.01,0.1], αi=0.1,0.15,0.2, i=1,2. The other fixed parameter values are consistent with those in Number 2.

    We mainly develop a stochastic model, coupled with the general incidence rate and Ornstein-Uhlenbeck process, to study the dynamic of infectious disease spread, which includes the stationary distribution and probability density function. In view of our analysis, we can draw the following conclusions

    (i) For the deterministic epidemic model, two equilibria and the basic reproduction number R0 are obtained, and their global asymptotic stability are deduced. Specificaly, the endemic equilibrium is globally asymptotically stable if R0>1, and the disease free equilibrium is globally asymptotically stable if R0<1.

    (ii) Considering that the spread of infectious disease is inevitably affected by environmental perturbations, we propose a stochastic model with general incidence and the Ornstein-Uhlenbeck process. By constructing a series of appropriate Lyapunov functions, the stationary distribution of model (1.6) is derived and we establish the sufficient criterion for the existence of the extinction. Specifically, the innovation of this paper is that we obtain a precise expression of the distribution around its quasi-positive equilibrium P by solving a difficult five-dimensional matrix equation, which is quite challenging.

    (iii) We also verify some conclusions of this paper by several numerical simulations.

    When Rs0>1, i.e., the parameters satisfy the condition of Theorem 4.2, we obtain trajectory plots of the solutions of the deterministic model (1.4) and the stochastic model (1.6), as well as the corresponding frequency histograms and edge density functions, and as shown in Figures 1 and 2, the disease eventually persists. This provides some verification of Theorem 4.2 of the theoretical results.

    Also, from Figure 3, we can further find that when RE0<1, the population strengths decrease with time and eventually converge to zero, which implies extinction of the disease. Figure 4 also further illustrates these points. The theoretical result of Theorem 4.3 is visualized through Figures 3 and 4.

    In addition, we also investigate the effect of perturbations and give Figures 5 and 6 to depict the effect of trends with different reversion speed and different volatility intensity. It can be seen that the fluctuation decreases as the volatility intensity decrease and the reversion speed increase.

    Then, correlation plots of Rs0, RE0 with reversion speed and volatility intensity are obtained in Figures 710. We conculde that higher reversion speed and lower volatility intensity can make RE0 and Rs0 more smaller.

    Finally, Figures 11 and 12 visually demonstrate the relationship between MFPT and the αi and σi, i=1,2 in a stochastic system (1.6) with bilinear incidence. We can see that if voltility intensity σi is much bigger (or the reversion speed αi is much smaller), then the disease is more easier to arrive the stable state. This is consistent with the results of the above conclusions.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to thank the anonymous referee for his/her useful suggestions. This work is supported by the Fundamental Research Funds for the Central Universities (No. 24CX03002A).

    The authors declare that they have no conflict of interest.

    Proof. The equilibria of system (1.3) satisfy

    {μ(KSH)¯β1ϕ1(IV)SH¯β2ϕ2(IH)SH+dIH=0,¯β1ϕ1(IV)SH+¯β2ϕ2(IH)SHωIH=0,γIHμRH=0,Λβ3Φ3(IH)SVmSV=0,β3ϕ3(IH)SVmIV=0. (A.1)

    Notice that

    RH=KSHIH, SV=ΛmIV,

    and we have

    {μ(KSH)¯β1ϕ1(IV)SH¯β2ϕ2(IH)SH+dIH=0,¯β1ϕ1(IV)SH+¯β2ϕ2(IH)SHωIH=0,β3ϕ3(IH)(ΛmIV)mIV=0. (A.2)

    Obviously E0=(SH0, 0, 0, SV0, 0)=(K, 0, 0, Λm, 0) always exists.

    On the other hand, we have

    {SH=K(1+γμ)IH,IV=β3ϕ3(IH)Λm2+mβ3ϕ3(IH)IH=¯β1ϕ1(IV)SHω+¯β2ϕ2(IH)SHω.

    Therefore, IH[0,μKμ+γ], let

    H(IH)=¯β1ϕ1(IV)SHω+¯β2ϕ2(IH)SHωIH,

    then by calculation, H(0)=0,H(μKμ+γ)=μKμ+γ<0, and

    H(IH)=¯β1ϕ1(IV)SHωm2β3ϕ3(IH)Λ(m2+mβ3ϕ3(IH))2(1+γμ)¯β1ϕ1(IV)ω+¯β2ϕ2(IH)SHω(1+γμ)¯β2ϕ2(IH)ω1.

    If R0>1, then

    H(0)=¯β2Kϕ2(0)ω+¯β1β3ΛKϕ1(0)ϕ3(0)m2ω1=R01>0,
    H(μKμ+γ)=(1+γμ)[¯β1ϕ1(IV(μKμ+γ))ω+¯β2ϕ2(μKμ+γ)ω]1<0,

    therefore, there exists a point ξ such that H(IH)>0 on [0,ξ) and H(IH)<0 on (ξ,μKμ+γ], i.e., H(IH) is monotonically increasing on [0,ξ) and monotonically decreasing on (ξ,μKμ+γ].

    Hence, there is a unique IH(0,μKμ+γ) such that H(IH)=0, which implies that when R0>1, system (1.4) has a unique endemic equilibrium E=(SH,IH,RH,SV,IV). This completes the proof.

    Proof. (i) Through calculation, Jacobian matrix of model (1.3) is obtained as follows

    J(SH,IH,RH,SVIV)=(μ¯β1ϕ1(IV)¯β2ϕ2(IH)d¯β2ϕ2(IH)SH00¯β1ϕ1(IV)SH¯β1ϕ1(IV)+¯β2ϕ2(IH)¯β2ϕ2(IH)SHω00¯β1ϕ2(IV)SH0γμ000β3Φ3(IH)SV0β3Φ3(IH)m00β3Φ3(IH)SV0β3Φ3(IH)m).

    Substituting E0 into the matrix J to get J0

    J0=(μd¯β2Kϕ2(0)00¯β1ϕ1(0)K0¯β2ϕ2(0)Kω00¯β1ϕ1(0)K0γμ000Λmβ3ϕ3(0)0m00Λmβ3ϕ3(0)00m),

    the corresponding characteristic polynomial is as follows

    ϕJ0(λ)=(λ+μ)(λ+μ)(λ+m)(λ+m)(λ+(ω¯β2Φ2(0))),

    obviously, if R0<1, then ω¯β2Φ2(0)>0, according to the Routh-Hurwitz criterion, there are only negative real part characteristic roots, so the disease-free equilibrium E0 is locally asymptotically stable.

    If R0>1, then ω¯β2Φ2(0)<0, this indicates that J0 has the eigenvalue of the positive real part, so the disease-free equilibrium E0 is unstable.

    Next we prove the global attractiveness of E0, define

    V=SHKKlogSHK+IH+SVΛmΛmlogmSVΛ+IV,

    Using Itˆo's formula for the above equation, we get

    LV=μK+dIHμSH¯β1Φ1(IV)SH¯β2Φ2(IH)SHμK2SHdIHKSH+¯β1Φ1(IV)K+¯β2Φ2(IH)K+μK+¯β1Φ1(IV)SH+¯β2Φ2(IH)SHωIH+Λβ3Φ3(IH)SVmSVΛ2mSV+β3Φ3(IH)Λm+Λ+β3Φ3(IH)SVmIV2μK+dIHμSHμK2SHdIHKSH+¯β1Φ1(0)IVK+¯β2Φ2(0)IHKωIHmSVΛ2mSV+β3Φ3(0)IHΛm+2ΛmIV,

    according to the method in [10], it is easy to see that SHK as t, SVΛm as t, and IH, IV0 as t. Then, LV0 and equal to 0 when it takes E0. Therefore, according to the LaSalle invariance principle, we conclude that when R0<1, E0 is globally asymptotically stable.

    (ii) According to the method in [32], the positive equilibrium point E of the model (1.3) satisfies the following system of equations

    {μK=μSH+(¯β1Φ1(IV)+¯β2Φ2(IH))SHdIH,(¯β1Φ1(IV)+¯β2Φ2(IH))SH=ωIH,γIH=μRH,Λ=β3Φ3(IH)SV+mSV,β3Φ3(IH)SV=mIV. (A.3)

    Define

    V1=SHSHSHlogSHSH+IHIHIHlogIHIH,

    after calculation

    d(SHlogSHSH)dt=SH(μKSH+μ+¯β1Φ1(IV)+¯β2Φ2(IH)dIHSH)=SH((μ+¯β1Φ1(IV)+¯β2Φ2(IH))SHdIHSH+μ+¯β1Φ1(IV)+¯β2Φ2(IH)dIHSH)=SH((μ+¯β1Φ1(IV)+¯β2Φ2(IH))SHSH+¯β1Φ1(IV)Φ1(IV)Φ1(IV)+¯β2Φ2(IH)Φ2(IH)Φ2(IH))+μSH(1SHSH)+SHSH(dIHdIH),
    d(IHlogIHIH)dt=¯β1Φ1(IV)SHSHΦ1(IV)IHSHΦ1(IV)IH¯β2Φ2(IH)SHSHΦ2(IH)IHSHΦ2(IH)IH+ωIH,
    d(SH+IH)dt=μKμSH+dIHωIH=(μ+¯β1Φ1(IV)+¯β2Φ2(IH))SHdIHμSH+dIH(¯β1Φ1(IV)+¯β2Φ2(IH))SHIHIH=μSH(1SHSH)+(¯β1Φ1(IV)+¯β2Φ2(IH))SH(1IHIH)d(IHIH),

    then we have

    dV1dt=μSH(1SHSH)+(¯β1Φ1(IV)+¯β2Φ2(IH))SH(1IHIH)d(IHIH)+ωIH+SH((μ+¯β1Φ1(IV)+¯β2Φ2(IH))SHSH+¯β1Φ1(IV)Φ1(IV)Φ1(IV)+¯β2Φ2(IH)Φ2(IH)Φ2(IH))+μSH(1SHSH)+SHSH(dIHdIH)¯β1Φ1(IV)SHSHΦ1(IV)IHSHΦ1(IV)IH¯β2Φ2(IH)SHSHΦ2(IH)IHSHΦ2(IH)IH=μSH(2SHSHSHSH)+¯β1Φ1(IV)SH[Φ1(IV)Φ1(IV)SHSHSHΦ1(IV)IHSHΦ1(IV)IHIHIH+3]+¯β2Φ2(IH)SH[Φ2(IH)Φ2(IH)SHSHSHΦ2(IH)IHSHΦ2(IH)IHIHIH+3]dIH(1SHSH)(1IHIH)μSH(2SHSHSHSH)+¯β1Φ1(IV)SH[Φ1(IV)Φ1(IV)logSHSHlogSHΦ1(IV)IHSHΦ1(IV)IHIHIH]+¯β2Φ2(IH)SH[Φ2(IH)Φ2(IH)logSHSHlogSHΦ2(IH)IHSHΦ2(IH)IHIHIH]=μ(SHSH)2SH+¯β1Φ1(IV)SH[Φ1(IV)Φ1(IV)logIHΦ1(IV)IHΦ1(IV)IHIH]+¯β2Φ2(IH)SH[Φ2(IH)Φ2(IH)logIHΦ2(IH)IHΦ2(IH)IHIH].

    Similarly, define

    V2=SVSVSVlogSVSV+IVIVIVlogIVIV,

    the same can be obtained

    dV2dt=mSV(1SVSV)+β3Φ3(IH)SV(1IVIV)+β3Φ3(IH)SV(SVSV+Φ3(IH)Φ3(IH))+mSV(1SVSV)β3SVΦ3(IH)IVSVΦ3(IH)IVSVΦ3(IH)+β3SVΦ3(IH)=mSV(1SVSVSVSV)+β3SVΦ3(IH)[Φ3(IH)Φ3(IH)SVSVIVSVΦ3(IH)IVSVΦ3(IH)IVIV+2]mSV(SVSV)2SV+β3SVΦ3(IH)[Φ3(IH)Φ3(IH)logIVΦ3(IH)IVΦ3(IH)IVIV].

    Next, define

    V3=V1+¯β1Φ1(IV)SH¯β3Φ3(IH)SVV2,

    we can get

    dV3dtμSH(SHSH)2SHm¯β1Φ1(IV)SH¯β3Φ3(IH)+¯β2Φ2(IH)SH[Φ2(IH)Φ2(IH)logIHΦ2(IH)IHΦ2(IH)IHIH]+¯β1Φ1(IV)SH[Φ1(IV)Φ1(IV)logIHΦ1(IV)IHΦ1(IV)IHIH+Φ3(IH)Φ3(IH)logIVΦ3(IH)IVΦ3(IH)IVIV]μSH(SHSH)2SHm¯β1Φ1(IV)SH¯β3Φ3(IH)+¯β2Φ2(IH)SH[Φ2(IH)Φ2(IH)+IHΦ2(IH)IHΦ2(IH)IHIH1]+¯β1Φ1(IV)SH[Φ1(IV)Φ1(IV)+IVΦ1(IV)IVΦ1(IV)IVIV1+IHΦ3(IH)IHΦ3(IH)+Φ3(IH)Φ3(IH)IHIH1],

    by the condition (A2) and (A3), we can know

    Φ1(IV)Φ1(IV)+IVΦ1(IV)IVΦ1(IV)IVIV1=IVΦ1(IV)Φ1(IV)[(Φ1(IV)Φ1(IV))(Φ1(IV)IVΦ1(IV)IV)]0,

    Φ2(IH) and Φ3(IH) similarly satisfy the structure of the above equation, combined with SH and SV are bounded, we finally get

    dV3dtμK(SHSH)2m2Λ¯β1Φ1(IV)SH¯β3Φ3(IH)SV(SVSV)2.

    Next, we define

    V4=(SHSH+IHIH)22, V5=(RHRH)22, V6=(SVSV+IVIV)22,

    similarly calculated

    dV4dt=μ(SHSH)2(d+γ)(IHIH)2ω(SHSH)(IHIH)μ(SHSH)2(d+γ)(IHIH)2+(d+γ)2(IHIH)2+ω22(d+γ)(SHSH)2ω22(d+γ)(SHSH)2(d+γ)2(IHIH)2,

    and

    dV5dt=γ(IHIH)(RHRH)μ(RHRH)2μ2(RHRH)2+γ22μ(IHIH)2,

    and

    dV6dt=m(SVSV)2m(IVIV)22m(SVSV)(IVIV)=m(SVSV)2m(IVIV)2+m2(IVIV)2+2m(SVSV)2m(SVSV)2m2(IVIV)2.

    Finally, define

    V=V3+A1V4+A2V5+A3V6,

    then

    dVdt(μKA1ω22(d+γ))(SHSH)2(d+γ2A1γ22μA2)(IHIH)2μ2A2(RHRH)2(m2Λ¯β1Φ1(IV)SH¯β3Φ3(IH)SVA3m)(SVSV)2m2A3(IVIV)2,

    take

    A1=μ(d+γ)Kω2, A2γ2μ=d+γ2A1, A3=m2Λ¯β1Φ1(IV)SH2m¯β3Φ3(IH)SV,

    we get

    dVdtμ2K(SHSH)2d+γ4A1(IHIH)2μ2A2(RHRH)2m2Λ¯β1Φ1(IV)SH2¯β3Φ3(IH)SV(SVSV)2m2A3(IVIV)2,

    the proof is done.

    Proof. It is obvious that the coefficients of the system is locally Lipschitz continuous, so there is a unique local solution (SH(t),IH(t),IV(t),β1(t),β2(t)) on t[0,τe), where τe represents explosion time. To show that the solution is global, according to the method in [33], we just need to verify that τe=+ a.s..

    Choose k0 be a sufficiently large integer for every component of (SH(0),IH(0),IV(0),β1(0),β2(0)) within the interval [1k0,k0]. For each integer kk0, define the stopping time as

    τk=inf{t[0,τe)|min(SH(t),IH(t),IV(t),β1(t),β2(t))1k or max(SH(t),IH(t),IV(t),β1(t),β2(t))k}.

    It can be seen that τk is monotonically increasing with respect to k. Then define inf{}=+ and τ=limt+τk. It is clearly visible that the solution is global due to the fact that τ<τe a.s., τ= leading to τe=. Next, we will prove τ= by the contradiction method. Assuming τ<+ a.s., then there are ε0(0,1) and T>0 such that P(τT)>ε, so there is a positive integer k1>k0 that makes

    P(τkT)ε, kk1.

    Define a non-negative C2-function V(SH,IH,IV,β1,β2) as follows

    V=SH1logSH+IH1logIH+IV1logIV+(KSHIH)1log(KSHIH)+(ΛmIV)1log(ΛmIV)+β11logβ1+β21logβ2.

    Applying Itˆo's formula to V, then we can get

    LV=μ(KSH)β1ϕ1(IV)SHβ2ϕ2(IH)SH+dIHμKSH+μ+β1ϕ1(IV)+β2ϕ2(IH)dIHSH+β1ϕ1(IV)SH+β2ϕ2(IH)SHωIHβ1ϕ1(IV)SHIHβ2ϕ2(IH)SHIH+ω+β3ϕ3(IH)(ΛmIV)mIVβ3ϕ3(IH)ΛmIV+β3ϕ3(IV)+m+1ΛmIV(β3ϕ3(IH)(ΛmIV)mIV)β3ϕ3(IH)(ΛmIV)+mIV+1K(SH+IH)(μ(KSH)+(dω)IH)μ(KSH)(dω)IH+β1(α1log¯β1α1logβ1+12σ21)α1(log¯β1logβ1)+β2(α2log¯β2α2logβ2+12σ22)α2(log¯β2logβ2)μK+dIH+μ+β1ϕ1(IV)+β2ϕ2(IH)+ω+Λmβ3ϕ3(IH)+m+2β3ϕ3(IH)+μ+γIH+β1(α1log¯β1α1logβ1+12σ21)α1(log¯β1logβ1)+β2(α2log¯β2α2logβ2+12σ22)α2(log¯β2logβ2).

    By the condition A3, we can know that

    ϕ1(IV)ϕ1(0)IV,ϕ2(IH)ϕ2(0)IH,ϕ3(IH)ϕ3(0)IH,

    then, we obtain

    LVμK+2μ+ω+m+β1ϕ1(0)IV+[β2ϕ2(0)+Λmβ3ϕ3(0)+2β3ϕ3(0)+γ]IH+β1(α1log¯β1α1logβ1+12σ21)α1(log¯β1logβ1)+β2(α2log¯β2α2logβ2+12σ22)α2(log¯β2logβ2)μK+2μ+ω+m+β1ϕ1(0)Λm+[β2ϕ2(0)+Λmβ3ϕ3(0)+2β3ϕ3(0)+γ]K+β1(α1log¯β1α1logβ1+12σ21)α1(log¯β1logβ1)+β2(α2log¯β2α2logβ2+12σ22)α2(log¯β2logβ2):=H(β1,β2).

    It's easy to see H(β1,β2) as β1+,β10,β2+,β20, so there's a positive constant H0 that makes LVH0. Integrating on both sides and taking the expectation, then

    0EW(SH(τkT),IH(τkT),IV(τkT),β1(τkT),β2(τkT))=EW(SH(0),IH(0),IV(0),β1(0),β2(0))+EτnT0LV(SH(τ),IH(τ),IV(τ),β1(τ),β2(τ))dτEV(SH(0),IH(0),IV(0),β1(0),β2(0))+H0T.

    One gets that for any ζGk, W(SH(τk,ζ),IH(τk,ζ),IV(τk,ζ),β1(τk,ζ),β2(τk,ζ)) will larger than (ek1k)(ek1+k), so

    EW(SH(0),IH(0),IV(0),β1(0),β2(0))+H0TEW(SH(τkT),IH(τkT),IV(τkT),β1(τkT),β2(τkT))E[IGk(ζ)W(SH(τkT),IH(τkT),IV(τkT),β1(τkT),β2(τkT))]P(Gk(ζ))W(SH(τk,ζ),IH(τk,ζ),IV(τk,ζ),β1(τk,ζ),β2(τk,ζ))ε0[(ek1k)(ek1+k)].

    Since k is an arbitrary constant, it can be contradictory by making k \rightarrow +\infty

    +\infty\leq E V\left(S_H(0), I_H(0), I_V(0), \beta_1(0), \beta_2(0)\right)+H_0 T < +\infty.

    Therefore \tau_{\infty} = +\infty a.s., i.e., \tau_{e} = +\infty . Then system (1.6) has a unique global solution \left(S_H(t), I_H(t), I_V(t), \beta_1(t), \beta_2(t)\right) on \Gamma .

    Proof. The theorem will be proved next in the following two steps.

    Step 1. Construct Lyapunov functions

    Using It \hat{o} 's formula, we obtain

    \mathcal{L}(-\log S_H) = -\frac{\mu K}{S_H}+\mu+\beta_1\phi_1(I_V)+\beta_2\phi_2(I_H)-\frac{dI_H}{S_H},
    \mathcal{L}(-\log I_H) = -\frac{\beta_1\phi_1(I_V)S_H}{I_H}-\frac{\beta_2\phi_2(I_H)S_H}{I_H}+\omega,
    \mathcal{L}(-\log I_V) = -\frac{\Lambda}{m}\beta_3\phi_3(I_H)\frac{1}{I_V}+\beta_3\phi_3(I_H)+m.

    Define a function V_1 = -\log I_H-c_1\log S_H-c_2\log S_H-c_3\log I_V , where c_1, c_2, c_3 are given in subsequent calculation. Using It \hat{o} 's formula, then

    \begin{align*} \mathcal{L}V_{1} = &-\frac{\beta_1\phi_1(I_V)S_H}{I_H}-\frac{\beta_2\phi_2(I_H)S_H}{I_H}+\omega-\frac{c_1\mu K}{S_H}+c_1\mu+c_1\beta_1\phi_1(I_V)+c_1\beta_2\phi_2(I_H)-\frac{c_1dI_H}{S_H}\\ &-\frac{c_2\mu K}{S_H}+c_2\mu+c_2\beta_1\phi_1(I_V)+c_2\beta_2\phi_2(I_H)-\frac{c_2dI_H}{S_H}-c_3\frac{\Lambda}{m}\beta_3\phi_3(I_H)\frac{1}{I_V}+c_3\beta_3\phi_3(I_H)+c_3m\\ &-c_4\frac{I_V}{\phi_1(I_V)}+c_4\frac{1}{\phi_1^{'}(0)}+c_4(\frac{I_V}{\phi_1(I_V)}-\frac{1}{\phi_1^{'}(0)})-c_5\frac{I_H}{\phi_3(I_H)}+c_5\frac{1}{\phi_3^{'}(0)}+c_5(\frac{I_H}{\phi_3(I_H)}-\frac{1}{\phi_3^{'}(0)})\\ &-c_6\frac{I_H}{\phi_2(I_H)}+c_6\frac{1}{\phi_2^{'}(0)}+c_6(\frac{I_H}{\phi_2(I_H)}-\frac{1}{\phi_2^{'}(0)}).\\ \end{align*}

    By the condition \mathcal{A}_3 , notice that

    (\frac{I_V}{\phi_1(I_V)})^{'} = \frac{\frac{I_V}{\phi_1(I_V)}-\frac{1}{\phi_1(I_V)}}{I_V}\leq m_0,

    which can deduce

    \begin{align} \frac{I_V}{\phi_1(I_V)}-\frac{1}{\phi_1^{'}(0)} \leq m_0I_V, \end{align} (A.4)

    similarly, one gets

    \begin{align} \frac{I_H}{\phi_2(I_H)}-\frac{1}{\phi_2^{'}(0)} \leq m_0I_H,\frac{I_H}{\phi_3(I_H)}-\frac{1}{\phi_3^{'}(0)} \leq m_0I_H. \end{align} (A.5)

    Combining (A.4) and (A.5), we have

    \begin{align*} \mathcal{L}V_{1}\leq&-5\sqrt[5]{c_1c_3c_4c_5\beta_1\beta_3\mu K\frac{\Lambda}{m}}+c_1\mu+c_3m+c_4\frac{1}{\phi_1^{'}(0)}+c_5\frac{1}{\phi_3^{'}(0)}-3\sqrt[3]{c_2c_6\beta_2\mu K}\\&+c_2\mu+c_6\frac{1}{\phi_2^{'}(0)}+\omega+c_1\beta_1\phi_1^{'}(0)I_V+c_1\beta_2\phi_2^{'}(0)I_H+c_3\beta_3\phi_3^{'}(0)I_H+c_2\beta_1\phi_1^{'}(0)I_V\\&+c_2\beta_2\phi_2^{'}(0)I_H+c_4m_0I_V+(c_5+c_6)m_0I_H\\ = &-5\sqrt[5]{c_1c_3c_4c_5\tilde{\beta_1}\beta_3\mu K\frac{\Lambda}{m}}+c_1\mu+c_3m+c_4\frac{1}{\phi_1^{'}(0)}+c_5\frac{1}{\phi_3^{'}(0)}-3\sqrt[3]{c_2c_6\tilde{\beta_2}\mu K}\\&+c_2\mu+c_6\frac{1}{\phi_2^{'}(0)}+\omega+c_1\beta_1\phi_1^{'}(0)I_V+c_1\beta_2\phi_2^{'}(0)I_H+c_3\beta_3\phi_3^{'}(0)I_H+c_2\beta_1\phi_1^{'}(0)I_V\\ &+c_2\beta_2\phi_2^{'}(0)I_H+c_4m_0I_V+(c_5+c_6)m_0I_H+5(\sqrt[5]{c_1c_3c_4c_5\tilde{\beta_1}\beta_3\mu K\frac{\Lambda}{m}}-\sqrt[5]{c_1c_3c_4c_5\beta_1\beta_3\mu K\frac{\Lambda}{m}})\\ &+3(\sqrt[3]{c_2c_6\tilde{\beta_2}\mu K}-\sqrt[3]{c_2c_6\beta_2\mu K}). \end{align*}

    Let c_{1}, c_{2}, c_3, c_4, c_5 and c_6 satisfy the following equalities

    c_1\mu = c_3m = c_4\frac{1}{\phi_1^{'}(0)} = c_5\frac{1}{\phi_3^{'}(0)} = \frac{\tilde{\beta_1}\beta_3\Lambda K\phi_1^{'}(0)\phi_3^{'}(0)}{m^2},
    c_2\mu = c_6\frac{1}{\phi_2^{'}(0)} = \tilde{\beta_2}K\phi_2^{'}(0),

    then

    \begin{align*} \mathcal{L}V_{1}\leq&-\frac{\tilde{\beta_1}\beta_3\Lambda K\phi_1^{'}(0)\phi_3^{'}(0)}{m^2}-\tilde{\beta_2}K\phi_2^{'}(0)+\omega+(c_1+c_2)\phi_2^{'}(0)\beta_2I_H+c_3\phi_3^{'}(0)\beta_3I_H\\ &+(c_1+c_2)\phi_1^{'}(0)\beta_1I_V+c_4m_0I_V+(c_5+c_6)m_0I_H\\&+5(\sqrt[5]{c_1c_3c_4c_5\tilde{\beta_1}\beta_3\mu K\frac{\Lambda}{m}}-\sqrt[5]{c_1c_3c_4c_5\beta_1\beta_3\mu K\frac{\Lambda}{m}}) +3(\sqrt[3]{c_2c_6\tilde{\beta_2}\mu K}-\sqrt[3]{c_2c_6\beta_2\mu K})\\ = &-\omega(R_0^s-1)+(c_1+c_2)\phi_2^{'}(0)\beta_2I_H+c_3\phi_3^{'}(0)\beta_3I_H+(c_1+c_2)\phi_1^{'}(0)\beta_1I_V+c_4m_0I_V+(c_5+c_6)m_0I_H\\ &+5(\sqrt[5]{c_1c_3c_4c_5\tilde{\beta_1}\beta_3\mu K\frac{\Lambda}{m}}-\sqrt[5]{c_1c_3c_4c_5\beta_1\beta_3\mu K\frac{\Lambda}{m}})+3(\sqrt[3]{c_2c_6\tilde{\beta_2}\mu K}-\sqrt[3]{c_2c_6\beta_2\mu K}), \end{align*}

    where

    R_0^s = \frac{\tilde{\beta_1}\beta_3\Lambda K\phi_1^{'}(0)\phi_3^{'}(0)}{m^2\omega}+\frac{\tilde{\beta_2}K\phi_2^{'}(0)}{\omega}.

    By Holder inequality, for any positive constant \delta , the following equations are true

    \begin{align*} \beta_1I_V \leq(\delta\beta_1^2+\frac{1}{4\delta})I_V \leq\delta\beta_1^2\frac{\Lambda}{m}+\frac{I_V}{4\delta} = \frac{\Lambda}{m}\delta\bar{\beta_1}^2e^{\frac{\sigma_1^2}{\alpha_1}}+\frac{I_V}{4\delta}+\frac{\Lambda}{m}\delta(\beta_1^2-\bar{\beta_1}^2e^{\frac{\sigma_1^2}{\alpha_1}}),\\ \beta_2I_H \leq(\delta\beta_2^2+\frac{1}{4\delta})I_H \leq\delta\beta_2^2K+\frac{I_H}{4\delta} = K\delta\bar{\beta_2}^2e^{\frac{\sigma_2^2}{\alpha_2}}+\frac{I_H}{4\delta}+K\delta(\beta_2^2-\bar{\beta_2}^2e^{\frac{\sigma_2^2}{\alpha_2}}). \end{align*}

    If take \delta to be

    \delta = \frac{\frac{\omega}{2}(R_0^s-1)}{(\frac{\bar{\beta_1}\beta_3\mu K\phi_1^{'}(0)\phi_3^{'}(0)}{\mu m^2}+\frac{\bar{\beta_2}K\phi_2^{'}(0)}{\mu})(\phi_2^{'}(0)K\bar{\beta_2}^2e^{\frac{\sigma_2^2}{\alpha_2}}+\phi_1^{'}(0)\frac{\Lambda}{m}\bar{\beta_1}^2e^{\frac{\sigma_1^2}{\alpha_1}})},

    then we can get

    \begin{align*} \mathcal{L}V_{1}\leq&-\omega(R_0^s-1)+(c_1+c_2)\phi_2^{'}(0)K\delta\bar{\beta_2}^2e^{\frac{\sigma_2^2}{\alpha_2}}+(c_1+c_2)\phi_2^{'}(0)\frac{I_H}{4\delta}+c_3\phi_3^{'}(0)\beta_3I_H\\ &+(c_1+c_2)\phi_1^{'}(0)\frac{\Lambda}{m}\delta\bar{\beta_1}^2e^{\frac{\sigma_1^2}{\alpha_1}}+(c_1+c_2)\phi_1^{'}(0)\frac{I_V}{4\delta}+c_4m_0I_V+(c_5+c_6)m_0I_H\\ &+(c_1+c_2)\phi_2^{'}(0)K\delta(\beta_2^2-\bar{\beta_2}^2e^{\frac{\sigma_2^2}{\alpha_2}})+(c_1+c_2)\phi_1^{'}(0)\frac{\Lambda}{m}\delta(\beta_1^2-\bar{\beta_1}^2e^{\frac{\sigma_1^2}{\alpha_1}})\\ &+5(\sqrt[5]{c_1c_3c_4c_5\tilde{\beta_1}\beta_3\mu K\frac{\Lambda}{m}}-\sqrt[5]{c_1c_3c_4c_5\beta_1\beta_3\mu K\frac{\Lambda}{m}})+3(\sqrt[3]{c_2c_6\tilde{\beta_2}\mu K}-\sqrt[3]{c_2c_6\beta_2\mu K})\\ : = &-\frac{\omega}{2}(R_0^s-1)+[(c_1+c_2)\phi_2^{'}(0)\frac{1}{4\delta}+c_3\phi_3^{'}(0)\beta_3+(c_5+c_6)m_0]I_H\\ &+[(c_1+c_2)\phi_1^{'}(0)\frac{1}{4\delta}+c_4m_0]I_V+F(\beta_1, \beta_2), \end{align*}

    where

    \begin{align*} F(\beta_1, \beta_2) = &(c_1+c_2)\phi_2^{'}(0)K\delta(\beta_2^2-\bar{\beta_2}^2e^{\frac{\sigma_2^2}{\alpha_2}})+(c_1+c_2)\phi_1^{'}(0)\frac{\Lambda}{m}\delta(\beta_1^2-\bar{\beta_1}^2e^{\frac{\sigma_1^2}{\alpha_1}})\\ &+5(\sqrt[5]{c_1c_3c_4c_5\tilde{\beta_1}\beta_3\mu K\frac{\Lambda}{m}}-\sqrt[5]{c_1c_3c_4c_5\beta_1\beta_3\mu K\frac{\Lambda}{m}})+3(\sqrt[3]{c_2c_6\tilde{\beta_2}\mu K}-\sqrt[3]{c_2c_6\beta_2\mu K}). \end{align*}

    Next we define

    V_2 = V_1+\frac{(c_1+c_2)\phi_1^{'}(0)+4\delta c_4m_0}{4m\delta}I_V,

    applying It \hat{o} 's formula to V_{2} , it leads to

    \begin{align*} \mathcal{L}V_{2}\leq&-\frac{\omega}{2}(R_0^s-1)+[(c_1+c_2)\phi_2^{'}(0)\frac{1}{4\delta}+c_3\phi_3^{'}(0)\beta_3+(c_5+c_6)m_0]I_H\\ &+\frac{(c_1+c_2)\phi_1^{'}(0)+4\delta c_4m_0}{4\delta}I_V+F(\beta_1, \beta_2)+\frac{(c_1+c_2)\phi_1^{'}(0)+4\delta c_4m_0}{4m\delta}\beta_3\phi_3(I_H)\frac{\Lambda}{m}\\&-\frac{(c_1+c_2)\phi_1^{'}(0)+4\delta c_4m_0}{4m\delta}\beta_3\phi_3(I_H)I_V-\frac{(c_1+c_2)\phi_1^{'}(0)+4\delta c_4m_0}{4\delta}I_V\\ \leq&-\frac{\omega}{2}(R_0^s-1)+AI_H+F(\beta_1, \beta_2), \end{align*}

    where

    A = (c_1+c_2)\phi_2^{'}(0)\frac{1}{4\delta}+c_3\phi_3^{'}(0)\beta_3+(c_5+c_6)m_0+\frac{((c_1+c_2)\phi_1^{'}(0)+4\delta c_4m_0)\beta_3\phi_3^{'}(0)\Lambda}{4m^2\delta}.

    Next, define

    V_3 = -\log S_H-\log I_V-\log(K-(S_H+I_H))-\log(\frac{\Lambda}{m}-I_V)+(\beta_1-1-\log\beta_1)+(\beta_2-1-\log\beta_2),

    then, we have

    \begin{align*} \mathcal{L}V_{3} = &-\frac{\mu K}{S_H}+\mu+\beta_1\phi_1(I_V)+\beta_2\phi_2(I_H)-\frac{dI_H}{S_H}-\frac{\Lambda}{m}\beta_3\phi_3(I_H)\frac{1}{I_V}+\beta_3\phi_3(I_H)+m-\frac{I_H}{\phi_3(I_H)}+\frac{1}{\phi_3^{'}(0)}\\ &-\frac{1}{K-(S_H+I_H)}[-\mu(K-(S_H+I_H))+\gamma I_H]-\frac{1}{\frac{\Lambda}{m}-I_V}[-\beta_3\phi_3(I_H)(\frac{\Lambda}{m}-I_V)+mI_V]+\frac{I_H}{\phi_3(I_H)}\\ &-\frac{1}{\phi_3^{'}(0)}+\beta_1(\alpha_1\log\bar{\beta_1}-\frac{1}{2}\alpha_1\log\beta_1+\frac{1}{2}\sigma_1^2)-\alpha_1(\log\bar{\beta_1}-\frac{1}{2}\log\beta_1)-\frac{1}{2}\beta_1\alpha_1\log\beta_1+\frac{1}{2}\alpha_1\log\beta_1\\ &+\beta_2(\alpha_2\log\bar{\beta_2}-\frac{1}{2}\alpha_2\log\beta_2+\frac{1}{2}\sigma_2^2)-\alpha_2(\log\bar{\beta_2}-\frac{1}{2}\log\beta_2)-\frac{1}{2}\beta_2\alpha_2\log\beta_2+\frac{1}{2}\alpha_2\log\beta_2.\\ \leq&-\frac{\mu K}{S_H}-\sqrt{\frac{\Lambda\beta_3I_H}{mI_V}}-\frac{\gamma I_H}{K-(S_H+I_H)}-\frac{mI_V}{\frac{\Lambda}{m}-I_V}+W(\beta_1, \beta_2)\\ &-\frac{1}{2}\beta_1\alpha_1\log\beta_1+\frac{1}{2}\alpha_1\log\beta_1-\frac{1}{2}\beta_2\alpha_2\log\beta_2+\frac{1}{2}\alpha_2\log\beta_2, \end{align*}

    where

    \begin{align*} W(\beta_1, \beta_2) = &2\mu+m+\frac{1}{\phi_3^{'}(0)}+\beta_1\phi_1^{'}(0)\frac{\Lambda}{m}+\beta_2\phi_2^{'}(0)K+2\beta_3\phi_3^{'}(0)K+m_0K\\ &+\beta_1(\alpha_1\log\bar{\beta_1}-\frac{1}{2}\alpha_1\log\beta_1+\frac{1}{2}\sigma_1^2)-\alpha_1(\log\bar{\beta_1}-\frac{1}{2}\log\beta_1)\\ &+\beta_2(\alpha_2\log\bar{\beta_2}-\frac{1}{2}\alpha_2\log\beta_2+\frac{1}{2}\sigma_2^2)-\alpha_2(\log\bar{\beta_2}-\frac{1}{2}\log\beta_2). \end{align*}

    Choose M is a large enough positive constant, let

    \bar{V} = MV_2+V_3,

    where M satisfying the following inequality

    -\frac{M\omega}{2}(R_0^s-1)+\sup\limits_{(\beta_1, \beta_2)\in R_{+}^{2}}W(\beta_1, \beta_2)\leq-2.

    Notice that \bar{V} has a minimum value \bar{V}_{min} in the interior of \Gamma because \bar{V} \rightarrow +\infty as (S_H, I_H, I_V, \beta_1, \beta_2) tends to the boundary of \Gamma . Ultimately, establish a non-negative C^2 -function V(S_H, I_H, I_V, \beta_1, \beta_2): \Gamma \rightarrow R_+ as follows

    V(S_H, I_H, I_V, \beta_1, \beta_2) = \bar{V}(S_H, I_H, I_V, \beta_1, \beta_2) - \bar{V}_{min},

    then we obtain

    \begin{align} \begin{split} \mathcal{L}V \leq &-\frac{M\omega}{2}(R_0^s-1)+MAI_H +MF(\beta_1,\beta_2)-\frac{\mu K}{S_H}-\sqrt{\frac{\Lambda\beta_3I_H}{mI_V}}-\frac{\gamma I}{K-(S_H+I_H)}-\frac{mI_V}{\frac{\Lambda}{m}-I_V}\\ &-\frac{1}{2}\beta_1\alpha_1\log\beta_1+\frac{1}{2}\alpha_1\log\beta_1-\frac{1}{2}\beta_2\alpha_2\log\beta_2+\frac{1}{2}\alpha_2\log\beta_2+W(\beta_1, \beta_2)\\ : = &G(S_H, I_H, I_V, \beta_1, \beta_2)+MF(\beta_1, \beta_2). \end{split} \end{align} (A.6)

    Step 2. Set up the closed set U_{\varepsilon}

    \begin{align*} U_{\varepsilon} = &\{(S_H,I_H,I_V,\beta_1,\beta_2)\in\Gamma|I_H\geq\varepsilon,\ S_H\geq\varepsilon,\ I_V\geq\varepsilon^{2},\ \\&S_H+I_H\leq K-\varepsilon^{2},\ I_V\leq \frac{\Lambda}{m}-\varepsilon^{3},\ \varepsilon\leq \beta_1\leq\frac{1}{\varepsilon},\ \varepsilon\leq \beta_2\leq\frac{1}{\varepsilon}\}, \end{align*}

    where \varepsilon is a small enough constant and the complement of U_{\varepsilon} can be divided into nine small sets as follows

    U_{1,\varepsilon}^{c} = \{(S_H,I_H,I_V,\beta_1,\beta_2)\in \Gamma|0 < \beta_1 < \varepsilon\}, U_{2,\varepsilon}^{c} = \{(S_H,I_H,I_V,\beta_1,\beta_2)\in \Gamma|\beta_1 > \frac{1}{\varepsilon}\},
    U_{3,\varepsilon}^{c} = \{(S_H,I_H,I_V,\beta_1,\beta_2)\in \Gamma|0 < \beta_2 < \varepsilon\}, U_{4,\varepsilon}^{c} = \{(S_H,I_H,I_V,\beta_1,\beta_2)\in \Gamma|\beta_2 > \frac{1}{\varepsilon}\},
    U_{5,\varepsilon}^{c} = \{(S_H,I_H,I_V,\beta_1,\beta_2)\in \Gamma|0 < I_H < \varepsilon\}, U_{6,\varepsilon}^{c} = \{(S_H,I_H,I_V,\beta_1,\beta_2)\in \Gamma|0 < S_H < \varepsilon\},
    U_{7,\varepsilon}^{c} = \{(S_H,I_H,I_V,\beta_1,\beta_2)\in \Gamma|0 < I_V < \varepsilon^2,I_H\geq\varepsilon \},
    U_{8,\varepsilon}^{c} = \{(S_H,I_H,I_V,\beta_1,\beta_2)\in \Gamma|S_H+I_H > K-\varepsilon^2,I_H\geq\varepsilon\},
    U_{9,\varepsilon}^{c} = \{(S_H,I_H,I_V,\beta_1,\beta_2)\in \Gamma|I_V > \frac{\Lambda}{m}-\varepsilon^3,I_V\geq\varepsilon^2\},

    then the following results hold

    Case 1: (S_H, I_H, I_V, \beta_1, \beta_2)\in U_{1, \varepsilon}^{c} , then

    \begin{align*} G(S_H,I_H,I_V,\beta_1,\beta_2) = &-\frac{M\omega}{2}(R_0^s-1)+MAI_H+W(\beta_1,\beta_2)-\frac{\mu K}{S_H}-\sqrt{\frac{\Lambda\beta_3I_H}{mI_V}}-\frac{\gamma I}{K-(S_H+I_H)}\\ &-\frac{mI_V}{\frac{\Lambda}{m}-I_V}-\frac{1}{2}\beta_1\alpha_1\log\beta_1+\frac{1}{2}\alpha_1\log\beta_1-\frac{1}{2}\beta_2\alpha_2\log\beta_2+\frac{1}{2}\alpha_2\log\beta_2\\ \leq&-\frac{M\omega}{2}(R_0^s-1)+MAI_H+W(\beta_1, \beta_2)+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2\\ \leq&-\frac{M\omega}{2}(R_0^s-1)+MAK+\frac{1}{2}\alpha_1log\varepsilon+\frac{1}{2}\alpha_2\log\beta_2+\sup\limits_{(\beta_1, \beta_2)\in R_{+}^{2}}W(\beta_1, \beta_2)\\ \leq&-1. \end{align*}

    Case 2: (S_H, I_H, I_V, \beta_1, \beta_2)\in U_{2, \varepsilon}^{c} , then

    \begin{align*} G(S_H,I_H,I_V,\beta_1,\beta_2) \leq&-\frac{M\omega}{2}(R_0^s-1)+MAI_H+W(\beta_1, \beta_2)+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2-\frac{1}{2}\beta_1\alpha_1\log\beta_1\\ \leq&-\frac{M\omega}{2}(R_0^s-1)+MAK+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2-\frac{\alpha_1log\frac{1}{\varepsilon}}{2\varepsilon}+\sup\limits_{(\beta_1, \beta _2)\in R_{+}^{2}}W(\beta_1, \beta_2)\\ \leq&-1. \end{align*}

    Case 3: (S_H, I_H, I_V, \beta_1, \beta_2)\in U_{3, \varepsilon}^{c} , then

    \begin{align*} G(S_H,I_H,I_V,\beta_1,\beta_2) \leq&-\frac{M\omega}{2}(R_0^s-1)+MAI_H+W(\beta_1, \beta_2)+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2\\ \leq&-\frac{M\omega}{2}(R_0^s-1)+MAK+\frac{1}{2}\alpha_2log\varepsilon+\frac{1}{2}\alpha_1log\beta_1+\sup\limits_{(\beta_1, \beta_2)\in R_{+}^{2}}W(\beta_1, \beta_2)\\ \leq&-1. \end{align*}

    Case 4: (S_H, I_H, I_V, \beta_1, \beta_2)\in U_{4, \varepsilon}^{c} , then

    \begin{align*} G(S_H,I_H,I_V,\beta_1,\beta_2) \leq&-\frac{M\omega}{2}(R_0^s-1)+MAI_H+W(\beta_1, \beta_2)+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2-\frac{1}{2}\beta_2\alpha_2\log\beta_2\\ \leq&-\frac{M\omega}{2}(R_0^s-1)+MAK-\frac{\alpha_2log\frac{1}{\varepsilon}}{2\varepsilon}+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2+\sup\limits_{(\beta_1, \beta_2)\in R_{+}^{2}}W(\beta_1, \beta_2)\\ \leq&-1. \end{align*}

    Case 5: (S_H, I_H, I_V, \beta_1, \beta_2)\in U_{5, \varepsilon}^{c} , then

    \begin{align*} G(S_H,I_H,I_V,\beta_1,\beta_2) \leq&-\frac{M\omega}{2}(R_0^s-1)+MAI_H+W(\beta_1, \beta_2)+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2\\ \leq&-\frac{M\omega}{2}(R_0^s-1)+MA\varepsilon+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2+\sup\limits_{(\beta_1, \beta_2)\in R_{+}^{2}}W(\beta_1, \beta_2)\\ \leq&-1. \end{align*}

    Case 6: (S_H, I_H, I_V, \beta_1, \beta_2)\in U_{6, \varepsilon}^{c} , then

    \begin{align*} G(S_H,I_H,I_V,\beta_1,\beta_2) \leq&-\frac{M\omega}{2}(R_0^s-1)+MAI_H+W(\beta_1, \beta_2)-\frac{\mu K}{S_H}+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2\\ \leq&-\frac{M\omega}{2}(R_0^s-1)+MAK-\frac{\mu K}{\varepsilon}+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2+\sup\limits_{(\beta_1, \beta_2)\in R_{+}^{2}}W(\beta_1, \beta_2)\\ \leq&-1. \end{align*}

    Case 7: (S_H, I_H, I_V, \beta_1, \beta_2)\in U_{7, \varepsilon}^{c} , then

    \begin{align*} G(S_H,I_H,I_V,\beta_1,\beta_2) \leq&-\frac{M\omega}{2}(R_0^s-1)+MAI_H+W(\beta_1,\beta_2)-\sqrt{\frac{\Lambda\beta_3I_H}{mI_V}}+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2\\ \leq&-\frac{M\omega}{2}(R_0^s-1)+MAK-\sqrt{\frac{\Lambda\beta_3}{m\varepsilon}}+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2+\sup\limits_{(\beta_1, \beta_2)\in R_{+}^{2}}W(\beta_1, \beta_2)\\ \leq&-1. \end{align*}

    Case 8: (S_H, I_H, I_V, \beta_1, \beta_2)\in U_{8, \varepsilon}^{c} , then

    \begin{align*} G(S_H,I_H,I_V,\beta_1,\beta_2) \leq&-\frac{M\omega}{2}(R_0^s-1)+MAI_H+W(\beta_1,\beta_2)-\frac{\gamma I_H}{K-(S_H+I_H)}+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2\\ \leq&-\frac{M\omega}{2}(R_0^s-1)+MAK-\frac{\gamma}{\varepsilon}+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2+\sup\limits_{(\beta_1, \beta_2)\in R_{+}^{2}}W(\beta_1, \beta_2)\\ \leq&-1. \end{align*}

    Case 9: (S_H, I_H, I_V, \beta_1, \beta_2)\in U_{9, \varepsilon}^{c} , then

    \begin{align*} G(S_H,I_H,I_V,\beta_1,\beta_2) \leq&-\frac{M\omega}{2}(R_0^s-1)+MAI_H+W(\beta_1,\beta_2)-\frac{mI_V}{\frac{\Lambda}{m}-I_V}+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2\\ \leq&-\frac{M\omega}{2}(R_0^s-1)+MAK-\frac{m}{\varepsilon}+\frac{1}{2}\alpha_1log\beta_1+\frac{1}{2}\alpha_2\log\beta_2+\sup\limits_{(\beta_1, \beta_2)\in R_{+}^{2}}W(\beta_1, \beta_2)\\ \leq&-1. \end{align*}

    According to the discussion of cases above, we can know that

    G\left(S_H, I_H, I_V, \beta_1, \beta_2\right) \leq-1, \quad \forall\left(S_H, I_H, I_V, \beta_1, \beta_2 \right) \in \Gamma \backslash U_{\varepsilon},

    in other words, let H is a positive constant that makes

    G\left(S_H, I_H, I_V, \beta_1, \beta_2 \right) \leq H < +\infty, \quad \forall\left(S_H, I_H, I_V, \beta_1, \beta_2 \right) \in \Gamma.

    For any initial value (S_H(0), I_H(0), I_V(0), \beta_1(0), \beta_2(0))\in\Gamma , integrating the inequality (A.6) and taking the expectation, we get

    \begin{equation} \begin{aligned} \begin{split} 0 & \leq \frac{E [V\left(S_H(t), I_H(t), I_V(t), \beta_1(t), \beta_2(t) \right)]}{t} \\ & = \frac{E [V\left(S_H(0), I_H(0), I_V(0), \beta_1(0), \beta_2(0)\right)]}{t}+\frac{1}{t} \int_{0}^{t} E\left(\mathcal{L} V\left(S_H(\tau), I_H(\tau), I_V(\tau), \beta_1(\tau), \beta_2(\tau) \right) \right)d \tau\\ & \leq \frac{E V\left(S_H(0), I_H(0), I_V(0), \beta_1(0), \beta_2(0)\right)}{t}+\frac{1}{t} \int_{0}^{t} E\left(G\left(S_H(\tau), I_H(\tau), I_V(\tau), \beta_1(\tau), \beta_2(\tau)\right) \right)d \tau\\ &+5 M \sqrt[5]{c_1c_3c_4c_5\beta_3\mu K\frac{\Lambda}{m}} \frac{1}{t} \int_{0}^{t} E\left(\sqrt[5]{\tilde{\beta_1}}-\sqrt[5]{\beta_1(\tau)}\right) d\tau+3M \sqrt[3]{c_2c_6\mu K}\frac{1}{t} \int_{0}^{t} E\left(\sqrt[3]{\tilde{\beta_2}}-\sqrt[3]{\beta_2(\tau)}\right) d\tau\\ &+(c_1+c_2)\phi_1^{'}(0)\delta\frac{\Lambda}{m}\frac{1}{t}\int_{0}^{t} E\left(\beta_1^2(\tau)-\bar{\beta_1}^2e^{\frac{\sigma_1^2}{\alpha_1}}\right) d\tau+(c_1+c_2)\phi_2^{'}(0)\delta K\frac{1}{t} \int_{0}^{t} E\left(\beta_2^2(\tau)-\bar{\beta_2}^2e^{\frac{\sigma_2^2}{\alpha_2}}\right) d\tau.\\ \end{split} \end{aligned} \end{equation} (A.7)

    One gets that \beta_i(i = 1, 2) is ergodic according to [34,35], then we can get that

    \lim _{t \rightarrow +\infty} \frac{1}{t} \int_{0}^{t} \beta_i^p(\tau) d\tau = \lim _{t \rightarrow +\infty} \frac{1}{t} \int_{0}^{t}e^{plog\beta_i(\tau)}d\tau = \int_{-\infty}^{+\infty}e^{py_i}\pi(y_i)dy_i = \bar{\beta_i}^pe^{\frac{p^2\sigma_i^2}{4\alpha_i}},

    hence

    \begin{align*} &\lim _{t \rightarrow +\infty} \frac{1}{t} \int_{0}^{t} \beta_1^\frac{1}{5}(\tau) d\tau = \bar{\beta_1}^\frac{1}{5}e^{\frac{\sigma_1^2}{100\alpha_1}} = \tilde{\beta_1}^{\frac{1}{5}}, \lim _{t \rightarrow +\infty} \frac{1}{t} \int_{0}^{t} \beta_2^\frac{1}{3}(\tau) d\tau = \bar{\beta_2}^\frac{1}{3}e^{\frac{\sigma_1^2}{36\alpha_2}} = \tilde{\beta_2}^{\frac{1}{3}},\\ &\lim _{t \rightarrow +\infty} \frac{1}{t} \int_{0}^{t} \beta_1^2(\tau) d\tau = \bar{\beta_1}^2e^{\frac{\sigma_1^2}{\alpha_1}}, \lim _{t \rightarrow +\infty} \frac{1}{t} \int_{0}^{t} \beta_2^2(\tau) d\tau = \bar{\beta_2}^2e^{\frac{\sigma_2^2}{\alpha_2}}. \end{align*}

    Then letting t \rightarrow +\infty and taking infimum to (A.7) it follows

    \begin{align*} 0\leq&\liminf\limits_{t \rightarrow +\infty} \frac{1}{t} \int_{0}^{t} E\left(G\left(S_H(\tau), I_H(\tau), I_V(\tau), \beta_1(\tau), \beta_2(\tau)\right) \right)d \tau \\ = &\liminf\limits_{t \rightarrow +\infty} \frac{1}{t} \int_{0}^{t} E\left(G\left(S_H(\tau), I_H(\tau), I_V(\tau), \beta_1(\tau),, \beta_2(\tau) \right) I_{\left\{\left(S_H(\tau), I_H(\tau), I_V(\tau), \beta_1(\tau), \beta_2(\tau)\in U_{\varepsilon}\right\}\right.}\right) d \tau \\ &+\liminf\limits_{t \rightarrow +\infty} \frac{1}{t} \int_{0}^{t} E\left(G\left(S_H(\tau), I_H(\tau), I_V(\tau), \beta_1(\tau), \beta_2(\tau) \right) I_{\left\{\left(S_H(\tau), I_H(\tau), I_V(\tau), \beta_1(\tau), \beta_2(\tau) \in \Gamma\backslash U_{\varepsilon}\right\}\right.}\right) d \tau \\ \leq& H \liminf\limits_{t \rightarrow +\infty} \frac{1}{t} \int_{0}^{t} I_{\left\{\left(S_H(\tau), I_H(\tau), I_V(\tau), \beta_1(\tau), \beta_2(\tau)\in U_{\varepsilon}\right\}\right.} d \tau \\ &-\liminf\limits_{t \rightarrow +\infty} \frac{1}{t} \int_{0}^{t} I_{\left\{\left(S_H(\tau), I_H(\tau), I_V(\tau), \beta_1(\tau), \beta_2(\tau) \in \Gamma\backslash U_{\varepsilon}\right\}\right.} d \tau \\ \leq&-1+(H+1) \liminf\limits_{t \rightarrow +\infty} \frac{1}{t} \int_{0}^{t} I_{\left\{\left(S_H(\tau), I_H(\tau), I_V(\tau), \beta_1(\tau), \beta_2(\tau)\in U_{\varepsilon}\right\}\right.} d \tau, \end{align*}

    which means

    \liminf\limits_{t \rightarrow +\infty} \frac{1}{t} \int_{0}^{t} P\left\{\left(S_H(\tau), I_H(\tau), I_V(\tau), \beta_1(\tau), \beta_2(\tau)\right) \in U_{\varepsilon}\right\} d \tau \geq \frac{1}{H+1} > 0 \ a.s.,
    \begin{align*} \liminf\limits_{t \rightarrow +\infty}\frac{1}{t} \int_{0}^{t} P\left\{\tau,\left(S_H(0), I_H(0), I_V(0), \beta_1(0), \beta_2(0)\right) , U_{\varepsilon}\right\} d \tau \geq \frac{1}{H+1},&\ \\\forall(S_H(0),I_H(0),I_V(0),\beta_1(0), \beta_2(0))\in \Gamma.& \end{align*}

    According to the Lemma 2.4, we can conclude that when R_0^s > 1 system (1.6) has a stationary distribution on \Gamma .

    Proof. Define a C^2 -function G(I_H, I_V, \beta_1, \beta_2): \Gamma \rightarrow R by

    G(I_H, I_V, \beta_1, \beta_2) = v_1I_H+v_2I_V,

    where v_1 = R_0, v_2 = \frac{\bar{\beta_1}\phi_1^{'}(0)K}{m} . Applying It \hat{o} 's formula to G(I_H, I_V, \beta_1, \beta_2) , then we have

    \begin{align*} \mathcal{L}(logG) = &\frac{1}{v_1I_H+v_2I_V}[v_1(\beta_1\phi_1(I_V)S_H+\beta_2\phi_2(I_H)S_H-\omega I_H)+v_2(\beta_3\phi_3(I_H)(\frac{\Lambda}{m}-I_V)-mI_V)]\\ \leq&\frac{1}{v_1I_H+v_2I_V}[v_1\beta_1\phi_1^{'}(0)KI_V+v_1\beta_2\phi_2^{'}(0)KI_H-v_1\omega I_H+v_2\beta_3\phi_3^{'}(0)(\frac{\Lambda}{m}-I_V)I_H-v_2mI_V]\\ = &\frac{1}{v_1I_H+v_2I_V}[v_1\bar{\beta_1}\phi_1^{'}(0)KI_V+v_1 \bar{\beta_2}\phi_2^{'}(0)KI_H-v_1\omega I_H+v_2\beta_3\phi_3^{'}(0)(\frac{\Lambda}{m}-I_V)I_H-v_2mI_V]\\ &+\frac{1}{v_1I_H+v_2I_V}[v_1(\beta_1-\bar{\beta_1})\phi_1^{'}(0)K I_V+v_1(\beta_2-\bar{\beta_2})\phi_2^{'}(0)KI_H]\\ \leq&\frac{1}{v_1I_H+v_2I_V}[(v_1\bar{\beta_1}\phi_1^{'}(0)K-v_2m)I_V+(v_1\bar{\beta_2}\phi_2^{'}(0)K+v_2\beta_3\phi_3^{'}(0)\frac{\Lambda}{m}-v_1\omega)I_H]\\&+\frac{mR_0}{\bar{\beta_1}}|\beta_1-\bar{\beta_1}|+\phi_2^{'}(0)K|\beta_2-\bar{\beta_2}|\\ \leq&\frac{1}{v_1I_H+v_2I_V}[\bar{\beta_1}\phi_1^{'}(0)K(R_0-1)I_V+\bar{\beta_2}\phi_2^{'}(0)K(R_0-1)I_H]+\frac{mR_0}{\bar{\beta_1}}|\beta_1-\bar{\beta_1}|+\phi_2^{'}(0)K|\beta_2-\bar{\beta_2}|\\ \leq&\min\{m,\frac{\bar{\beta_2}\phi_2^{'}(0)K}{R_0}\}(R_{0}-1)+\frac{mR_0}{\bar{\beta_1}}|\beta_1-\bar{\beta_1}|+\phi_2^{'}(0)K|\beta_2-\bar{\beta_2}|. \end{align*}

    Integrating both sides of this equation from 0 to t and dividing by t , we get

    \begin{equation} \frac{\log G(t)-\log G(0)}{t}\leq\min\{m,\frac{\bar{\beta_2}\phi_2^{'}(0)K}{R_0}\}(R_{0}-1)+\frac{mR_0}{\bar{\beta_1}}\frac{1}{t}\int_{0}^{t} |\beta_1(\tau)-\bar{\beta_1}|d\tau+\phi_2^{'}(0)K\frac{1}{t}\int_{0}^{t} |\beta_2(\tau)-\bar{\beta_2}|d\tau. \end{equation} (A.8)

    According to the ergodicity of \beta_1, \beta_2 , then

    \begin{align} \begin{split} \lim\limits_{t \rightarrow \infty}\frac{1}{t} \int_{0}^{t} |\beta_1(\tau)-\bar{\beta_1}|d\tau \leq \lim\limits_{t \rightarrow \infty}(\frac{1}{t} \int_{0}^{t} (\beta_1(\tau)-\bar{\beta_1})^2d\tau)^\frac{1}{2} = \bar{\beta_1}(e^\frac{\sigma_1^2}{\alpha_1}-2e^\frac{\sigma_1^2}{4\alpha_1}+1)^\frac{1}{2},\\ \lim\limits_{t \rightarrow \infty}\frac{1}{t} \int_{0}^{t} |\beta_2(\tau)-\bar{\beta_2}|d\tau \leq \lim\limits_{t \rightarrow \infty}(\frac{1}{t} \int_{0}^{t} (\beta_2(\tau)-\bar{\beta_2})^2d\tau)^\frac{1}{2} = \bar{\beta_2}(e^\frac{\sigma_2^2}{\alpha_2}-2e^\frac{\sigma_2^2}{4\alpha_2}+1)^\frac{1}{2}. \end{split} \end{align} (A.9)

    Letting t \rightarrow +\infty , and submitting (A.9) into (A.8), then inequailty (A.8) becomes

    \begin{align*} \limsup _{t \rightarrow +\infty} \frac{\log G(t)}{t}\leq& \min\{m,\frac{\bar{\beta_2}\phi_2^{'}(0)K}{R_0}\}(R_{0}-1)+mR_0(e^\frac{\sigma_1^2}{\alpha_1}-2e^\frac{\sigma_1^2}{4\alpha_1}+1)^\frac{1}{2}+\phi_2^{'}(0)K\bar{\beta_2}(e^\frac{\sigma_2^2}{\alpha_2}-2e^\frac{\sigma_2^2}{4\alpha_2}+1)^\frac{1}{2}\\ : = &\min\{m,\frac{\bar{\beta_2}\phi_2^{'}(0)K}{R_0}\}(R_0^E-1), \end{align*}

    where

    R_{0}^{E} = R_{0}+\frac{mR_0(e^\frac{\sigma_1^2}{\alpha_1}-2e^\frac{\sigma_1^2}{4\alpha_1}+1)^\frac{1}{2}+\phi_2^{'}(0)K\bar{\beta_2}(e^\frac{\sigma_2^2}{\alpha_2}-2e^\frac{\sigma_2^2}{4\alpha_2}+1)^\frac{1}{2}}{\min\{m,\frac{\bar{\beta_2}\phi_2^{'}(0)K}{R_0}\}}.

    If R_{0}^{E} < 1 ,

    \limsup _{t \rightarrow +\infty} \frac{\log G(t)}{t} < 0

    will be true which indicates

    \lim\limits_{t \rightarrow +\infty}I_H(t) = 0 \lim\limits_{t \rightarrow +\infty}I_V(t) = 0,

    this means the disease will die out exponentially.

    Proof. Step 1 Consider the following equation

    \begin{equation} G_1^{2}+A \Sigma_1+\Sigma_1 A^{T} = 0, \end{equation} (A.10)

    where G_1 = diag(0, 0, 0, \sigma_1, 0) .

    Let A_{1} = J_{1}AJ_{1}^{-1} , where

    J_{1} = \left(\begin{array}{lllll}0 & 0 & 0 & 1 & 0\\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 &0\\0 & 0 & 0 & 0 & 1\end{array}\right),

    then

    A_{1} = \left(\begin{array}{lllll}-a_{44} & 0 & 0 & 0 & 0\\ -a_{14} & -a_{11} & -a_{12} & -a_{13} & -a_{15}\\ a_{14} & a_{21} & -a_{22} & a_{13} & a_{15} \\ 0 & 0 & a_{32} & -a_{33} & 0\\ 0 & 0 & 0 & 0 & -a_{55} \end{array}\right).

    Let A_{2} = J_{2}A_{1}J_{2}^{-1} , where

    J_{2} = \left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 &0\\0 & 0 & 0 & 0 & 1\end{array}\right),

    and

    A_{2} = \left(\begin{array}{lllll}-a_{44} & 0 & 0 & 0 & 0\\ -a_{14} & a_{12}-a_{11} & -a_{12} & -a_{13} & -a_{15}\\ 0 & a_{12}-a_{11}+a_{21}+a_{22} & -a_{12}-a_{22} & 0 & 0 \\ 0 & -a_{32} & a_{32} & -a_{33} & 0\\ 0 & 0 & 0 & 0 & -a_{55} \end{array}\right).

    Due to a_{12}-a_{11}+a_{21}+a_{22} = \gamma > 0 , let A_{3} = J_{3}A_{2}J_{3}^{-1} , where

    J_{3} = \left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & \frac{a_{32}}{\gamma} & 1 &0\\0 & 0 & 0 & 0 & 1\end{array}\right),

    and

    A_{3} = \left(\begin{array}{lllll}-a_{44} & 0 & 0 & 0 & 0\\ -a_{14} & a_{12}-a_{11} & \frac{a_{13}a_{32}}{\gamma}-a_{12} & -a_{13} & -a_{15}\\ 0 & \gamma & -a_{12}-a_{22} & 0 & 0 \\ 0 & 0 & w & -a_{33} & 0\\ 0 & 0 & 0 & 0 & -a_{55} \end{array}\right).

    in which

    w = a_{32}-\frac{a_{32}(a_{12}+a_{22})}{\gamma}+\frac{a_{32}a_{33}}{\gamma} = m-\mu+\beta_3\phi_3(I^*) > 0.

    By using the methodology in [36,37], the standard transformation matrix of A_3 has the following form

    M = \left(\begin{array}{ccccc} m_{1} & m_{2} & m_{3} & m_{4} & m_{5} \\ 0 & w\gamma & -w(a_{12}+a_{22}+a_{33}) & a_{33}^2 & 0 \\ 0 & 0 & w & -a_{33} & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),

    where m_{1} = -w\gamma a_{14}, \ m_{2} = -w\gamma(a_{33}+a_{11}+a_{22}), \ m_{3} = wa_{13}a_{32}-w\gamma a_{12}+w(a_{12}+a_{22}+a_{33})(a_{12}+a_{22})+wa_{33}^2, \ m_{4} = -\gamma wa_{13}-a_{33}^3, m_{5} = -\gamma wa_{15}.

    Define A_{01} = MA_3M^{-1} , then we can get

    A_{01} = \left(\begin{array}{ccccc}-b_{1} & -b_{2} & -b_{3} & -b_{4} & -b_{5} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -a_{55}\end{array}\right),

    in which

    \begin{align*} b_1 = &a_{11}+a_{22}+a_{33}+a_{44}, \\ b_2 = &a_{44}(a_{11}+a_{22}+a_{33})+a_{11}a_{22}+a_{12}a_{21}+a_{11}a_{33}-a_{13}a_{32}+a_{22}a_{33},\\ b_3 = &a_{44}(a_{11}a_{22}+a_{12}a_{21}+a_{11}a_{33}-a_{13}a_{32}+a_{22}a_{33})-a_{11}a_{13}a_{32}+a_{11}a_{22}a_{33} \\ &+a_{12}a_{21}a_{33}+a_{13}a_{21}a_{32},\\ b_4 = &a_{44}(a_{11}a_{22}a_{33}-a_{11}a_{13}a_{32}+a_{12}a_{21}a_{33}+a_{13}a_{21}a_{32}). \end{align*}

    Let J = J_3J_2J_1 , we can equivalently transform the Eq (A.10) into

    \begin{equation} (MJ)G_1^2(MJ)^T+[(MJ)A(MJ)^{-1}][(MJ)\Sigma_1(MJ)^T]+[(MJ)\Sigma_1(MJ)^T][(MJ)A(MJ)^{-1}]^T = 0, \end{equation} (A.11)

    where (MJ)G_1^2(MJ)^T = diag((m_{1}\sigma_1)^2, 0, 0, 0, 0) , let \rho_1 = m_{1}\sigma_1 , then (A.11) becomes

    G_0^2+\rho_1^{-2}A_{01}[(MJ)\Sigma_1(MJ)^T]+\rho_1^{-2}[(MJ)\Sigma_1(MJ)^T]A_{01}^T = 0,

    then we obtian

    \Sigma_{01}: = \rho_1^{-2}(MJ)\Sigma_1(MJ)^T = \left(\begin{array}{ccccc}\frac{b_1b_4-b_2b_3}{b} & 0 & \frac{b_3}{b} & 0 & 0 \\ 0 & -\frac{b_3}{b} & 0 & \frac{b_1}{b} & 0 \\ \frac{b_3}{b} & 0 & -\frac{b_1}{b} & 0 & 0\\ 0 & \frac{b_1}{b} & 0 & \frac{b_3-b_1b_2}{b_4b} & 0 \\0 & 0 & 0 & 0 & 0\end{array}\right) ,

    where b = 2[b_4b_1^2-b_1b_2b_3+b_3^2] . We can obtain that the matrix \Sigma_{01} is a positive semi-definite matrix, the exact expression of \Sigma_1 is as follows

    \Sigma_1 = \rho_1^{2}(MJ)^{-1}\Sigma_{01}[(MJ)^{-1}]^{T}.

    Step 2 Consider the following equation

    \begin{equation} G_2^{2}+A \Sigma_2+\Sigma_2 A^{T} = 0, \end{equation} (A.12)

    where G_2 = diag(0, 0, 0, 0, \sigma_2) .

    Let B_{1} = P_{1}AP_{1}^{-1} , where

    P_{1} = \left(\begin{array}{lllll}0 & 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 &0\\0 & 0 & 0 & 1 & 0\end{array}\right),

    then

    B_{1} = \left(\begin{array}{lllll}-a_{55} & 0 & 0 & 0 & 0\\ -a_{15} & -a_{11} & -a_{12} & -a_{13} & -a_{14}\\ a_{15} & a_{21} & -a_{22} & a_{13} & a_{14} \\ 0 & 0 & a_{32} & -a_{33} & 0\\ 0 & 0 & 0 & 0 & -a_{44} \end{array}\right).

    Let B_{2} = P_{2}B_1P_{2}^{-1} , where

    P_{2} = \left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 &0\\0 & 0 & 0 & 0 & 1\end{array}\right),

    then

    B_{2} = \left(\begin{array}{lllll}-a_{55} & 0 & 0 & 0 & 0\\ -a_{15} & a_{12}-a_{11} & -a_{12} & -a_{13} & -a_{14}\\ 0 & a_{12}-a_{11}+a_{21}+a_{22} & -a_{12}-a_{22} & 0 & 0 \\ 0 & -a_{32} & a_{32} & -a_{33} & 0\\ 0 & 0 & 0 & 0 & -a_{44} \end{array}\right).

    Similarly, due to a_{12}-a_{11}+a_{21}+a_{22} = \gamma > 0 , let B_{3} = P_{3}B_{2}P_{3}^{-1} , where

    P_{3} = \left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & \frac{a_{32}}{\gamma} & 1 &0\\0 & 0 & 0 & 0 & 1\end{array}\right),

    and

    B_{3} = \left(\begin{array}{lllll}-a_{55} & 0 & 0 & 0 & 0\\ -a_{15} & a_{12}-a_{11} & \frac{a_{13}a_{32}}{\gamma}-a_{12} & -a_{13} & -a_{14}\\ 0 & \gamma & -a_{12}-a_{22} & 0 & 0 \\ 0 & 0 & w & -a_{33} & 0\\ 0 & 0 & 0 & 0 & -a_{44} \end{array}\right),

    in which

    w = a_{32}-\frac{a_{32}(a_{12}+a_{22})}{\gamma}+\frac{a_{32}a_{33}}{\gamma} = m-\mu+\beta_3\phi_3(I^*) > 0.

    The standard transformation matrix of B_3 has the following form

    N = \left(\begin{array}{ccccc} n_{1} & n_{2} & n_{3} & n_{4} & 0 \\ 0 & w\gamma & -w(a_{33}+a_{12}+a_{22}) & a_{33}^2 & 0 \\ 0 & 0 & w & -a_{33} & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),

    where n_{1} = -w\gamma a_{15}, \ n_{2} = -w\gamma(a_{33}+a_{11}+a_{22}), \ n_{3} = wa_{13}a_{32}-w\gamma a_{12}+w(a_{12}+a_{22}+a_{33})(a_{12}+a_{22})+wa_{33}^2, \ n_{4} = -\gamma wa_{13}-a_{33}^3, n_{5} = -\gamma wa_{14}.

    Define B_{01} = NB_3N^{-1} , then we can get

    B_{01} = \left(\begin{array}{ccccc}-d_{1} & -d_{2} & -d_{3} & -d_{4} & -d_{5} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -a_{44}\end{array}\right),

    in which

    \begin{align*} d_1 = &a_{11}+a_{22}+a_{33}+a_{55}, \\ d_2 = &a_{55}(a_{11}+a_{22}+a_{33})+a_{11}a_{22}+a_{12}a_{21}+a_{11}a_{33}-a_{13}a_{32}+a_{22}a_{33},\\ d_3 = &a_{55}(a_{11}a_{22}+a_{12}a_{21}+a_{11}a_{33}-a_{13}a_{32}+a_{22}a_{33})-a_{11}a_{13}a_{32}+a_{11}a_{22}a_{33} \\ &+a_{12}a_{21}a_{33}+a_{13}a_{21}a_{32},\\ d_4 = &a_{55}(a_{11}a_{22}a_{33}-a_{11}a_{13}a_{32}+a_{12}a_{21}a_{33}+a_{13}a_{21}a_{32}). \end{align*}

    Let P = P_3P_2P_1 , the equation (A.12) can be equivalently transformed into

    \begin{equation} (NP)G_2^2(NP)^T+[(NP)A(NP)^{-1}][(NP)\Sigma_2(NP)^T]+[(NP)\Sigma_2(NP)^T][(NP)A(NP)^{-1}]^T = 0, \end{equation} (A.13)

    where (NP)G_2^2(NP)^T = diag((n_{1}\sigma_2)^2, 0, 0, 0, 0) , let \rho_2 = n_{1}\sigma_2 , then (A.13) becomes

    G_0^2+\rho_2^{-2}B_{01}[(NP)\Sigma_2(NP)^T]+\rho_3^{-2}[(NP)\Sigma_2(NP)^T]B_{01}^T = 0,

    then we obtian

    \Sigma_{02}: = \rho_2^{-2}(NP)\Sigma_2(NP)^T = \left(\begin{array}{ccccc} \frac{d_1d_4-d_2d_3}{d} & 0 & \frac{d_3}{d} & 0 & 0 \\ 0 & -\frac{d_3}{d} & 0 & \frac{d_1}{d} & 0 \\ \frac{d_3}{d} & 0 & -\frac{d_1}{d} & 0 & 0\\ 0 & \frac{d_1}{d} & 0 & \frac{d_3-d_1d_2}{d_3d} & 0 \\0 & 0 & 0 & 0 & 0\end{array}\right) ,

    where d = 2(d_4d_1^2-d_1d_2d_3+d_3^2) , and we can obtain that the matrix \Sigma_{02} is a positive semi-definite matrix, the exact expression of \Sigma_2 is as follows

    \Sigma_2 = \rho_2^{2}(NP)^{-1}\Sigma_{02}[(NP)^{-1}]^{T}.

    Finally, \Sigma = \Sigma_1+\Sigma_2 . Obviously, the matrix \Sigma is a positive definite matrix. The proof is complete.



    [1] Abakah EJA, Gil-Alana LA, Madigu G, et al. (2020) Volatility persistence in cryptocurrency markets under structural breaks. Int Rev Econ Financ 69: 680–691. https://doi.org/10.1016/j.iref.2020.06.035. doi: 10.1016/j.iref.2020.06.035
    [2] Abdallah A, Maarof MA, Zainal A (2016) Fraud detection system: A survey. J Netw Comput Appl 68: 90–113. https://doi.org/10.1016/j.jnca.2016.04.007 doi: 10.1016/j.jnca.2016.04.007
    [3] Adcock R, Gradojevic N (2019) Non-fundamental, non-parametric Bitcoin forecasting. Physica A 531: 121727. https://doi.org/10.1016/j.physa.2019.121727 doi: 10.1016/j.physa.2019.121727
    [4] Akyildirim E, Goncu A, Sensoy A (2021) Prediction of cryptocurrency returns using machine learning. Ann Oper Res 297: 3–36. https://doi.org/10.1007/s10479-020-03575-y doi: 10.1007/s10479-020-03575-y
    [5] Alameer Z, Elaziz MA, Ewees AA, et al. (2019) Forecasting copper prices using hybrid adaptive neuro-fuzzy inference system and genetic algorithms. Nat Resour Res 28: 1385–1401. https://doi.org/10.1007/s11053-019-09473-w doi: 10.1007/s11053-019-09473-w
    [6] Alaminos D, Esteban I, Salas MB (2023) Neural networks for estimating Macro Asset Pricing model in football clubs. Intell Syst Account Financ Manage 30: 57–75. https://doi.org/10.1002/isaf.1532 doi: 10.1002/isaf.1532
    [7] Alaminos D, Esteban I, Salas MB, et al. (2020) Quantum Neural Networks for Forecasting Inflation Dynamics. J Sci Ind Res 79: 103–106. https://doi.org/10.56042/jsir.v79i2.68439 doi: 10.56042/jsir.v79i2.68439
    [8] Alaminos D, Salas MB, Fernandez-Gámez MA (2022) Forecasting Stock Market Crashes via Real-Time Recession Probabilities: A Quantum Computing Approach. Fractals 30: 1–16. https://doi.org/10.1142/S0218348X22401624 doi: 10.1142/S0218348X22401624
    [9] Alonso-Monsalve S, Suárez-Cetrulo AL, Cervantes A, et al. (2020) Convolution on neural networks for high-frequency trend prediction of cryptocurrency exchange rates using technical indicators. Expert Syst Appl 149: 113250. https://doi.org/10.1016/j.eswa.2020.113250 doi: 10.1016/j.eswa.2020.113250
    [10] Aloud ME, Alkhamees N (2021) Intelligent Algorithmic Trading Strategy Using Reinforcement Learning and Directional Change. IEEE Access 9: 114659–114671. https://doi.org/10.1109/ACCESS.2021.3105259 doi: 10.1109/ACCESS.2021.3105259
    [11] Appel G (2005) Technical analysis: power tools for active investors, FT Press.
    [12] Arévalo A, Niño J, Hernández G, et al. (2016) High-frequency trading strategy based on deep neural networks. In International conference on intelligent computing, 424–436. Springer, Cham. https://doi.org/10.1007/978-3-319-42297-8_40
    [13] Atsalakis GS, Atsalaki IG, Pasiouras F, et al. (2019) Bitcoin price forecasting with neuro-fuzzy techniques. Eur J Oper Res 276: 770–780. https://doi.org/10.1016/j.ejor.2019.01.040 doi: 10.1016/j.ejor.2019.01.040
    [14] Bhattacharyya S, Jha S, Tharakunnel K, et al. (2011) Data mining for credit card fraud: A comparative study. Decis support syst 50: 602–613. https://doi.org/10.1016/j.dss.2010.08.008 doi: 10.1016/j.dss.2010.08.008
    [15] Bianchi D, Babiak M, Dickerson A (2022) Trading volume and liquidity provision in cryptocurrency markets. J Bank Financ 142: 106547. https://doi.org/10.1016/j.jbankfin.2022.106547 doi: 10.1016/j.jbankfin.2022.106547
    [16] Binns R (2018) Fairness in machine learning: Lessons from political philosophy. In Conference on Fairness, Accountability and Transparency, 149–159. PMLR.
    [17] Bishop CM (1995) Neural networks for pattern recognition, Oxford university press. https://doi.org/10.1093/oso/9780198538493.001.0001
    [18] Borovkova S, Tsiamas I (2019) An ensemble of LSTM neural networks for high-frequency stock market classification. J Forecasting 38: 600–619. https://doi.org/10.1002/for.2585 doi: 10.1002/for.2585
    [19] Bouri E, Gupta R, Roubaud D (2019) Herding behaviour in cryptocurrencies. Financ Res Lett 29: 216–221. https://doi.org/10.1016/j.frl.2018.07.008. doi: 10.1016/j.frl.2018.07.008
    [20] Bouri E, Lau CKM, Lucey BM, et al. (2019) Trading volume and the predictability of return and volatility in the cryptocurrency market. Financ Res Lett 29: 340–346. https://doi.org/10.1016/j.frl.2018.08.015 doi: 10.1016/j.frl.2018.08.015
    [21] Bouri E, Lucey B, Roubaud D (2020) The volatility surprise of leading cryptocurrencies: Transitory and permanent linkages. Financ Res Lett 33: 101188. https://doi.org/10.1016/j.frl.2019.05.006 doi: 10.1016/j.frl.2019.05.006
    [22] Bouri E, Shahzad S, Roubaud D (2019) Co-explosivity in the cryptocurrency market. Financ Res Lett 29: 178–183. https://doi.org/10.1016/j.frl.2018.07.005 doi: 10.1016/j.frl.2018.07.005
    [23] Briola A, Turiel J, Marcaccioli R, et al. (2021) Deep reinforcement learning for active high frequency trading.
    [24] Bustos O, Pomares-Quimbaya A (2020) Stock market movement forecast: A systematic review. Expert Syst Appl 156: 113464. https://doi.org/10.1016/j.eswa.2020.113464 doi: 10.1016/j.eswa.2020.113464
    [25] Cao M, Shang F (2010) Double chains quantum genetic algorithm with application in training of process neural networks. In 2010 Second International Workshop on Education Technology and Computer Science, 19–22, IEEE. https://doi.org/10.1109/ETCS.2010.88
    [26] Cheng Y, Zheng Z, Wang J, et al. (2019) Attribute reduction based on genetic algorithm for the coevolution of meteorological data in the industrial internet of things. Wirel Commun Mob Com 2019: 1–8. https://doi.org/10.1155/2019/3525347 doi: 10.1155/2019/3525347
    [27] Chih-Hung W, Gwo-Hshiung T, Rong-Ho L (2009) A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst Appl 36: 4725–4735. https://doi.org/10.1016/j.eswa.2008.06.046 doi: 10.1016/j.eswa.2008.06.046
    [28] Corbet S, Eraslan V, Lucey B, et al. (2019) The effectiveness of technical trading rules in cryptocurrency markets. Financ Res Lett 31: 32–37. https://doi.org/10.1016/j.frl.2019.04.027 doi: 10.1016/j.frl.2019.04.027
    [29] Corbet S, Katsiampa P (2018). Asymmetric mean reversion of Bitcoin price returns. Int Rev Financ Anal. https://doi.org/10.1016/j.irfa.2018.10.004. doi: 10.1016/j.irfa.2018.10.004
    [30] Corbet S, Larkin CJ, Lucey BM, et al. (2020) Kodakcoin: a blockchain revolution or exploiting a potential cryptocurrency bubble? Appl Econ Lett 27: 518–524. https://doi.org/10.1080/13504851.2019.1637512 doi: 10.1080/13504851.2019.1637512
    [31] Demir E, Gozgor G, Lau CKM, et al. (2018) Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation. Financ Res Lett 26: 145–149. https://doi.org/10.1016/j.frl.2018.01.005 doi: 10.1016/j.frl.2018.01.005
    [32] Demir S, Mincev K, Kok K, et al. (2019) Introducing technical indicators to electricity price forecasting: A feature engineering study for linear, ensemble, and deep machine learning models. Appl Sci 10: 255. https://doi.org/10.3390/app10010255 doi: 10.3390/app10010255
    [33] Drachal K, Pawłowski M (2021) A review of the applications of genetic algorithms to forecasting prices of commodities. Economies 9: 6. https://doi.org/10.3390/economies9010006 doi: 10.3390/economies9010006
    [34] Drezner Z, Misevičius A (2013) Enhancing the performance of hybrid genetic algorithms by differential improvement. Com Oper Res 40: 1038–1046. https://doi.org/10.1016/j.cor.2012.10.014 doi: 10.1016/j.cor.2012.10.014
    [35] Egger DJ, Gambella C, Marecek J, et al. (2020) Quantum computing for finance: State-of-the-art and future prospects. IEEE Trans Quantum Eng 1: 1–24. https://doi.org/10.1109/TQE.2020.3030314 doi: 10.1109/TQE.2020.3030314
    [36] Fang F, Ventre C, Basios M, et al. (2022) Cryptocurrency trading: a comprehensive survey. Financial Innovation 8: 1–59. https://doi.org/10.1186/s40854-021-00321-6 doi: 10.1186/s40854-021-00321-6
    [37] Feng W, Wang Y, Zhang Z (2018) Informed trading in the Bitcoin market. Financ Res Lett 26: 63–70. https://doi.org/10.1016/j.frl.2017.11.009. doi: 10.1016/j.frl.2017.11.009
    [38] Fernández-Blanco P, Bodas-Sagi DJ, Soltero FJ, et al. (2008) Technical market indicators optimization using evolutionary algorithms. In Proceedings of the 10th annual conference companion on Genetic and evolutionary computation. 1851–1858. https://doi.org/10.1145/1388969.1388989
    [39] Frino A, Garcia M, Zhou Z (2020) Impact of algorithmic trading on speed of adjustment to new information: Evidence from interest rate derivatives. J Futures Mark 40: 749–760. https://doi.org/10.1002/fut.22104 doi: 10.1002/fut.22104
    [40] Gandal N, Hamrick J, Moore T, et al. (2018) Price manipulation in the Bitcoin ecosystem. J Monetary Econ 95: 86–96. https://doi.org/10.1016/j.jmoneco.2017.12.004 doi: 10.1016/j.jmoneco.2017.12.004
    [41] Gao X, Li X, Zhao B, et al. (2019) Short-term electricity load forecasting model based on EMD-GRU with feature selection. Energies 12: 1140. https://doi.org/10.3390/en12061140 doi: 10.3390/en12061140
    [42] García EAC (2004) An Application of Gibbons-Ross-Shanken'S Test of The Efficiency of A Given Portfolio. Revista Mexicana de Economía y Finanzas Nueva Época REMEF (Mexican J Econ Financ) 3. https://doi.org/10.21919/remef.v3i1.161
    [43] Gerritsen DF, Bouri E, Ramezanifar E, et al. (2020) The profitability of technical trading rules in the bitcoin market. Financ Res Lett 34: 101263. https://doi.org/10.1016/j.frl.2019.08.011 doi: 10.1016/j.frl.2019.08.011
    [44] Giudici P, Abu-Hashish I (2019). What determines Bitcoin exchange prices? a network var approach. Financ Res Lett 28: 309–318. https://doi.org/10.1016/j.frl.2018.05.013. doi: 10.1016/j.frl.2018.05.013
    [45] Goldberg DE (1990) A note on Boltzmann tournament selection for genetic algorithms and populationoriented simulated annealing. Complex Syst 4: 44
    [46] Goldblum M, Schwarzschild A, Patel A, et al. (2021) Adversarial attacks on machine learning systems for high-frequency trading. In Proceedings of the Second ACM International Conference on AI in Finance, 1–9. https://doi.org/10.1145/3490354.3494367
    [47] Gonçalves DSCP (2019) Quantum neural machine learning: Theory and experiments. Machine Learning in Medicine and Biology, 95–115. IntechOpen. https://doi.org/10.5772/intechopen.84149 doi: 10.5772/intechopen.84149
    [48] Goodell JW, Kumar S, Lim WM, et al. (2021) Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis. J Behav Expl Financ 32: 100577. https://doi.org/10.1016/j.jbef.2021.100577 doi: 10.1016/j.jbef.2021.100577
    [49] Gradojevic N, Kukolj D, Adcock R, et al. (2023) Forecasting Bitcoin with technical analysis: A not-so-random forest? Int J Forecast 39: 1–17. https://doi.org/10.1016/j.ijforecast.2021.08.001 doi: 10.1016/j.ijforecast.2021.08.001
    [50] Granville JE (1976). Granville's new strategy of daily stock market timing for maximum profit. Prentice-Hall. Hoboken, New Jersey, U.S.
    [51] Greaves A, Au B (2015) Using the Bitcoin Transaction graph to predict the price of bitcoin. Available from: htpp://snap.standord.edu/class/cs224w-2015/projects_2015/.
    [52] Griffin JM, Shams A (2018) Is Bitcoin really un-tethered? SSRN. Available from: https://ssrn.com/abstract=3195066.
    [53] Grobys K, Sapkota N (2020) Predicting cryptocurrency defaults. Appl Econ 52: 5060–5076. https://doi.org/10.1080/00036846.2020.1752903 doi: 10.1080/00036846.2020.1752903
    [54] Grover LK (2005) Fixed-point quantum search. Phys Rev Lett 95: 150501. https://doi.org/10.1103/PhysRevLett.113.210501 doi: 10.1103/PhysRevLett.113.210501
    [55] Guerreschi GG (2019) Repeat-until-success circuits with fixed-point oblivious amplitude amplification. Phys Rev A 99: 022306. https://doi.org/10.1103/PhysRevA.99.022306 doi: 10.1103/PhysRevA.99.022306
    [56] Guidi B, Michienzi A (2022) Social games and blockchain: exploring the metaverse of decentraland. In 2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops, 199–204. https://doi.org/10.1109/ICDCSW56584.2022.00045
    [57] Gupta N, Jalal AS (2020) Integration of textual cues for fine-grained image captioning using deep CNN and LSTM. Neural Comput Appl 32: 17899–17908. https://doi.org/10.1007/s00521-019-04515-z doi: 10.1007/s00521-019-04515-z
    [58] Hasan M, Naeem MA, Arif M, et al. (2022) Liquidity connectedness in cryptocurrency market. Financial Innovation 8: 1–25. https://doi.org/10.1186/s40854-021-00308-3 doi: 10.1186/s40854-021-00308-3
    [59] Hassan MK, Hudaefi FA, Caraka RE (2022) Mining netizen's opinion on cryptocurrency: sentiment analysis of Twitter data. Stud Econ Financ 39: 365–385. https://doi.org/ 10.1108/SEF-06-2021-0237 doi: 10.1108/SEF-06-2021-0237
    [60] Hendershott T, Jones CM, Menkveld AJ (2011) Does algorithmic trading improve liquidity? J Financ 66: 1–33. https://doi.org/10.1111/j.1540-6261.2010.01624.x doi: 10.1111/j.1540-6261.2010.01624.x
    [61] Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9: 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735
    [62] Huang B, Huan Y, Xu LD, et al. (2019) Automated trading systems statistical and machine learning methods and hardware implementation: a survey. Enterp Inf Syst 13: 132–144. https://doi.org/10.1080/17517575.2018.1493145 doi: 10.1080/17517575.2018.1493145
    [63] Huang CW, Narayanan SS (2017) Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition. In 2017 IEEE international conference on multimedia and expo (ICME), 583–588. IEEE. https://doi.org/10.1109/ICME.2017.8019296
    [64] Huang JZ, Huang W, Ni J (2019). Predicting Bitcoin returns using high-dimensional technical indicators. J Financ Data Sci 5:140–155. https://doi.org/10.1016/j.jfds.2018.10.001 doi: 10.1016/j.jfds.2018.10.001
    [65] Jia WU, Chen WANG, Xiong L, et al. (2019) Quantitative trading on stock market based on deep reinforcement learning. In 2019 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE. https://doi.org/10.1109/IJCNN.2019.8851831 doi: 10.1109/IJCNN.2019.8851831
    [66] Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimedia Tools Appl 80: 8091–8126. https://doi.org/10.1007/s11042-020-10139-6 doi: 10.1007/s11042-020-10139-6
    [67] Katsiampa P, Corbet S, Lucey B (2019). Volatility spillover effects in leading cryptocurrencies: a BEKK-MGARCH analysis. Financ Res Lett 29: 68–74. https://doi.org/10.1016/j.frl.2019.03.009. doi: 10.1016/j.frl.2019.03.009
    [68] Kim BS, Kim TG (2019). Cooperation of simulation and data model for performance analysis of complex systems. Int J Simulation Model 18: 608–619. https://doi.org/10.2507/IJSIMM18(4)491 doi: 10.2507/IJSIMM18(4)491
    [69] King T, Koutmos D (2021) Herding and feedback trading in cryptocurrency markets. Ann Oper Res 300: 79–96. https://doi.org/10.1007/s10479-020-03874-4 doi: 10.1007/s10479-020-03874-4
    [70] Kirkpatrick S, Gelatt CDJ, Vecchi MP (1983) Optimization by simulated annealing. Science 220: 671–680. https://doi.org/10.1126/science.220.4598.671 doi: 10.1126/science.220.4598.671
    [71] Klaus T, Elzweig B (2017) The market impact of high-frequency trading systems and potential regulation. Law Financ Mark Rev 11: 13–19. https://doi.org/10.1080/17521440.2017.1336397 doi: 10.1080/17521440.2017.1336397
    [72] Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI'95) 2: 1137–1143.
    [73] Kristoufek L (2015) What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis. PLoS One 10: e0123923. https://doi.org/10.1371/journal.pone.0123923 doi: 10.1371/journal.pone.0123923
    [74] Lahmiri S, Bekiros S (2019) Cryptocurrency forecasting with deep learning chaotic neural networks. Chaos Soliton Fract 118: 35–40. https://doi.org/10.1016/j.chaos.2018.11.014 doi: 10.1016/j.chaos.2018.11.014
    [75] Lane GC (1984) Lane's stochastics. Tech Anal Stocks Commodities 2: 80.
    [76] LeCun Y, Bottou L, Bengio Y, et al. (1998) Gradient-based learning applied to document recognition. Proceedings of the IEEE 86: 2278–2324. https://doi.org/10.1109/5.726791 doi: 10.1109/5.726791
    [77] Lewis J, Hart E, Ritchie G (1998) A comparison of dominance mechanisms and simple mutation on non-stationary problems. Parallel Problem Solving from Nature (PPSN V) 1498: 139–148. https://doi.org/10.1007/BFb0056857 doi: 10.1007/BFb0056857
    [78] Livieris IE, Pintelas E, Stavroyiannis S, et al. (2020) Ensemble deep learning models for forecasting cryptocurrency time-series. Algorithms 13: 121. https://doi.org/10.3390/a13050121 doi: 10.3390/a13050121
    [79] Lu W, Li J, Li Y, et al. (2020) A CNN-LSTM-based model to forecast stock prices. Complexity https://doi.org/10.1155/2020/6622927 doi: 10.1155/2020/6622927
    [80] Ma M, Mao Z (2019) Deep recurrent convolutional neural network for remaining useful life prediction. In 2019 IEEE International Conference on Prognostics and Health Management (ICPHM), 1–4. IEEE. https://doi.org/10.1109/ICPHM.2019.8819440
    [81] Madan I, Saluja S, Zhao A (2015) Automated Bitcoin trading via machine learning algorithms. Available from: http://cs229.stanford.edu/projects2014.html.
    [82] Maghsoodi AI (2023) Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system. Omega 115: 102787. https://doi.org/10.1016/j.omega.2022.102787 doi: 10.1016/j.omega.2022.102787
    [83] Mahajan RP (2011) Hybrid quantum inspired neural model for commodity price prediction. In 13th International Conference on Advanced Communication Technology (ICACT2011), 1353–1357. IEEE.
    [84] Makarov I, Schoar A (2022) Cryptocurrencies and Decentralized Finance (DeFi). Brookings Pap Econ Ac 2022: 141–215. https://doi.org/10.1353/eca.2022.0014 doi: 10.1353/eca.2022.0014
    [85] Makrichoriti P, Moratis G (2016) BitCoin's roller coaster: systemic risk and market sentiment. http://dx.doi.org/10.2139/ssrn.2808096.
    [86] Makridis CA, Fröwis M, Sridhar K, et al. (2023) The rise of decentralized cryptocurrency exchanges: evaluating the role of airdrops and governance tokens. J Corp Financ 79: 102358. https://doi.org/10.1016/j.jcorpfin.2023.102358 doi: 10.1016/j.jcorpfin.2023.102358
    [87] Marzo GD, Pandolfelli F, Servedio VD (2022) Modeling innovation in the cryptocurrency ecosystem. Sci Reports 12: 1–12. https://doi.org/10.1038/s4159802216924-7 doi: 10.1038/s4159802216924-7
    [88] McNally S, Roche J, Caton S (2018) Predicting the price of bitcoin using machine learning. In 2018 26th euromicro international conference on parallel, distributed and network-based processing (PDP). IEEE, 339–343. https://doi.org/10.1109/PDP2018.2018.00060
    [89] Mensi W, Al-Yahyaee K, Kang S (2019) Structural breaks and double long memory of cryptocurrency prices: a comparative analysis from Bitcoin and ethereum. Financ Res Lett 29: 222–230. https://doi.org/10.1016/j.frl.2018.07.011. doi: 10.1016/j.frl.2018.07.011
    [90] Mensi W, Lee YJ, Al-Yahyaee KH, et al. (2019). Intraday downward/upward multifractality and long memory in Bitcoin and ethereum markets: an asymmetric multifractal detrended fluctuation analysis. Financ Res Lett. https://doi.org/10.1016/j.frl.2019.03.029. doi: 10.1016/j.frl.2019.03.029
    [91] Milana C, Ashta A (2021) Artificial intelligence techniques in finance and financial markets: a survey of the literature. Strat Change 30: 189–209. https://doi.org/10.1002/jsc.2403 doi: 10.1002/jsc.2403
    [92] Mirkamol S, Mansur E (2023) Cryptocurrencies as the Money of the Future, In: Koucheryavy, Y., Aziz, A. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems, NEW2AN 2022, Lecture Notes in Computer Science, 13772. https://doi.org/10.1007/978-3-031-30258-9_21
    [93] Murray-Rust D, Elsden C, Nissen B, et al. (2023) Blockchain and Beyond: Understanding Blockchains through Prototypes and Public Engagement. ACM T Comput Hum Int 29: 1–73. https://doi.org/10.1145/3503462 doi: 10.1145/3503462
    [94] Murphy JJ (1999) Technical analysis of the financial markets: A comprehensive guide to trading methods and application, Penguin. London, U.K.
    [95] Nakano M, Takahashi A, Takahashi S (2018) Bitcoin technical trading with artificial neural network. Physica A 510: 587–609. https://doi.org/10.1016/j.physa.2018.07.017 doi: 10.1016/j.physa.2018.07.017
    [96] Nica O, Piotrowska K, Schenk-Hoppé KR (2022) Cryptocurrencies: Concept and Current Market Structure. In Cryptofinance: A New Currency for a New Economy, 1–28. https://doi.org/10.1007/978-3-031-30258-9_21
    [97] Nielsen MA, Chuang IL (2001) Quantum computation and quantum information. Phys Today 54: 60. https://doi.org/10.1063/1.1428442 doi: 10.1063/1.1428442
    [98] Ortu M, Uras N, Conversano C, et al. (2022) On technical trading and social media indicators for cryptocurrency price classification through deep learning. Expert Syst Appl 198: 116804. https://doi.org/10.1016/j.eswa.2022.116804 doi: 10.1016/j.eswa.2022.116804
    [99] Othman AHA, Kassim S, Rosman RB, et al. (2020) Prediction accuracy improvement for Bitcoin market prices based on symmetric volatility information using artificial neural network approach. J Revenue Pricing Ma 19: 314–330. https://doi.org/10.1057/s41272-020-00229-3 doi: 10.1057/s41272-020-00229-3
    [100] Panagiotidis T, Stengos T, Vravosinos O (2018) On the determinants of Bitcoin returns: a lasso approach. Financ Res Lett 27: 235–240. https://doi.org/10.1016/j.frl.2018.03.016. doi: 10.1016/j.frl.2018.03.016
    [101] Patel MM, Tanwar S, Gupta R, et al. (2020) A deep learning-based cryptocurrency price prediction scheme for financial institutions. J Inf Security Appl 55: 102583. https://doi.org/10.1016/j.jisa.2020.102583 doi: 10.1016/j.jisa.2020.102583
    [102] Paule-Vianez J, Prado-Román C, Gómez-Martínez R (2020) Economic policy uncertainty and Bitcoin. Is Bitcoin a safe-haven asset? European Journal of Management and Business Economics 29 (3): 347-363. https://doi.org/10.1108/EJMBE-07-2019-0116 doi: 10.1108/EJMBE-07-2019-0116
    [103] Petukhina AA, Reule RC, Härdle WK (2021) Rise of the machines? Intraday high-frequency trading patterns of cryptocurrencies. Eur J Financ 27: 8–30. https://doi.org/10.1080/1351847X.2020.1789684 doi: 10.1080/1351847X.2020.1789684
    [104] Ping-Feng P, Chih-Shen L, Wei-Chiang H, et al. (2006) A hybrid support vector machine regression for exchange rate prediction. Int J Inf Manage Sci 17: 19–32.
    [105] Polasik M, Piotrowska AI, Wisniewski TP, et al. (2015) Price fluctuations and the use of Bitcoin: An empirical inquiry. International J Electron Comm 20: 9–49. https://doi.org/10.1080/10864415.2016.1061413 doi: 10.1080/10864415.2016.1061413
    [106] Qin L, Yu N, Zhao D (2018) Applying the convolutional neural network deep learning technology to behavioural recognition in intelligent video. Tehnički vjesnik 25: 528–535. https://doi.org/10.17559/TV-20171229024444 doi: 10.17559/TV-20171229024444
    [107] Refaeilzadeh P, Tang L, Liu H (2009) Cross-validation. Encyclopedia Database Syst, 532–538. https://doi.org/10.1007/978-0-387-39940-9_565. doi: 10.1007/978-0-387-39940-9_565
    [108] Ren YS, Ma CQ, Kong XL, et al. (2022) Past, present, and future of the application of machine learning in cryptocurrency research. Res Int Bus Financ 63: 101799. https://doi.org/10.1016/j.ribaf.2022.101799 doi: 10.1016/j.ribaf.2022.101799
    [109] Saad M, Choi J, Nyang D, et al. (2019) Toward characterizing blockchain-based cryptocurrencies for highly accurate predictions. IEEE Syst J 14: 321–332. https://doi.org/10.1109/INFCOMW.2018.8406859 doi: 10.1109/INFCOMW.2018.8406859
    [110] Sensoy A (2018) The inefficiency of Bitcoin revisited: a high-frequency analysis with alternative currencies. Finance Res Lett. https://doi.org/10.1016/j.frl.2018.04.002. doi: 10.1016/j.frl.2018.04.002
    [111] Sezer OB, Gudelek MU, Ozbayoglu AM (2020) Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Appl Soft Comput 90: 106181. https://doi.org/10.1016/j.asoc.2020.106181 doi: 10.1016/j.asoc.2020.106181
    [112] Sinha D (2022) https://www.analyticsinsight.net/top-10-new-cryptocurrencies-of-2022-to-buy-for-good-returns/.
    [113] Ta VD, Liu CM, Tadesse DA (2020) Portfolio optimization-based stock prediction using long-short term memory network in quantitative trading. Appl Sci 10: 437. https://doi.org/10.3390/app10020437 doi: 10.3390/app10020437
    [114] Tacchino F, Macchiavello C, Gerace D, et al. (2019) An artificial neuron implemented on an actual quantum processor. npj Quantum Inf 5: 1–8. https://doi.org/10.1038/s41534-019-0140-4 doi: 10.1038/s41534-019-0140-4
    [115] Trimborn S, Li M, Härdle WK (2020) Investing with cryptocurrencies—A liquidity constrained investment approach. J Financ Econometrics 18: 280–306. https://doi.org/10.1093/jjfinec/nbz016 doi: 10.1093/jjfinec/nbz016
    [116] Tsang WW H, Chong TTL (2009) Profitability of the on-balance volume indicator. Econ Bull 29: 2424–2431.
    [117] Vargas MR, Dos Anjos CE, Bichara GL, et al. (2018) Deep leaming for stock market prediction using technical indicators and financial news articles. In 2018 international joint conference on neural networks (IJCNN), 1–8. IEEE. https://doi.org/10.1109/IJCNN.2018.8489208
    [118] Vidal-Tomas D, Ibanez A, Farinos J (2018) Herding in the cryptocurrency market: cssd and csad approaches. Financ Res Lett. https://doi.org/10.1016/j.frl.2018.09.008 doi: 10.1016/j.frl.2018.09.008
    [119] Vidal-Tomás D (2022) Which cryptocurrency data sources should scholars use? Int Rev Financ Anal 81: 102061. https://doi.org/10.1016/j.irfa.2022.102061 doi: 10.1016/j.irfa.2022.102061
    [120] Vo A, Yost-Bremm C (2020) A high-frequency algorithmic trading strategy for cryptocurrency. J Comput Inf Syst 60: 555–568. https://doi.org/10.1080/08874417.2018.1552090 doi: 10.1080/08874417.2018.1552090
    [121] Wan KH, Dahlsten O, Kristjánsson H, et al. (2017) Quantum generalisation of feedforward neural networks. npj Quantum Inf 3: 1–8. https://doi.org/10.1038/s41534-017-0032-4 doi: 10.1038/s41534-017-0032-4
    [122] Wang J, Gao L, Zhang H, et al. (2011) Adaboost with SVM-based classifier for the classification of brain motor imagery tasks. In International Conference on Universal Access in Human-Computer Interaction, 629–634, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21663-3_68
    [123] Wang J, Ma F, Bouri E, et al. (2023) Which factors drive Bitcoin volatility: Macroeconomic, technical, or both? J Forecast 42: 970–988. https://doi.org/10.1002/for.2930 doi: 10.1002/for.2930
    [124] Weng F, Hou M, Zhang T, et al. (2018) Application of regularized extreme learning machine based on BIC criterion and genetic algorithm in iron ore price forecasting. In 2018 3rd International Conference on Modelling, Simulation and Applied Mathematics (MSAM 2018), 212–217. Atlantis Press. https://doi.org/10.2991/msam-18.2018.45
    [125] Westland JC (2023) Determinants of liquidity in cryptocurrency markets. Digital Financ 5: 261–293. https://doi.org/10.1007/s42521-022-00073-7 doi: 10.1007/s42521-022-00073-7
    [126] Wilder JW (1978) New concepts in technical trading systems, Bloomington, IN: Trend Research.
    [127] Yang B, Sun Y, Wang S (2020) A novel two-stage approach for cryptocurrency analysis. Int Rev Financ Anal. https://doi.org/10.1016/j.irfa.2020.101567. doi: 10.1016/j.irfa.2020.101567
    [128] Zhengyang W, Xingzhou L, Jinjin R, et al. (2019) Prediction of cryptocurrency price dynamics with multiple machine learning techniques. In Proceedings of the 2019 4th International Conference on Machine Learning Technologies, 15–19. https://doi.org/10.1145/3340997.3341008
    [129] Zhu Y, Dickinson D, Li J (2017) Analysis on the influence factors of Bitcoin's price based on VEC model. Financial Innovation 3: 3. https://doi.org/10.1186/s40854-017-0054-0. doi: 10.1186/s40854-017-0054-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2091) PDF downloads(177) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog