Research article Special Issues

Exponential decay of a first order linear Volterra equation

  • Received: 10 February 2020 Accepted: 04 March 2020 Published: 09 March 2020
  • We consider the linear Volterra equation of the first order in time $ \dot u(t)+\int_0^t g(s)A u(t-s) d s = 0 $ where $A$ is a positive bounded operator on a Hilbert space $H$. The exponential decay of the related energy is shown to occur, provided that the kernel $g$ is controlled by a negative exponential.

    Citation: Monica Conti, Filippo Dell'Oro, Vittorino Pata. Exponential decay of a first order linear Volterra equation[J]. Mathematics in Engineering, 2020, 2(3): 459-471. doi: 10.3934/mine.2020021

    Related Papers:

  • We consider the