Processing math: 100%
Research article

Choices of financial reporting regimes and techniques and underlying decision-making processes: a case study analysis of a port authority

  • This paper examines how financial reporting modes are determined within a company, from the perspective of perceived costs and benefits. The modes investigated include financial reporting regimes (e.g. International Financial Reporting Standards, UK Generally Accepted Accounting Principles) and the financial reporting techniques which support them (e.g. valuing intangibles and investments, treatment of development costs). A stated preference approach is adopted and applied to a fieldwork analysis of the functioning of a large port authority, which was a member of a group and prepared both consolidated and subsidiary accounts. The analysis is largely qualitative, exploring in-depth such matters as key factors in making choices, the decision-making processes behind choices, and the staging of decisions, but underpinned by a quantitative basis, using a metric for determining net benefits of financial reporting regimes and techniques. Our analysis aims to improve our understanding of a company's choice processes underlying its financial reporting, including its handling of complexity and uncertainty, and its use of innovations in techniques and organisational forms for decision support.

    Citation: Gavin C Reid, Julia A Smith, Yu-Lin Hsu. Choices of financial reporting regimes and techniques and underlying decision-making processes: a case study analysis of a port authority[J]. National Accounting Review, 2021, 3(2): 137-151. doi: 10.3934/NAR.2021007

    Related Papers:

    [1] Venkatarajan Subbarayalu, Subbu Chinnaraman, Athijayamani Ayyanar, Jayaseelan Chinnapalanisamy . Mechanical properties of vinyl ester hybrid composite laminates reinforced with screw pine and glass fiber. AIMS Materials Science, 2024, 11(1): 114-128. doi: 10.3934/matersci.2024007
    [2] Mohd Shahneel Saharudin, Rasheed Atif, Syafawati Hasbi, Muhammad Naguib Ahmad Nazri, Nur Ubaidah Saidin, Yusof Abdullah . Synergistic effects of halloysite and carbon nanotubes (HNTs + CNTs) on the mechanical properties of epoxy nanocomposites. AIMS Materials Science, 2019, 6(6): 900-910. doi: 10.3934/matersci.2019.6.900
    [3] Saif S. Irhayyim, Hashim Sh. Hammood, Hassan A. Abdulhadi . Effect of nano-TiO2 particles on mechanical performance of Al–CNT matrix composite. AIMS Materials Science, 2019, 6(6): 1124-1134. doi: 10.3934/matersci.2019.6.1124
    [4] Prashant Tripathi, Vivek Kumar Gupta, Anurag Dixit, Raghvendra Kumar Mishra, Satpal Sharma . Development and characterization of low cost jute, bagasse and glass fiber reinforced advanced hybrid epoxy composites. AIMS Materials Science, 2018, 5(2): 320-337. doi: 10.3934/matersci.2018.2.320
    [5] Robiul Islam Rubel, Md. Hasan Ali, Md. Abu Jafor, Md. Mahmodul Alam . Carbon nanotubes agglomeration in reinforced composites: A review. AIMS Materials Science, 2019, 6(5): 756-780. doi: 10.3934/matersci.2019.5.756
    [6] D. M. S. Costa, M. A. R. Loja . Assessing the static behavior of hybrid CNT-metal-ceramic composite plates. AIMS Materials Science, 2016, 3(3): 808-831. doi: 10.3934/matersci.2016.3.808
    [7] Elena Kossovich . Theoretical study of chitosan-graphene and other chitosan-based nanocomposites stability. AIMS Materials Science, 2017, 4(2): 317-327. doi: 10.3934/matersci.2017.2.317
    [8] M. Rajanish, N. V. Nanjundaradhya, Ramesh S. Sharma, H. K. Shivananda, Alok Hegde . Directional Interlaminar Shear Strength (ILSS) of nano-modified epoxy/unidirectional glass fibre composite. AIMS Materials Science, 2018, 5(4): 603-613. doi: 10.3934/matersci.2018.4.603
    [9] Ahmed Ali Farhan Ogaili, Ehsan S. Al-Ameen, Mohammed Salman Kadhim, Muhanad Nazar Mustafa . Evaluation of mechanical and electrical properties of GFRP composite strengthened with hybrid nanomaterial fillers. AIMS Materials Science, 2020, 7(1): 93-102. doi: 10.3934/matersci.2020.1.93
    [10] Nataliya A. Sakharova, Jorge M. Antunes, Andre F. G. Pereira, Jose V. Fernandes . Developments in the evaluation of elastic properties of carbon nanotubes and their heterojunctions by numerical simulation. AIMS Materials Science, 2017, 4(3): 706-737. doi: 10.3934/matersci.2017.3.706
  • This paper examines how financial reporting modes are determined within a company, from the perspective of perceived costs and benefits. The modes investigated include financial reporting regimes (e.g. International Financial Reporting Standards, UK Generally Accepted Accounting Principles) and the financial reporting techniques which support them (e.g. valuing intangibles and investments, treatment of development costs). A stated preference approach is adopted and applied to a fieldwork analysis of the functioning of a large port authority, which was a member of a group and prepared both consolidated and subsidiary accounts. The analysis is largely qualitative, exploring in-depth such matters as key factors in making choices, the decision-making processes behind choices, and the staging of decisions, but underpinned by a quantitative basis, using a metric for determining net benefits of financial reporting regimes and techniques. Our analysis aims to improve our understanding of a company's choice processes underlying its financial reporting, including its handling of complexity and uncertainty, and its use of innovations in techniques and organisational forms for decision support.



    The notion of a pre-Lie algebra has been introduced independently by M. Gerstenhaber in deformation theory of rings and algebras [1] and by Vinberg, under the name of left-symmetric algebra, in his theory of homogeneous convex cones [2]. Its defining identity is weaker than associativity and lead also to a Lie algebra using commutators. This algebraic structure describes some properties of cochain spaces in Hochschild cohomology of an associative algebra, rooted trees and vector fields on affine spaces. Moreover, it is playing an increasing role in algebra, geometry and physics due to their applications in nonassociative algebras, combinatorics, numerical analysis and quantum field theory, see [3,4,5,6].

    Hom-type algebras appeared naturally when studying q-deformations of some algebras of vector fields, like Witt and Virasoro algebras. It turns out that the Jacobi identity is no longer satisfied, these new structures involving a bracket and a linear map satisfy a twisted version of the Jacobi identity and define a so called Hom-Lie algebras which form a wider class, see [7,8]. Hom-pre-Lie algebras were introduced in [9] as a class of Hom-Lie admissible algebras, and play important roles in the study of Hom-Lie bialgebras and Hom-Lie 2-algebras [10,11,12]. Recently Hom-pre-Lie algebras were studied from several aspects. Cohomologies of Hom-pre-Lie algebras were studied in [13]; The geometrization of Hom-pre-Lie algebras was studied in [14]; Universal α-central extensions of Hom-pre-Lie algebras were studied in [15]; Hom-pre-Lie bialgebras were studied in [16,17]. Furthermore, connections between (Hom-)pre-Lie algebras and various algebraic structures have been established and discussed; like with Rota-Baxter operators, O-operators, (Hom-)dendriform algebras, (Hom-)associative algebras and Yang-Baxter equation, see [5,18,19,20,21,22].

    The cohomology of pre-Lie algebras was defined in [23] and generalized in a straightforward way to Hom-pre-Lie algebras in [13]. Note that the cohomology given there has some restrictions: the second cohomology group can only control deformations of the multiplication, and it can not be applied to study simultaneous deformations of both the multiplication and the homomorphism in a Hom-pre-Lie algebra. The main purpose of this paper is to define a new type of cohomology of Hom-pre-Lie algebras which is richer than the previous one. The obtained cohomology is called the full cohomology and allows to control simultaneous deformations of both the multiplication and the homomorphism in a Hom-pre-Lie algebra. This type of cohomology was established for Hom-associative algebras and Hom-Lie algebras in [24,25], and called respectively α-type Hochschild cohomology and α-type Chevalley-Eilenberg cohomology. See [26,27,28] for more studies on deformations and extensions of Hom-Lie algebras.

    The paper is organized as follows. In Section 2, first we recall some basics of Hom-Lie algebras, Hom-pre-Lie algebras and representations, and then provide our main result defining the full cohomology of a Hom-pre-Lie algebra with coefficients in a given representation. In Section 3, we study one parameter formal deformations of a Hom-pre-Lie algebra, where both the defining multiplication and homomorphism are deformed, using formal power series. We show that the full cohomology of Hom-pre-Lie algebras controls these simultaneous deformations. Moreover, a relationship between deformations of a Hom-pre-Lie algebra and deformations of its sub-adjacent Lie algebra is established. Section 4 deals with abelian extensions of Hom-pre-Lie algebras. We show that the full cohomology fits perfectly and its second cohomology group classifies abelian extensions of a Hom-pre-Lie algebra by a given representation. The proof of the key Lemma to show that the four operators define a cochain complex is lengthy and it is given in the Appendix.

    In this section, first we recall some basic facts about Hom-Lie algebras and Hom-pre-Lie algebras. Then we introduce the full cohomology of Hom-pre-Lie algebras, which will be used to classify infinitesimal deformations and abelian extensions of Hom-pre-Lie algebras.

    Definition 2.1. (see [7]) A Hom-Lie algebra is a triple (g,[,]g,ϕg) consisting of a vector space g, a skew-symmetric bilinear map [,]g:2gg and a homomorphism ϕg:gg, satisfying ϕg[x,y]=[ϕg(x),ϕg(y)] and

    [ϕg(x),[y,z]g]g+[ϕg(y),[z,x]g]g+[ϕg(z),[x,y]g]g=0,x,y,zg. (2.1)

    A Hom-Lie algebra (g,[,]g,ϕg) is said to be regular if ϕg is invertible.

    Definition 2.2. (see [29]) A representation of a Hom-Lie algebra (g,[,]g,ϕg) on a vector space V with respect to βgl(V) is a linear map ρ:ggl(V), such that for all x,yg, the following equalities are satisfied:

    ρ(ϕg(x))β=βρ(x), (2.2)
    ρ([x,y]g)β=ρ(ϕg(x))ρ(y)ρ(ϕg(y))ρ(x). (2.3)

    We denote a representation of a Hom-Lie algebra (g,[,]g,ϕg) by a triple (V,β,ρ).

    Definition 2.3. (see [9]) A Hom-pre-Lie algebra (A,,α) is a vector space A equipped with a bilinear product :AAA, and αgl(A), such that for all x,y,zA, α(xy)=α(x)α(y) and the following equality is satisfied:

    (xy)α(z)α(x)(yz)=(yx)α(z)α(y)(xz). (2.4)

    A Hom-pre-Lie algebra (A,,α) is said to be regular if α is invertible.

    Let (A,,α) be a Hom-pre-Lie algebra. The commutator [x,y]C=xyyx defines a Hom-Lie algebra (A,[,]C,α), which is denoted by AC and called the sub-adjacent Hom-Lie algebra of (A,,α).

    Definition 2.4. (see [13]) A morphism from a Hom-pre-Lie algebra (A,,α) to a Hom-pre-Lie algebra (A,,α) is a linear map f:AA such that for all x,yA, the following equalities are satisfied:

    f(xy)=f(x)f(y),x,yA, (2.5)
    fα=αf. (2.6)

    Definition 2.5. (see [17]) A representation of a Hom-pre-Lie algebra (A,,α) on a vector space V with respect to βgl(V) consists of a pair (ρ,μ), where ρ:Agl(V) is a representation of the sub-adjacent Hom-Lie algebra AC on V with respect to βgl(V), and μ:Agl(V) is a linear map, satisfying, for all x,yA:

    βμ(x)=μ(α(x))β, (2.7)
    μ(α(y))μ(x)μ(xy)β=μ(α(y))ρ(x)ρ(α(x))μ(y). (2.8)

    We denote a representation of a Hom-pre-Lie algebra (A,,α) by a quadruple (V,β,ρ,μ). Furthermore, Let L,R:Agl(A) be linear maps, where Lxy=xy,Rxy=yx. Then (A,α,L,R) is also a representation, which we call the regular representation.

    Let (A,,α) be a Hom-pre-Lie algebra. In the sequel, we will also denote the Hom-pre-Lie algebra multiplication by ω.

    Let (V,β,ρ,μ) be a representation of a Hom-pre-Lie algebra (A,ω,α). We define Cnω(A;V) and Cnα(A;V) respectively by

    Cnω(A;V)=Hom(n1AA,V),Cnα(A;V)=Hom(n2AA,V),n2.

    Define the set of cochains ˜Cn(A;V) by

    {˜Cn(A;V)=Cnω(A;V)Cnα(A;V),n2,˜C1(A;V)=Hom(A,V). (2.9)

    For all (φ,ψ)˜Cn(A;V),x1,,xn+1A, we define ωω:Cnω(A;V)Cn+1ω(A;V) by

    (ωωφ)(x1,,xn+1)=ni=1(1)i+1ρ(αn1(xi))φ(x1,,^xi,,xn+1)+ni=1(1)i+1μ(αn1(xn+1))φ(x1,,^xi,,xn,xi)ni=1(1)i+1φ(α(x1),,^α(xi),α(xn),xixn+1)+1i<jn(1)i+jφ([xi,xj]C,α(x1),,^α(xi),,^α(xj),,α(xn+1)),

    where the hat corresponds to deleting the element, define αα:Cnα(A;V)Cn+1α(A;V) by

    (ααψ)(x1,,xn)=n1i=1(1)iρ(αn1(xi))ψ(x1,,^xi,,xn)+n1i=1(1)iμ(αn1(xn))ψ(x1,,^xi,,xn1,xi)n1i=1(1)iψ(α(x1),,^α(xi),,α(xn1),xixn)+1i<jn1(1)i+j1ψ([xi,xj]C,α(x1),,^α(xi),,^α(xj),,α(xn)),

    define ωα:Cnω(A;V)Cn+1α(A;V) by

    (ωαφ)(x1,,xn)=βφ(x1,,xn)φ(α(x1),,α(xn)),

    and define αω:Cnα(A;V)Cn+1ω(A;V) by

    (αωψ)(x1,,xn+1)=1i<jn(1)i+jρ([αn2(xi),αn2(xj)]C)ψ(x1,,^xi,,^xj,,xn+1)+1i<jn(1)i+jμ(αn2(xi)αn2(xn+1))ψ(x1,,^xi,,^xj,,xn,xj)1i<jn(1)i+jμ(αn2(xj)αn2(xn+1))ψ(x1,,^xi,,^xj,,xn,xi).

    Define the operator ˜:˜Cn(A;V)˜Cn+1(A;V) by

    ˜(φ,ψ)=(ωωφ+αωψ,ωαφ+ααψ),φCnω(A;V),ψCnα(A;V),n2, (2.10)
    ˜(φ)=(ωωφ,ωαφ),φHom(A,V). (2.11)

    The following diagram will explain the above operators:

    Lemma 2.6. With the above notations, we have

    ωωωω+αωωα=0, (2.12)
    ωωαω+αωαα=0, (2.13)
    ωαωω+ααωα=0, (2.14)
    ωααω+αααα=0. (2.15)

    Proof. The proof is given in the Appendix.

    Theorem 2.7. The operator ˜:˜Cn(A;V)˜Cn+1(A;V) defined as above satisfies ˜˜=0.

    Proof. When n2, for all (φ,ψ)˜Cn(A;V), by (2.10) and Lemma 2.6, we have

    ˜˜(φ,ψ)=˜(ωωφ+αωψ,ωαφ+ααψ)=(ωωωωφ+ωωαωψ+αωωαφ+αωααψ,ωαωωφ+ωααωψ+ααωαφ+ααααψ)=0.

    When n=1, for all φHom(A,V), by (2.11) and Lemma 2.6, we have

    ˜˜(φ)=˜(ωωφ,ωαφ)=(ωωωωφ+αωωαφ,ωαωωφ+ααωαφ)=0.

    This finishes the proof.

    We denote the set of closed n-cochains by ˜Zn(A;V) and the set of exact n-cochains by ˜Bn(A;V). We denote by ˜Hn(A;V)=˜Zn(A;V)/˜Bn(A;V) the corresponding cohomology groups.

    Definition 2.8. Let (V,β,ρ,μ) be a representation of a Hom-pre-Lie algebra (A,,α). The cohomology of the cochain complex (n=1˜Cn(A;V),) is called the full cohomology of the Hom-pre-Lie algebra (A,,α) with coefficients in the representation (V,β,ρ,μ).

    We use ˜reg to denote the coboundary operator of the Hom-pre-Lie algebra (A,,α) with coefficients in the regular representation. The corresponding cohomology group will be denoted by ˜Hn(A;A).

    Remark 2.9. Compared with the cohomology theory of Hom-pre-Lie algebras studied in [13], the above full cohomology contains more informations. In the next section, we will see that the second cohomology group can control simultaneous deformations of the multiplication and the homomorphism in a Hom-pre-Lie algebra.

    In this section, we study formal deformations of Hom-pre-Lie algebras using the cohomology theory established in the last section. We show that the infinitesimal of a formal deformation is a 2-cocycle and depends only on its cohomology class. Moreover, if the cohomology group ˜H2(A;A) is trivial, then the Hom-pre-Lie algebra is rigid.

    Definition 3.1. Let (A,ω,α) be a Hom-pre-Lie algebra, ωt=ω++i=1ωiti:A[[t]]A[[t]]A[[t]] be a K[[t]]-bilinear map and αt=α++i=1αiti:A[[t]]A[[t]] be a K[[t]]-linear map, where ωi:AAA and αi:AA are linear maps. If (A[[t]],ωt,αt) is still a Hom-pre-Lie algebra, we say that {ωi,αi}i1 generates a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α).

    If {ωi,αi}i1 generates a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α), for all x,y,zA and n=1,2,, we then have

    i+j+k=ni,j,k0ωi(ωj(x,y),αk(z))ωi(αj(x),ωk(y,z))ωi(ωj(y,x),αk(z))+ωi(αj(y),ωk(x,z))=0. (3.1)

    Moreover, we have

    i+j+k=n0<i,j,kn1ωi(ωj(x,y),αk(z))ωi(αj(x),ωk(y,z))ωi(ωj(y,x),αk(z))+ωi(αj(y),ωk(x,z))=(ωωωn+αωαn)(x,y,z). (3.2)

    For all x,yA and n=1,2,, we have

    i+j+k=ni,j,k0ωi(αj(x),αk(y))i+j=ni,j0αi(ωj(x,y))=0. (3.3)

    Moreover, we have

    i+j+k=n0<i,j,kn1ωi(αj(x),αk(y))i+j=ni,j>0αi(ωj(x,y))=(ωαωn+αααn)(x,y). (3.4)

    Proposition 3.2. Let (ωt=ω++i=1ωiti,αt=α++i=1αiti) be a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α). Then (ω1,α1) is a 2-cocycle of the Hom-pre-Lie algebra (A,ω,α) with coefficients in the regular representation.

    Proof. When n=1, by (3.1), we have

    0=(xy)α1(z)+ω1(x,y)α(z)+ω1(xy,α(z))α(x)ω1(y,z)α1(x)(yz)ω1(α(x),yz)(yx)α1(z)ω1(y,x)α(z)ω1(yx,α(z))+α(y)ω1(x,z)+α1(y)(xz)+ω1(α(y),xz)=(ωωω1+αωα1)(x,y,z),

    and by (3.3), we have

    0=ω1(α(x),α(y))+α1(x)α(y)+α(x)α1(y)α(ω1(x,y))α1(xy)=(ωαω1+ααα1)(x,y),

    which implies that ˜reg(ω1,α1)=0. Thus, (ω1,α1) is a 2-cocycle of the Hom-pre-Lie algebra (A,ω,α).

    Definition 3.3. The 2-cocycle (ω1,α1) is called the infinitesimal of the 1-parameter formal deformation (A[[t]],ωt,αt) of the Hom-pre-Lie algebra (A,ω,α).

    Definition 3.4. Let (ωt=ω++i=1ωiti,αt=α++i=1αiti) and (ωt=ω++i=1ωiti,αt=α++i=1αiti) be two 1-parameter formal deformations of a Hom-pre-Lie algebra (A,ω,α). A formal isomorphism from (A[[t]],ωt,αt) to (A[[t]],ωt,αt) is a power series Φt=+i=0φiti, where φi:AA are linear maps with φ0=Id, such that

    Φtωt=ωt(Φt×Φt), (3.5)
    αtΦt=Φtαt. (3.6)

    Two 1-parameter formal deformations (A[[t]],ωt,αt) and (A[[t]],ωt,αt) are said to be equivalent if there exists a formal isomorphism Φt=+i=0φiti from (A[[t]],ωt,αt) to (A[[t]],ωt,αt).

    Theorem 3.5. Let (A,ω,α) be a Hom-pre-Lie algebra.If two 1-parameter formal deformations (ωt=ω++i=1ωiti,αt=α++i=1αiti) and (ωt=ω++i=1ωiti,αt=α++i=1αiti) are equivalent, then there infinitesimals (ω1,α1) and (ω1,α1) are in the same cohomology class of ˜H2(A;A).

    Proof. Let (ωt,αt) and (ωt,αt) be two 1-parameter formal deformations. By Proposition 3.2, we have (ω1,α1) and (ω1,α1)˜Z2(A;A). Let Φt=+i=0φiti be the formal isomorphism. Then for all x,yA, we have

    ωt(x,y)=Φ1tωt(Φt(x),Φt(y))=(Idφ1t+)ωt(x+φ1(x)t+,y+φ1(y)t+)=(Idφ1t+)(xy+(xφ1(y)+φ1(x)y+ω1(x,y))t+)=xy+(xφ1(y)+φ1(x)y+ω1(x,y)φ1(xy))t+.

    Thus, we have

    ω1(x,y)ω1(x,y)=xφ1(y)+φ1(x)yφ1(xy)=ωωφ1(x,y),

    which implies that ω1ω1=ωωφ1.

    For all xA, we have

    αt(x)=Φ1tαt(Φt(x))=(Idφ1t+)αt(x+φ1(x)t+)=(Idφ1t+)(α(x)+(α(φ1(x))+α1(x))t+)=α(x)+(α(φ1(x))+α1(x)φ1(α(x)))t+.

    Thus, we have

    α1(x)α1(x)=α(φ1(x))φ1(α(x))=ωαφ1(x),

    which implies that α1α1=ωαφ1.

    Thus, we have (ω1ω1,α1α1)˜B2(A;A). This finishes the proof.

    Definition 3.6. A 1-parameter formal deformation (A[[t]],ωt,αt) of a Hom-pre-Lie algebra (A,ω,α) is said to be trivial if it is equivalent to (A,ω,α), i.e. there exists Φt=+i=0φiti, where φi:AA are linear maps with φ0=Id, such that

    Φtωt=ω(Φt×Φt), (3.7)
    αΦt=Φtαt. (3.8)

    Definition 3.7. Let (A,ω,α) be a Hom-pre-Lie algebra. If all 1-parameter formal deformations are trivial, we say that (A,ω,α) is rigid.

    Theorem 3.8. Let (A,ω,α) be a Hom-pre-Lie algebra. If ˜H2(A;A)=0, then (A,ω,α) is rigid.

    Proof. Let (ωt=ω++i=1ωiti,αt=α++i=1αiti) be a 1-parameter formal deformation and assume that n1 is the minimal number such that at least one of ωn and αn is not zero. By (3.2), (3.4) and ˜H2(A;A)=0, we have (ωn,αn)˜B2(A;A). Thus, there exists φn˜C1(A;A) such that ωn=ωω(φn) and αn=ωα(φn). Let Φt=Id+φntn and define a new formal deformation (ωt,αt) by ωt(x,y)=Φ1tωt(Φt(x),Φt(y)) and αt(x)=Φ1tαt(Φt(x)). Then (ωt,αt) and (ωt,αt) are equivalent. By a straightforward computation, for all x,yA, we have

    ωt(x,y)=Φ1tωt(Φt(x),Φt(y))=(Idφntn+)ωt(x+φn(x)tn,y+φn(y)tn)=(Idφntn+)(xy+(xφn(y)+φn(x)y+ωn(x,y))tn+)=xy+(xφn(y)+φn(x)y+ωn(x,y)φn(xy))tn+.

    Thus, we have ω1=ω2==ωn1=0. Moreover, we obtain

    ωn(x,y)=φn(x)y+xφn(y)+ωn(x,y)φn(xy)=ωωφn(x,y)+ωn(x,y)=0.

    For all xA, we get

    αt(x)=Φ1tαt(Φt(x))=(Idφntn+)αt(x+φn(x)tn)=(Idφ1tn+)(α(x)+(α(φn(x))+αn(x))tn+)=α(x)+(α(φn(x))+αn(x)φn(α(x)))tn+.

    Thus, α1=α2==αn1=0, and

    αn(x,y)=α(φn(x))+αn(x)φn(α(x))=ωαφn(x)+αn(x)=0.

    By repeating this process, we obtain that (A[[t]],ωt,αt) is equivalent to (A,ω,α). The proof is finished.

    At the end of this section, we recall 1-parameter formal deformations of Hom-Lie algebras, and establish the relation between 1-parameter formal deformations of Hom-pre-Lie algebras and 1-parameter formal deformations of Hom-Lie algebras.

    Definition 3.9. (see [25]) Let (g,[,]g,ϕg) be a Hom-Lie algebra, [,]t=[,]g++i=1ˉωiti:g[[t]]g[[t]]g[[t]] be a K[[t]]-bilinear map and ϕt=ϕg++i=1ϕiti:g[[t]]g[[t]] be a K[[t]]-linear map, where ˉωi:ggg and ϕi:gg are linear maps. If (g[[t]],[,]t,ϕt) is still a Hom-Lie algebra, we say that {ˉωi,ϕi}i1 generates a 1-parameter formal deformation of a Hom-Lie algebra (g,[,]g,ϕg).

    Proposition 3.10. Let (ωt=ω++i=1ωiti,αt=α++i=1αiti) be a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α), then

    {ωiωiσ,αi}i1

    generates a 1-parameter formal deformation of the sub-adjacent Hom-Lie algebra AC, where σ:AAAA is the flip operator defined by σ(xy)=yx for all x,yA.

    Proof. Let (A[[t]],ωt,αt) be a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α). For all x,yA, we have

    ωt(x,y)ωt(y,x)=ω(x,y)ω(y,x)++i=1ωi(x,y)ti+i=1ωi(y,x)ti=[x,y]C++i=1(ωiωiσ)(x,y)ti,

    and

    αt(ωt(x,y)ωt(y,x))=ωt(αt(x),αt(y))ωt(αt(y),αt(x)).

    Therefore, {ωiωiσ,αi}i1 generates a 1-parameter formal deformation of the sub-adjacent Hom-Lie algebra AC.

    In this section, we study abelian extensions of Hom-pre-Lie algebras using the cohomological approach. We show that abelian extensions are classified by the cohomology group ˜H2(A;V).

    Definition 4.1. Let (A,,α) and (V,V,β) be two Hom-pre-Lie algebras. An extension of (A,,α) by (V,V,β) is a short exact sequence of Hom-pre-Lie algebra morphisms:

    where (ˆA,ˆA,αˆA) is a Hom-pre-Lie algebra.

    It is called an abelian extension if (V,V,β) is an abelian Hom-pre-Lie algebra, i.e. for all u,vV,uVv=0.

    Definition 4.2. A section of an extension (ˆA,ˆA,αˆA) of a Hom-pre-Lie algebra (A,,α) by (V,V,β) is a linear map s:AˆA such that ps=IdA.

    Let (ˆA,ˆA,αˆA) be an abelian extension of a Hom-pre-Lie algebra (A,,α) by (V,β) and s:AˆA a section. For all x,yA, define linear maps θ:AAV and ξ:AV respectively by

    θ(x,y)=s(x)ˆAs(y)s(xy), (4.1)
    ξ(x)=αˆA(s(x))s(α(x)). (4.2)

    And for all x,yA,uV, define ρ,μ:Agl(V) respectively by

    ρ(x)(u)=s(x)ˆAu, (4.3)
    μ(x)(u)=uˆAs(x). (4.4)

    Obviously, ˆA is isomorphic to AV as vector spaces. Transfer the Hom-pre-Lie algebra structure on ˆA to that on AV, we obtain a Hom-pre-Lie algebra (AV,,ϕ), where and ϕ are given by

    (x+u)(y+v)=xy+θ(x,y)+ρ(x)(v)+μ(y)(u),x,yA,u,vV, (4.5)
    ϕ(x+u)=α(x)+ξ(x)+β(u),xA,uV. (4.6)

    Theorem 4.3. With the above notations, we have

    (i) (V,β,ρ,μ) is a representation of the Hom-pre-Lie algebra (A,,α),

    (ii) (θ,ξ) is a 2-cocycle of the Hom-pre-Lie algebra (A,,α) with coefficients in the representation (V,β,ρ,μ).

    Proof. For all xA, vV, by the definition of a Hom-pre-Lie algebra, we have

    ϕ(xv)ϕ(x)ϕ(v)=β(ρ(x)(v))ρ(α(x))β(v)=0,

    which implies that

    βρ(x)=ρ(α(x))β. (4.7)

    Similarly, we have

    βμ(x)=μ(α(x))β. (4.8)

    For all x,yA, vV, by the definition of a Hom-pre-Lie algebra, we have

    (xy)ϕ(v)ϕ(x)(yv)(yx)ϕ(v)+ϕ(y)(xv)=(xy+θ(x,y))β(v)(α(x)+ξ(x))ρ(y)(v)(yx+θ(y,x))β(v)+(α(y)+ξ(y))ρ(x)(v)=ρ(xy)β(v)ρ(α(x))ρ(y)(v)ρ(yx)β(v)+ρ(α(y))ρ(x)(v)=ρ([x,y]C)β(v)ρ(α(x))ρ(y)(v)+ρ(α(y))ρ(x)(v)=0,

    which implies that

    ρ([x,y]C)β=ρ(α(x))ρ(y)ρ(α(y))ρ(x). (4.9)

    Similarly, we have

    μ(α(y))μ(x)μ(xy)β=μ(α(y))ρ(x)ρ(α(x))μ(y). (4.10)

    By (4.7), (4.8), (4.9), (4.10), we obtain that (V,β,ρ,μ) is a representation.

    For all x,yA, by the definition of a Hom-pre-Lie algebra, we have

    ϕ(xy)ϕ(x)ϕ(y)=ϕ(xy+θ(x,y))α(x)α(y)θ(α(x),α(y))ρ(α(x))ξ(y)μ(α(y))ξ(x)=ξ(xy)+β(θ(x,y))θ(α(x),α(y))ρ(α(x))ξ(y)μ(α(y))ξ(x)=ωαθ(x,y)+ααξ(x,y)=0,

    which implies that

    ωαθ+ααξ=0. (4.11)

    For all x,y,zA, by the definition of a Hom-pre-Lie algebra, we have

    (xy)ϕ(z)ϕ(x)(yz)(yx)ϕ(z)+ϕ(y)(xz)=(xy+θ(x,y))(α(z)+ξ(z))(α(x)+ξ(x))(yz+θ(y,z))(yx+θ(y,x))(α(z)+ξ(z))+(α(y)+ξ(y))(xz+θ(x,z))=θ(xy,α(z))+μ(α(z))θ(x,y)θ(α(x),yz)ρ(α(x))θ(y,z)θ(yx,α(z))μ(α(z))θ(y,x)+θ(α(y),xz)+ρ(α(y))θ(x,z)+ρ(xy)ξ(z)μ(yz)ξ(x)ρ(yx)ξ(z)+μ(xz)ξ(y)=ωωθ(x,y,z)αωξ(x,y,z)=0,

    which implies that

    ωωθ+αωξ=0. (4.12)

    By Eqs (4.11) and (4.12), we obtain that ˜(θ,ξ)=0, which implies that (θ,ξ) is a 2-cocycle of the Hom-pre-Lie algebra (A,,α). The proof is finished.

    Definition 4.4. Let (^A1,^A1,α^A1) and (^A2,^A2,α^A2) be two abelian extensions of a Hom-pre-Lie algebra (A,,α) by (V,β). They are said to be isomorphic if there exists a Hom-pre-Lie algebra isomorphism ζ:(^A1,^A1,α^A1)(^A2,^A2,α^A2) such that the following diagram is commutative:

    Proposition 4.5. With the above notations, we have

    (i) Two different sections of an abelian extension of a Hom-pre-Lie algebra (A,,α) by (V,β) give rise to the same representation of (A,,α),

    (ii) Isomorphic abelian extensions give rise to the same representation of (A,,α).

    Proof. (i) Let (ˆA,ˆA,αˆA) be an abelian extension of a Hom-pre-Lie algebra (A,,α) by (V,β). Choosing two different sections s1,s2:AˆA, by equations (4.3), (4.4) and Theorem 4.3, we obtain two representations (V,β,ρ1,μ1) and (V,β,ρ2,μ2). Define φ:AV by φ(x)=s1(x)s2(x). Then for all xA, we have

    ρ1(x)(u)ρ2(x)(u)=s1(x)ˆAus2(x)ˆAu=(φ(x)+s2(x))ˆAus2(x)ˆAu=φ(x)ˆAu=0,

    which implies that ρ1=ρ2. Similarly, we have μ1=μ2. This finishes the proof.

    (ii) Let (^A1,^A1,α^A1) and (^A2,^A2,α^A2) are two isomorphic abelian extensions of a Hom-pre-Lie algebra (A,,α) by (V,β). Let s1:A1^A1 and s2:A2^A2 be two sections of (^A1,^A1,α^A1) and (^A2,^A2,α^A2) respectively. By equations (4.3), (4.4) and Theorem 4.3, we obtain that (V,β,ρ1,μ1) and (V,β,ρ2,μ2) are their representations respectively. Define s1:A1^A1 by s1=ζ1s2. Since ζ:(^A1,^A1,α^A1)(^A2,^A2,α^A2) is a Hom-pre-Lie algebra isomorphism satisfying the commutative diagram in Definition 4.4, by p2ζ=p1, we have

    p1s1=p2ζζ1s2=IdA. (4.13)

    Thus, we obtain that s1 is a section of (^A1,^A1,α^A1). For all xA,uV, we have

    ρ1(x)(u)=s1(x)^A1u=(ζ1s2)(x)^A1u=ζ1(s2(x)^A2u)=ρ2(x)(u),

    which implies that ρ1=ρ2. Similarly, we have μ1=μ2. This finishes the proof.

    So in the sequel, we fix a representation (V,β,ρ,μ) of a Hom-pre-Lie algebra (A,,α) and consider abelian extensions that induce the given representation.

    Theorem 4.6. Abelian extensions of a Hom-pre-Lie algebra (A,,α) by (V,β) are classified by ˜H2(A;V).

    Proof. Let (ˆA,ˆA,αˆA) be an abelian extension of a Hom-pre-Lie algebra (A,,α) by (V,β). Choosing a section s:AˆA, by Theorem 4.3, we obtain that (θ,ξ)˜Z2(A;V). Now we show that the cohomological class of (θ,ξ) does not depend on the choice of sections. In fact, let s1 and s2 be two different sections. Define φ:AV by φ(x)=s1(x)s2(x). Then for all x,yA, we have

    θ1(x,y)=s1(x)ˆAs1(y)s1(xy)=(s2(x)+φ(x))ˆA(s2(y)+φ(y))s2(xy)φ(xy)=s2(x)ˆAs2(y)+ρ(x)φ(y)+μ(y)φ(x)s2(xy)φ(xy)=θ2(x,y)+ωωφ(x,y),

    which implies that θ1θ2=ωωφ.

    For all xA, we have

    ξ1(x)=αˆA(s1(x))s1(α(x))=αˆA(φ(x)+s2(x))φ(α(x))s2(α(x))=αˆA(φ(x))+αˆA(s2(x))φ(α(x))s2(α(x))=ξ2(x)+β(φ(x))φ(α(x)),

    which implies that ξ1ξ2=ωαφ.

    Therefore, we obtain that (θ1θ2,ξ1ξ2)˜B2(A;V), (θ1,ξ1) and (θ2,ξ2) are in the same cohomological class.

    Now we prove that isomorphic abelian extensions give rise to the same element in ˜H2(A;V). Assume that (^A1,^A1,α^A1) and (^A2,^A2,α^A2) are two isomorphic abelian extensions of a Hom-pre-Lie algebra (A,,α) by (V,β), and ζ:(^A1,^A1,α^A1)(^A2,^A2,α^A2) is a Hom-pre-Lie algebra isomorphism satisfying the commutative diagram in Definition 4.4. Assume that s1:A^A1 is a section of ^A1. By p2ζ=p1, we have

    p2(ζs1)=p1s1=IdA. (4.14)

    Thus, we obtain that ζs1 is a section of ^A2. Define s2=ζs1. Since ζ is an isomorphism of Hom-pre-Lie algebras and ζV=IdV, for all x,yA, we have

    θ2(x,y)=s2(x)^A2s2(y)s2(xy)=(ζs1)(x)^A2(ζs1)(y)(ζs1)(xy)=ζ(s1(x)^A1s1(y)s1(xy))=θ1(x,y),

    and

    ξ2(x)=α^A2(s2(x))s2(α(x))=α^A2(ζ(s1(x)))ζ(s1(α(x)))=ζ(α^A1(s1(x))s1(α(x)))=ξ1(x).

    Thus, isomorphic abelian extensions gives rise to the same element in ˜H2(A;V).

    Conversely, given two 2-cocycles (θ1,ξ1) and (θ2,ξ2), by Eqs (4.5) and (4.6), we can construct two abelian extensions (AV,1,ϕ1) and (AV,2,ϕ2). If (θ1,ξ1),(θ2,ξ2)˜H2(A;V), then there exists φ:AV, such that θ1=θ2+ωωφ and ξ1=ξ2+ωαφ. We define ζ:AVAV by

    ζ(x+u)=x+u+φ(x),xA,uV. (4.15)

    For all x,yA,u,vV, by θ1=θ2+ωωφ, we have

    ζ((x+u)1(y+v))ζ(x+u)2ζ(y+v)=ζ(xy+θ1(x,y)+ρ(x)(v)+μ(y)(u))(x+u+φ(x))2(y+v+φ(y))=θ1(x,y)+φ(xy)θ2(x,y)ρ(x)φ(y)μ(y)φ(x)=θ1(x,y)θ2(x,y)ωωφ(x,y)=0, (4.16)

    and for all xA,uV, by ξ1=ξ2+ωαφ, we have

    ζϕ1(x+u)ϕ1ζ(x+u)=ζ(α(x)+ξ1(x)+β(u))ϕ2(x+u+φ(x))=ξ1(x)+φ(α(x))ξ2(x)β(φ(x))=ξ1(x)ξ2(x)ωαφ(x)=0, (4.17)

    which implies that ζ is a Hom-pre-Lie algebra isomorphism from (AV,1,ϕ1) to (AV,2,ϕ2). Moreover, it is obvious that the diagram in Definition 4.4 is commutative. This finishes the proof.

    By straightforward computations, for all x1,,xn+2A, we have

    ωω(ωωφ)(x1,,xn+2)=n+1i=1(1)i+1ρ(αn(xi))(ωωφ)(x1,,^xi,,xn+2)+n+1i=1(1)i+1μ(αn(xn+2))(ωωφ)(x1,,^xi,,xn+1,xi)n+1i=1(1)i+1(ωωφ)(α(x1),,^α(xi),,α(xn+1),xixn+2)+1i<jn+1(1)i+j(ωωφ)([xi,xj]C,α(x1),,^α(xi),,^α(xj),,α(xn+2))=1j<in+1(1)i+1(1)j+1ρ(αn(xi))ρ(αn1(xj))φ(x1,,^xj,,^xi,,xn+2) (4.18)
    +1i<jn+1(1)i+1(1)jρ(αn(xi))ρ(αn1(xj))φ(x1,,^xi,,^xj,,xn+2) (4.19)
    +1j<in+1(1)i+1(1)j+1ρ(αn(xi))μ(αn1(xn+2))φ(x1,,^xj,,^xi,,xn+1,xj) (4.20)
    +1i<jn+1(1)i+1(1)jρ(αn(xi))μ(αn1(xn+2))φ(x1,,^xi,,^xj,,xn+1,xj) (4.21)
    1j<in+1(1)i+1(1)j+1ρ(αn(xi))φ(α(x1),,^α(xj),,^α(xi),,α(xn+1),xjxn+2) (4.22)
    1i<jn+1(1)i+1(1)jρ(αn(xi))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),xjxn+2) (4.23)
    +1j<k<in+1(1)i+1(1)j+kρ(αn(xi))φ([xj,xk]C,α(x1),,^α(xj),,^α(xk),,^α(xi),,α(xn+2)) (4.24)
    +1j<i<kn+1(1)i+1(1)j+k1ρ(αn(xi))φ([xj,xk]C,α(x1),,^α(xj),,^α(xi),,^α(xk),,α(xn+2)) (4.25)
    +1i<j<kn+1(1)i+1(1)j+kρ(αn(xi))φ([xj,xk]C,α(x1),,^α(xi),,^α(xj),,^α(xk),,α(xn+2)) (4.26)
    +1j<in+1(1)i+1(1)j+1μ(αn(xn+2))ρ(αn1(xj))φ(x1,,^xj,,^xi,,xn+1,xi) (4.27)
    +1i<jn+1(1)i+1(1)jμ(αn(xn+2))ρ(αn1(xj))φ(x1,,^xi,,^xj,,xn+1,xi) (4.28)
    +1j<in+1(1)i+1(1)j+1μ(αn(xn+2))μ(αn1(xi))φ(x1,,^xj,,^xi,,xn+1,xj) (4.29)
    +1i<jn+1(1)i+1(1)jμ(αn(xn+2))μ(αn1(xi))φ(x1,,^xi,,^xj,,xn+1,xj) (4.30)
    1j<in+1(1)i+1(1)j+1μ(αn(xn+2))φ(α(x1),,^α(xj),,^α(xi),,α(xn+1),xjxi) (4.31)
    1i<jn+1(1)i+1(1)jμ(αn(xn+2))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),xjxi) (4.32)
    +1j<k<in+1(1)i+1(1)j+kμ(αn(xn+2))φ([xj,xk]C,α(x1),,^α(xj),,^α(xk), (4.33)
    ,^α(xi),,α(xn+1),α(xi))+1j<i<kn+1(1)i+1(1)j+k1μ(αn(xn+2))φ([xj,xk]C,α(x1),,^α(xj),,^α(xi), (4.34)
    ,^α(xk),,α(xn+1),α(xi))+1i<j<kn+1(1)i+1(1)j+kμ(αn(xn+2))φ([xj,xk]C,α(x1),,^α(xi),,^α(xj), (4.35)
    ,^α(xk),,α(xn+1),α(xi))1j<in+1(1)i+1(1)j+1ρ(αn(xj))φ(α(x1),,^α(xj),,^α(xi),,α(xn+1),xixn+2) (4.36)
    1i<jn+1(1)i+1(1)jρ(αn(xj))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),xixn+2) (4.37)
    1j<in+1(1)i+1(1)j+1μ(αn1(xixn+2))φ(α(x1),,^α(xj),,^α(xi),,α(xn+1),α(xj)) (4.38)
    1i<jn+1(1)i+1(1)jμ(αn1(xixn+2))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),α(xj)) (4.39)
    +1j<in+1(1)i+1(1)j+1φ(α2(x1),,^α2(xj),,^α2(xi),,α2(xn+1),α(xj)(xixn+2)) (4.40)
    +1i<jn+1(1)i+1(1)jφ(α2(x1),,^α2(xi),,^α2(xj),,α2(xn+1),α(xj)(xixn+2)) (4.41)
    1j<k<in+1(1)i+1(1)j+kφ([α(xj),α(xk)]C,α2(x1),,^α2(xj),,^α2(xk),, (4.42)
    ^α2(xi),,α2(xn+1),α(xixn+2))1j<i<kn+1(1)i+1(1)j+k1φ([α(xj),α(xk)]C,α2(x1),,^α2(xj),,^α2(xi),, (4.43)
    ^α2(xk),,α2(xn+1),α(xixn+2))1i<j<kn+1(1)i+1(1)j+kφ([α(xj),α(xk)]C,α2(x1),,^α2(xi),,^α2(xj),, (4.44)
    ^α2(xk),,α2(xn+1),α(xixn+2))+1i<jn+1(1)i+jρ(αn1[xi,xj]C)φ(α(x1),,^α(xi),,^α(xj),,α(xn+2)) (4.45)
    +1k<i<jn+1(1)i+j(1)kρ(αn(xk)))φ([xi,xj]C,α(x1),,^α(xk),,^α(xi),,^α(xj),,α(xn+2)) (4.46)
    +1i<k<jn+1(1)i+j(1)k+1ρ(αn(xk)))φ([xi,xj]C,α(x1),,^α(xi),,^α(xk),,^α(xj),,α(xn+2)) (4.47)
    +1i<j<kn+1(1)i+j(1)kρ(αn(xk)))φ([xi,xj]C,α(x1),,^α(xi),,^α(xj),,^α(xk),,α(xn+2)) (4.48)
    +1k<i<jn+1(1)i+j(1)kμ(αn(xn+2)))φ([xi,xj]C,α(x1),,^α(xk),,^α(xi),, (4.49)
    ^α(xj),,α(xn+1),α(xk))+1i<k<jn+1(1)i+j(1)k+1μ(αn(xn+2)))φ([xi,xj]C,α(x1),,^α(xi),,^α(xk),, (4.50)
    ^α(xj),,α(xn+1),α(xk))+1i<j<kn+1(1)i+j(1)kμ(αn(xn+2)))φ([xi,xj]C,α(x1),,^α(xi),,^α(xj),, (4.51)
    ^α(xk),,α(xn+1),α(xk))+1i<jn+1(1)i+jμ(αn(xn+2))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),[xi,xj]C) (4.52)
    1k<i<jn+1(1)i+j(1)kφ(α[xi,xj]C,α2(x1),,^α2(xk),,^α2(xi),,^α2(xj), (4.53)
    ,α2(xn+1),α(xk)α(xn+2))1i<k<jn+1(1)i+j(1)k+1φ(α[xi,xj]C,α2(x1),,^α2(xi),,^α2(xk),,^α2(xj), (4.54)
    ,α2(xn+1),α(xk)α(xn+2))1i<j<kn+1(1)i+j(1)kφ(α[xi,xj]C,α2(x1),,^α2(xi),,^α2(xj),,^α2(xk), (4.55)
    ,α2(xn+1),α(xk)α(xn+2))1i<jn+1(1)i+jφ(α2(x1),,^α2(xi),,^α2(xj),,α2(xn+1),[xi,xj]Cα(xn+2)) (4.56)
    +1k<l<i<jn+1(1)i+j(1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),,^α2(xk),, (4.57)
    ^α2(xl),,^α2(xi),,^α2(xj),,α2(xn+2))+1k<i<l<jn+1(1)i+j(1)k+l+1φ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),,^α2(xk),, (4.58)
    ^α2(xi),,^α2(xl),,^α2(xj),,α2(xn+2))+1i<k<l<jn+1(1)i+j(1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),,^α2(xi),, (4.59)
    ^α2(xk),,^α2(xl),,^α2(xj),,α2(xn+2))+1i<j<k<ln+1(1)i+j(1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),,^α2(xi),, (4.60)
    ^α2(xj),,^α2(xk),,^α2(xl),,α2(xn+2))+1i<k<j<ln+1(1)i+j(1)k+l+1φ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),,^α2(xi),, (4.61)
    ^α2(xk),,^α2(xj),,^α2(xl),,α2(xn+2))+1k<i<j<ln+1(1)i+j(1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),,^α2(xk),, (4.62)
    ^α2(xi),,^α2(xj),,^α2(xl),,α2(xn+2))+1k<i<jn+1(1)i+j(1)kφ([[xi,xj]C,α(xk)]C,α2(x1),,^α2(xk),,^α2(xi),,^α2(xj),,α2(xn+2)) (4.63)
    +1i<k<jn+1(1)i+j(1)k+1φ([[xi,xj]C,α(xk)]C,α2(x1),,^α2(xi),,^α2(xk),,^α2(xj),,α2(xn+2)) (4.64)
    +1i<j<kn+1(1)i+j(1)kφ([[xi,xj]C,α(xk)]C,α2(x1),,^α2(xi),,^α2(xj),,^α2(xk),,α2(xn+2)). (4.65)

    The terms (4.22) and (4.37), (4.23) and (4.36), (4.24) and (4.48), (4.25) and (4.47), (4.26) and (4.46), (4.33) and (4.51), (4.34) and (4.50), (4.35) and (4.49) cancel each other. By the definition of the sub-adjacent Hom-Lie algebra, the sum of (4.63), (4.64) and (4.65) is zero. By the antisymmetry condition, the term (4.57) and (4.60), (4.58) and (4.61), (4.59) and (4.62) cancel each other. By the definition of the sub-adjacent Lie bracket, the sum of (4.31), (4.32) and (4.52) is zero. By the definition of Hom-pre-Lie algebras, the sum of (4.40), (4.41) and (4.56) is zero. Since α is an algebra morphism, the term (4.42) and (4.55), (4.43) and (4.54), (4.44) and (4.53) cancel each other.

    Since (V,β,ρ,μ) is a representation of the Hom-pre-Lie algebra (A,,α), the sum of (4.18) and (4.19) can be written as

    1i<jn+1(1)i+j+1ρ([αn1(xi),αn1(xj)]C)βφ(x1,,^xi,,^xj,,xn+2), (4.66)

    the sum of (4.20), (4.28) and (4.29) can be written as

    1j<in+1(1)i+j+1μ(αn1(xi)αn1(xn+2))βφ(x1,,^xj,,^xi,,xn+1,xj), (4.67)

    and the sum of (4.21), (4.27) and (4.30) can be written as

    1i<jn+1(1)i+j+1μ(αn1(xi)αn1(xn+2))βφ(x1,,^xi,,^xj,,xn+1,xj). (4.68)

    Thus, we have

    ωω(ωωφ)(x1,,xn+2)=1i<jn+1(1)i+j+1ρ([αn1(xi),αn1(xj)]C)βφ(x1,,^xi,,^xj,,xn+2),+1i<jn+1(1)i+j+1μ(αn1(xi)αn1(xn+2))βφ(x1,,^xi,,^xj,,xn+1,xj)1j<in+1(1)i+j+1μ(αn1(xi)αn1(xn+2))βφ(x1,,^xj,,^xi,,xn+1,xj)1i<jn+1(1)i+j+1ρ(αn1[xi,xj]C)φ(α(x1),,^α(xi),,^α(xj),,α(xn+2))1i<jn+1(1)i+j+1μ(αn1(xixn+2))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),α(xj))+1j<in+1(1)i+j+1μ(αn1(xixn+2))φ(α(x1),,^α(xj),,^α(xi),,α(xn+1),α(xj)).

    For all x1,,xn+2A, we have

    αω(ωαφ)(x1,,xn+2)=1i<jn+1(1)i+jρ([αn1(xi),αn1(xj)]C)(ωαφ)(x1,,^xi,,^xj,,xn+2)+1i<jn+1(1)i+jμ(αn1(xi)αn1(xn+2))(ωαφ)(x1,,^xi,,^xj,,xn+1,xj)1i<jn+1(1)i+jμ(αn1(xj)αn1(xn+2))(ωαφ)(x1,,^xi,,^xj,,xn+1,xi)=1i<jn+1(1)i+jρ([αn1(xi),αn1(xj)]C)βφ(x1,,^xi,,^xj,,xn+2),1i<jn+1(1)i+jρ([αn1(xi),αn1(xj)]C)φ(α(x1),,^α(xi),,^α(xj),,α(xn+2))+1i<jn+1(1)i+jμ(αn1(xi)αn1(xn+2))βφ(x1,,^xi,,^xj,,xn+1,xj)1i<jn+1(1)i+jμ(αn1(xi)αn1(xn+2))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),α(xj))1i<jn+1(1)i+jμ(αn1(xj)αn1(xn+2))βφ(x1,,^xi,,^xj,,xn+1,xi)+1i<jn+1(1)i+jμ(αn1(xj)αn1(xn+2))φ(α(x1),,^α(xi),,^α(xj),,α(xn+1),α(xi)).

    Since α is an algebra morphism, we obtain that ωωωω+αωωα = 0.

    For all x1,,xn+2A, we have

    ωω(αωψ)(x1,,xn+2)=n+1i=1(1)i+1ρ(αn(xi))(αωψ)(x1,,^xi,,xn+2)+n+1i=1(1)i+1μ(αn(xn+2))(αωψ)(x1,,^xi,,xn+1,xi)n+1i=1(1)i+1(αωψ)(α(x1),,^α(xi),,α(xn+1),xixn+2)+1i<jn+1(1)i+j(αωψ)([xi,xj]C,α(x1),,^α(xi),,^α(xj),,α(xn+2))=1j<k<in+1(1)i+1(1)j+kρ(αn(xi))ρ([αn2(xj),αn2(xk)]C)ψ(x1,,^xj,,^xk,^xi,,xn+2) (4.69)
    +1j<i<kn+1(1)i+1(1)j+k1ρ(αn(xi))ρ([αn2(xj),αn2(xk)]C)ψ(x1,,^xj,,^xi,^xk,,xn+2) (4.70)
    +1i<j<kn+1(1)i+1(1)j+kρ(αn(xi))ρ([αn2(xj),αn2(xk)]C)ψ(x1,,^xi,,^xj,^xk,,xn+2) (4.71)
    +1j<k<in+1(1)i+1(1)j+kρ(αn(xi))μ(αn2(xj)αn2(xn+2))ψ(x1,,^xj,,^xk,^xi,,xn+1,xk) (4.72)
    +1j<i<kn+1(1)i+1(1)j+k1ρ(αn(xi))μ(αn2(xj)αn2(xn+2))ψ(x1,,^xj,,^xi,^xk,,xn+1,xk) (4.73)
    +1i<j<kn+1(1)i+1(1)j+kρ(αn(xi))μ(αn2(xj)αn2(xn+2))ψ(x1,,^xi,,^xj,^xk,,xn+1,xk) (4.74)
    1j<k<in+1(1)i+1(1)j+kρ(αn(xi))μ(αn2(xk)αn2(xn+2))ψ(x1,,^xj,,^xk,^xi,,xn+1,xj) (4.75)
    1j<i<kn+1(1)i+1(1)j+k1ρ(αn(xi))μ(αn2(xk)αn2(xn+2))ψ(x1,,^xj,,^xi,^xk,,xn+1,xj) (4.76)
    1i<j<kn+1(1)i+1(1)j+kρ(αn(xi))μ(αn2(xk)αn2(xn+2))ψ(x1,,^xi,,^xj,^xk,,xn+1,xj) (4.77)
    +1j<k<in+1(1)i+1(1)j+kμ(αn(xn+2))ρ([αn2(xj),αn2(xk)]C)ψ(x1,,^xj,,^xk,^xi,,xn+1,xi) (4.78)
    +1j<i<kn+1(1)i+1(1)j+k1μ(αn(xn+2))ρ([αn2(xj),αn2(xk)]C)ψ(x1,,^xj,,^xi,^xk,,xn+1,xi) (4.79)
    +1i<j<kn+1(1)i+1(1)j+kμ(αn(xn+2))ρ([αn2(xj),αn2(xk)]C)ψ(x1,,^xi,,^xj,^xk,,xn+1,xi) (4.80)
    +1j<k<in+1(1)i+1(1)j+kμ(αn(xn+2))μ(αn2(xj)αn2(xi))ψ(x1,,^xj,,^xk,^xi,,xn+1,xk) (4.81)
    +1j<i<kn+1(1)i+1(1)j+k1μ(αn(xn+2))μ(αn2(xj)αn2(xi))ψ(x1,,^xj,,^xi,^xk,,xn+1,xk) (4.82)
    +1i<j<kn+1(1)i+1(1)j+kμ(αn(xn+2))μ(αn2(xj)αn2(xi))ψ(x1,,^xi,,^xj,^xk,,xn+1,xk) (4.83)
    1j<k<in+1(1)i+1(1)j+kμ(αn(xn+2))μ(αn2(xk)αn2(xi))ψ(x1,,^xj,,^xk,^xi,,xn+1,xj) (4.84)
    1j<i<kn+1(1)i+1(1)j+k1μ(αn(xn+2))μ(αn2(xk)αn2(xi))ψ(x1,,^xj,,^xi,^xk,,xn+1,xj) (4.85)
    1i<j<kn+1(1)i+1(1)j+kμ(αn(xn+2))μ(αn2(xk)αn2(xi))ψ(x1,,^xi,,^xj,^xk,,xn+1,xj) (4.86)
    1j<k<in+1(1)i+1(1)j+kρ([αn1(xj),αn1(xk)]C)ψ(α(x1),,^α(xj),,^α(xk), (4.87)
    ,^α(xi),,α(xn+1),xixn+2)1j<i<kn+1(1)i+1(1)j+k1ρ([αn1(xj),αn1(xk)]C)ψ(α(x1),,^α(xj),,^α(xi), (4.88)
    ,^α(xk),,α(xn+1),xixn+2)1i<j<kn+1(1)i+1(1)j+kρ([αn1(xj),αn1(xk)]C)ψ(α(x1),,^α(xi),,^α(xj), (4.89)
    ,^α(xk),,α(xn+1),xixn+2)1j<k<in+1(1)i+1(1)j+kμ(αn1(xj)αn2(xixn+2))ψ(α(x1),,^α(xj),,^α(xk), (4.90)
    ,^α(xi),,α(xn+1),α(xk))1j<i<kn+1(1)i+1(1)j+k1μ(αn1(xj)αn2(xixn+2))ψ(α(x1),,^α(xj),,^α(xi), (4.91)
    ,^α(xk),,α(xn+1),α(xk))1i<j<kn+1(1)i+1(1)j+kμ(αn1(xj)αn2(xixn+2))ψ(α(x1),,^α(xi),,^α(xj), (4.92)
    ,^α(xk),,α(xn+1),α(xk))+1j<k<in+1(1)i+1(1)j+kμ(αn1(xk)αn2(xixn+2))ψ(α(x1),,^α(xj),,^α(xk), (4.93)
    ,^α(xi),,α(xn+1),α(xj))+1j<i<kn+1(1)i+1(1)j+k1μ(αn1(xk)αn2(xixn+2))ψ(α(x1),,^α(xj),,^α(xi), (4.94)
    ,^α(xk),,α(xn+1),α(xj))+1i<j<kn+1(1)i+1(1)j+kμ(αn1(xk)αn2(xixn+2))ψ(α(x1),,^α(xi),,^α(xj), (4.95)
    ,^α(xk),,α(xn+1),α(xj))+1k<l<i<jn+1(1)i+j(1)k+lρ([αn1(xk),αn1(xl)]C)ψ([xi,xj]C,α(x1),,^α(xk),, (4.96)
    ^α(xl),,^α(xi),,^α(xj),,α(xn+2))+1k<i<l<jn+1(1)i+j(1)k+l1ρ([αn1(xk),αn1(xl)]C)ψ([xi,xj]C,α(x1),,^α(xk),, (4.97)
    ^α(xi),,^α(xl),,^α(xj),,α(xn+2))+1k<i<j<ln+1(1)i+j(1)k+lρ([αn1(xk),αn1(xl)]C)ψ([xi,xj]C,α(x1),,^α(xk),, (4.98)
    ^α(xi),,^α(xj),,^α(xl),,α(xn+2))+1i<k<l<jn+1(1)i+j(1)k+lρ([αn1(xk),αn1(xl)]C)ψ([xi,xj]C,α(x1),,^α(xi),, (4.99)
    ^α(xk),,^α(xl),,^α(xj),,α(xn+2))+1i<k<j<ln+1(1)i+j(1)k+l1ρ([αn1(xk),αn1(xl)]C)ψ([xi,xj]C,α(x1),,^α(xi),, (4.100)
    ^α(xk),,^α(xj),,^α(xl),,α(xn+2))+1i<j<k<ln+1(1)i+j(1)k+lρ([αn1(xk),αn1(xl)]C)ψ([xi,xj]C,α(x1),,^α(xi),, (4.101)
    ^α(xj),,^α(xk),,^α(xl),,α(xn+2))+1k<i<jn+1(1)i+j(1)kρ([αn2[xi,xj]C,αn1(xk)]C)ψ(α(x1),,^α(xk),,^α(xi), (4.102)
    ,^α(xj),,α(xn+2))+1i<k<jn+1(1)i+j(1)k+1ρ([αn2[xi,xj]C,αn1(xk)]C)ψ(α(x1),,^α(xi),,^α(xk), (4.103)
    ,^α(xj),,α(xn+2))+1i<j<kn+1(1)i+j(1)kρ([αn2[xi,xj]C,αn1(xk)]C)ψ(α(x1),,^α(xi),,^α(xj), (4.104)
    ,^α(xk),,α(xn+2))+1k<l<i<jn+1(1)i+j(1)k+lμ(αn1(xk)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xk),, (4.105)
    ^α(xl),,^α(xi),,^α(xj),,α(xn+1),α(xl))+1k<i<l<jn+1(1)i+j(1)k+l1μ(αn1(xk)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xk),, (4.106)
    ^α(xi),,^α(xl),,^α(xj),,α(xn+1),α(xl))+1k<i<j<ln+1(1)i+j(1)k+lμ(αn1(xk)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xk),, (4.107)
    ^α(xi),,^α(xj),,^α(xl),,α(xn+1),α(xl))+1i<k<l<jn+1(1)i+j(1)k+lμ(αn1(xk)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xi),, (4.108)
    ^α(xk),,^α(xl),,^α(xj),,α(xn+1),α(xl))+1i<k<j<ln+1(1)i+j(1)k+l1μ(αn1(xk)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xi),, (4.109)
    ^α(xk),,^α(xj),,^α(xl),,α(xn+1),α(xl))+1i<j<k<ln+1(1)i+j(1)k+lμ(αn1(xk)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xi),, (4.110)
    ^α(xj),,^α(xk),,^α(xl),,α(xn+1),α(xl))1k<l<i<jn+1(1)i+j(1)k+lμ(αn1(xl)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xk),, (4.111)
    ^α(xl),,^α(xi),,^α(xj),,α(xn+1),α(xk))1k<i<l<jn+1(1)i+j(1)k+l1μ(αn1(xl)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xk),, (4.112)
    ^α(xi),,^α(xl),,^α(xj),,α(xn+1),α(xk))1k<i<j<ln+1(1)i+j(1)k+lμ(αn1(xl)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xk),, (4.113)
    ^α(xi),,^α(xj),,^α(xl),,α(xn+1),α(xk))1i<k<l<jn+1(1)i+j(1)k+lμ(αn1(xl)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xi),, (4.114)
    ^α(xk),,^α(xl),,^α(xj),,α(xn+1),α(xk))1i<k<j<ln+1(1)i+j(1)k+l1μ(αn1(xl)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xi),, (4.115)
    ^α(xk),,^α(xj),,^α(xl),,α(xn+1),α(xk))1i<j<k<ln+1(1)i+j(1)k+lμ(αn1(xl)αn1(xn+2))ψ([xi,xj]C,α(x1),,^α(xi),, (4.116)
    ^α(xj),,^α(xk),,^α(xl),,α(xn+1),α(xk))+1k<i<jn+1(1)i+j(1)kμ(αn2[xi,xj]Cαn1(xn+2))ψ(α(x1),,^α(xk),,^α(xi), (4.117)
    ,^α(xj),,α(xn+1),α(xk))+1i<k<jn+1(1)i+j(1)k+1μ(αn2[xi,xj]Cαn1(xn+2))ψ(α(x1),,^α(xi),,^α(xk), (4.118)
    ,^α(xj),,α(xn+1),α(xk))+1i<j<kn+1(1)i+j(1)kμ(αn2[xi,xj]Cαn1(xn+2))ψ(α(x1),,^α(xi),,^α(xj), (4.119)
    ,^α(xk),,α(xn+1),α(xk))1k<i<jn+1(1)i+j(1)kμ(αn1(xk)αn1(xn+2))ψ(α(x1),,^α(xk),,^α(xi), (4.120)
    ,^α(xj),,α(xn+1),[xi,xj]C)1i<k<jn+1(1)i+j(1)k+1μ(αn1(xk)αn1(xn+2))ψ(α(x1),,^α(xi),,^α(xk), (4.121)
    ,^α(xj),,α(xn+1),[xi,xj]C)1i<j<kn+1(1)i+j(1)kμ(αn1(xk)αn1(xn+2))ψ(α(x1),,^α(xi),,^α(xj),,^α(xk),,α(xn+1),[xi,xj]C), (4.122)

    and

    αω(ααψ)(x1,,xn+2)=1i<jn+1(1)i+jρ([αn1(xi),αn1(xj)]C)(ααψ)(x1,,^xi,,^xj,,xn+2)+1i<jn+1(1)i+jμ(αn1(xi)αn1(xn+2))(ααψ)(x1,,^xi,,^xj,,xn+1,xj)1i<jn+1(1)i+jμ(αn1(xj)αn1(xn+2))(ααψ)(x1,,^xi,,^xj,,xn+1,xi)=1k<i<jn+1(1)i+j(1)kρ([αn1(xi),αn1(xj)]C)ρ(αn1(xk))ψ(x1,,^xk,,^xi,,^xj,xn+2) (4.123)
    +1i<k<jn+1(1)i+j(1)k+1ρ([αn1(xi),αn1(xj)]C)ρ(αn1(xk))ψ(x1,,^xi,,^xk,,^xj,xn+2) (4.124)
    +1i<j<kn+1(1)i+j(1)kρ([αn1(xi),αn1(xj)]C)ρ(αn1(xk))ψ(x1,,^xi,,^xj,,^xk,,xn+2) (4.125)
    +1k<i<jn+1(1)i+j(1)kρ([αn1(xi),αn1(xj)]C)μ(αn1(xn+2))ψ(x1,,^xk,,^xi,,^xj,xn+1,xk) (4.126)
    +1i<k<jn+1(1)i+j(1)k+1ρ([αn1(xi),αn1(xj)]C)μ(αn1(xn+2))ψ(x1,,^xi,,^xk,,^xj,xn+1,xk) (4.127)
    +1i<j<kn+1(1)i+j(1)kρ([αn1(xi),αn1(xj)]C)μ(αn1(xn+2))ψ(x1,,^xi,,^xj,,^xk,xn+1,xk) (4.128)
    1k<i<jn+1(1)i+j(1)kρ([αn1(xi),αn1(xj)]C)ψ(α(x1),,^α(xk),,^α(xi), (4.129)
    ,^α(xj),,α(xn+1),xkxn+2)1i<k<jn+1(1)i+j(1)k+1ρ([αn1(xi),αn1(xj)]C)ψ(α(x1),,^α(xi),,^α(xk), (4.130)
    ,^α(xj),,α(xn+1),xkxn+2)1i<j<kn+1(1)i+j(1)kρ([αn1(xi),αn1(xj)]C)ψ(α(x1),,^α(xi),,^α(xj), (4.131)
    ,^α(xk),,α(xn+1),xkxn+2)+1k<l<i<jn+1(1)i+j(1)k+l1ρ([αn1(xi),αn1(xj)]C)ψ([xk,xl]C,α(x1),,^α(xk), (4.132)
    ,^α(xl),,^α(xi),,^α(xj),,α(xn+2))+1k<i<l<jn+1(1)i+j(1)k+lρ([αn1(xi),αn1(xj)]C)ψ([xk,xl]C,α(x1),,^α(xk), (4.133)
    ,^α(xi),,^α(xl),,^α(xj),,α(xn+2))+1k<i<j<ln+1(1)i+j(1)k+l1ρ([αn1(xi),αn1(xj)]C)ψ([xk,xl]C,α(x1),,^α(xk), (4.134)
    ,^α(xi),,^α(xj),,^α(xl),,α(xn+2))+1i<k<l<jn+1(1)i+j(1)k+l1ρ([αn1(xi),αn1(xj)]C)ψ([xk,xl]C,α(x1),,^α(xi), (4.135)
    ,^α(xk),,^α(xl),,^α(xj),,α(xn+2))+1i<k<j<ln+1(1)i+j(1)k+lρ([αn1(xi),αn1(xj)]C)ψ([xk,xl]C,α(x1),,^α(xi), (4.136)
    ,^α(xk),,^α(xj),,^α(xl),,α(xn+2))+1i<j<k<ln+1(1)i+j(1)k+l1ρ([αn1(xi),αn1(xj)]C)ψ([xk,xl]C,α(x1),,^α(xi), (4.137)
    ,^α(xj),,^α(xk),,^α(xl),,α(xn+2))+1k<i<jn+1(1)i+j(1)kμ(αn1(xi)αn1(xn+2))ρ(αn1(xk))ψ(x1,,^xk,,^xi,,^xj,xn+1,xj) (4.138)
    +1i<k<jn+1(1)i+j(1)k+1μ(αn1(xi)αn1(xn+2))ρ(αn1(xk))ψ(x1,,^xi,,^xk,,^xj,xn+1,xj) (4.139)
    +1i<j<kn+1(1)i+j(1)kμ(αn1(xi)αn1(xn+2))ρ(αn1(xk))ψ(x1,,^xi,,^xj,,^xk,xn+1,xj) (4.140)
    +1k<i<jn+1(1)i+j(1)kμ(αn1(xi)αn1(xn+2))μ(αn1(xj))ψ(x1,,^xk,,^xi,,^xj,xn+1,xk) (4.141)
    +1i<k<jn+1(1)i+j(1)k+1μ(αn1(xi)αn1(xn+2))μ(αn1(xj))ψ(x1,,^xi,,^xk,,^xj,xn+1,xk) (4.142)
    +1i<j<kn+1(1)i+j(1)kμ(αn1(xi)αn1(xn+2))μ(αn1(xj))ψ(x1,,^xi,,^xj,,^xk,xn+1,xk) (4.143)
    1k<i<jn+1(1)i+j(1)kμ(αn1(xi)αn1(xn+2))ψ(α(x1),,^α(xk),,^α(xi), (4.144)
    ,^α(xj),,α(xn+1),xkxj)1i<k<jn+1(1)i+j(1)k+1μ(αn1(xi)αn1(xn+2))ψ(α(x1),,^α(xi),,^α(xk), (4.145)
    ,^α(xj),,α(xn+1),xkxj)1i<j<kn+1(1)i+j(1)kμ(αn1(xi)αn1(xn+2))ψ(α(x1),,^α(xi),,^α(xj), (4.146)
    ,^α(xk),,α(xn+1),xkxj)+1k<l<i<jn+1(1)i+j(1)k+l1μ(αn1(xi)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xk), (4.147)
    ,^α(xl),,^α(xi),,^α(xj),,α(xn+1),α(xj))+1k<i<l<jn+1(1)i+j(1)k+lμ(αn1(xi)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xk), (4.148)
    ,^α(xi),,^α(xl),,^α(xj),,α(xn+1),α(xj))+1k<i<j<ln+1(1)i+j(1)k+l1μ(αn1(xi)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xk), (4.149)
    ,^α(xi),,^α(xj),,^α(xl),,α(xn+1),α(xj))+1i<k<l<jn+1(1)i+j(1)k+l1μ(αn1(xi)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xi), (4.150)
    ,^α(xk),,^α(xl),,^α(xj),,α(xn+1),α(xj))+1i<k<j<ln+1(1)i+j(1)k+lμ(αn1(xi)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xi), (4.151)
    ,^α(xk),,^α(xj),,^α(xl),,α(xn+1),α(xj))+1i<j<k<ln+1(1)i+j(1)k+l1μ(αn1(xi)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xi), (4.152)
    ,^α(xj),,^α(xk),,^α(xl),,α(xn+1),α(xj))1k<i<jn+1(1)i+j(1)kμ(αn1(xj)αn1(xn+2))ρ(αn1(xk))ψ(x1,,^xk,,^xi,,^xj,xn+1,xi) (4.153)
    1i<k<jn+1(1)i+j(1)k+1μ(αn1(xj)αn1(xn+2))ρ(αn1(xk))ψ(x1,,^xi,,^xk,,^xj,xn+1,xi) (4.154)
    1i<j<kn+1(1)i+j(1)kμ(αn1(xj)αn1(xn+2))ρ(αn1(xk))ψ(x1,,^xi,,^xj,,^xk,xn+1,xi) (4.155)
    1k<i<jn+1(1)i+j(1)kμ(αn1(xj)αn1(xn+2))μ(αn1(xi))ψ(x1,,^xk,,^xi,,^xj,xn+1,xk) (4.156)
    1i<k<jn+1(1)i+j(1)k+1μ(αn1(xj)αn1(xn+2))μ(αn1(xi))ψ(x1,,^xi,,^xk,,^xj,xn+1,xk) (4.157)
    1i<j<kn+1(1)i+j(1)kμ(αn1(xj)αn1(xn+2))μ(αn1(xi))ψ(x1,,^xi,,^xj,,^xk,xn+1,xk) (4.158)
    +1k<i<jn+1(1)i+j(1)kμ(αn1(xj)αn1(xn+2))ψ(α(x1),,^α(xk),,^α(xi), (4.159)
    ,^α(xj),,α(xn+1),xkxi)+1i<k<jn+1(1)i+j(1)k+1μ(αn1(xj)αn1(xn+2))ψ(α(x1),,^α(xi),,^α(xk), (4.160)
    ,^α(xj),,α(xn+1),xkxi)+1i<j<kn+1(1)i+j(1)kμ(αn1(xj)αn1(xn+2))ψ(α(x1),,^α(xi),,^α(xj), (4.161)
    ,^α(xk),,α(xn+1),xkxi)1k<l<i<jn+1(1)i+j(1)k+l1μ(αn1(xj)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xk), (4.162)
    ,^α(xl),,^α(xi),,^α(xj),,α(xn+1),α(xi))1k<i<l<jn+1(1)i+j(1)k+lμ(αn1(xj)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xk), (4.163)
    ,^α(xi),,^α(xl),,^α(xj),,α(xn+1),α(xi))1k<i<j<ln+1(1)i+j(1)k+l1μ(αn1(xj)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xk), (4.164)
    ,^α(xi),,^α(xj),,^α(xl),,α(xn+1),α(xi))1i<k<l<jn+1(1)i+j(1)k+l1μ(αn1(xj)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xi), (4.165)
    ,^α(xk),,^α(xl),,^α(xj),,α(xn+1),α(xi))1i<k<j<ln+1(1)i+j(1)k+lμ(αn1(xj)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xi), (4.166)
    ,^α(xk),,^α(xj),,^α(xl),,α(xn+1),α(xi))1i<j<k<ln+1(1)i+j(1)k+l1μ(αn1(xj)αn1(xn+2))ψ([xk,xl]C,α(x1),,^α(xi),,^α(xj),,^α(xk),,^α(xl),,α(xn+1),α(xi)). (4.167)

    By the definition of the sub-adjacent Hom-Lie algebra, the sum of (4.102), (4.103) and (4.104) is zero. By the definition of Hom-pre-Lie algebras, the sum of (4.90), (4.95) and (4.118) is zero, the sum of (4.91), (4.92) and (4.119) is zero, the sum of (4.93), (4.94) and (4.117) is zero. Obviously, the sum of (4.96) and (4.137) is zero, the sum of (4.97) and (4.136) is zero, the sum of (4.98) and (4.135) is zero, the sum of (4.99) and (4.134) is zero, the sum of (4.100) and (4.133) is zero, the sum of (4.101) and (4.132) is zero, the sum of (4.87) and (4.131) is zero, the sum of (4.88) and (4.130) is zero, the sum of (4.89) and (4.129) is zero, the sum of (4.105) and (4.152) is zero, the sum of (4.106) and (4.151) is zero, the sum of (4.107) and (4.150) is zero, the sum of (4.108) and (4.149) is zero, the sum of (4.109) and (4.148) is zero, the sum of (4.110) and (4.147) is zero, the sum of (4.111) and (4.167) is zero, the sum of (4.112) and (4.166) is zero, the sum of (4.113) and (4.165) is zero, the sum of (4.114) and (4.164) is zero, the sum of (4.115) and (4.163) is zero, the sum of (4.116) and (4.162) is zero. By the definition of the sub-adjacent Lie bracket, the sum of (4.120), (4.145) and (4.146) is zero, the sum of (4.121), (4.144) and (4.161) is zero, the sum of (4.122), (4.159) and (4.160) is zero. Since (V,β,ρ) is a representation of the sub-adjacent Hom-Lie algebra AC, the sum of (4.69), (4.70), (4.71), (4.123), (4.124) and (4.125) is zero. Since (V,β,ρ,μ) is a representation of the Hom-pre-Lie algebra (A,,α), the sum of (4.73), (4.74), (4.78), (4.82), (4.83), (4.128), (4.138), (4.139), (4.143) and (4.158) is zero, the sum of (4.72), (4.77), (4.79), (4.81), (4.86), (4.127), (4.140), (4.142), (4.153) and (4.157) is zero, the sum of (4.75), (4.76), (4.80), (4.84), (4.85), (4.126), (4.141), (4.154), (4.155) and (4.156) is zero. Thus, we have ωωαω+αωαα=0.

    Similarly, we have ωαωω+ααωα=0 and ωααω+αααα=0. This finishes the proof.

    We give warmest thanks to Yunhe Sheng for helpful comments that improve the paper. This work is supported by National Natural Science Foundation of China (Grant No. 12001226).

    The authors declare there is no conflicts of interest.



    [1] Adamowicz W, Louviere J, Williams M (1994) Combining Revealed and Stated Preference Methods for Valuing Environmental Amenities. J Environ Econ Manage 26: 271-292. doi: 10.1006/jeem.1994.1017
    [2] Ball R (2006) International Financial Reporting Standards (IFRS): Pros and Cons for Investors. Accounting Bus Res 36: 5-27. doi: 10.1080/00014788.2006.9730040
    [3] Boden R, Froud J (1996) Obeying the rules: Accounting for regulatory compliance costs in the United Kingdom. Accounting Organ Society 21: 529-547. doi: 10.1016/0361-3682(95)00034-8
    [4] Bruggemann U, Hitz J, Sellhorn T (2013) Intended and Unintended Consequences of Mandatory IFRS Adoption: A Review of Extant Evidence and Suggestions for Future Research. Eur Accounting Rev 22: 1-37. doi: 10.1080/09638180.2012.718487
    [5] Cazavan-Jeny A, Jeanjean T, Joos P (2011) Accounting choice and future performance: The case of R & D accounting in France. J Accounting Public Policy 30: 145-165. doi: 10.1016/j.jaccpubpol.2010.09.016
    [6] Covaleski MA, Dirsmith MW (1990) Dialectic tension, double reflexivity and the everyday accounting researcher: on using qualitative methods. Accounting Organ Society 15: 543-573. doi: 10.1016/0361-3682(90)90034-R
    [7] Fields TD, Lys TZ, Vincent L (2001) Empirical research on accounting choice. J Accounting Econ 31: 255-307. doi: 10.1016/S0165-4101(01)00028-3
    [8] Graham JR, Harvey CR, Rajgopal S (2005) The economic implications of corporate financial reporting. J Accounting Econ 40: 3-73. doi: 10.1016/j.jacceco.2005.01.002
    [9] Haka SF (1987) Capital budgeting techniques and firm specific contingencies: a correlational analysis. Accounting Organ Society 12: 31-48. doi: 10.1016/0361-3682(87)90014-6
    [10] Hensher DA (1994) Stated Preference Analysis of Travel Choices: The State of Practice. Transportation 21: 107-133. doi: 10.1007/BF01098788
    [11] Holthausen RW (1990) Accounting method choice. J Accounting Econ 12: 207-218. doi: 10.1016/0165-4101(90)90047-8
    [12] Messier WF, Quick LA, Vandervelde SD (2014) The influence of process accountability and accounting standard type on auditor usage of a status quo heuristic. Accounting Organ Society 39: 59-74. doi: 10.1016/j.aos.2013.12.002
    [13] Power B, Reid GC (2018) Decision support for firm performance by real options analytics. Managerial Decis Econ 39: 56-64. doi: 10.1002/mde.2867
    [14] Reid GC, Smith JA (2007) Reporting in Small Firms. Financ Manage, 31-33.
    [15] Schipper K (2010) How Can We Measure the Costs and Benefits of Changes in Financial Reporting Standards? Accounting Bus Res 40: 309-327. doi: 10.1080/00014788.2010.9663406
    [16] Schlapfer F, Schmitt M, Roschewiz A (2008) Competitive Politics, Simplified Heuristics, and Preference for Public Goods. Ecol Econ 65: 574-589. doi: 10.1016/j.ecolecon.2007.08.008
  • NAR-03-02-007-s001.pdf
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2126) PDF downloads(138) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog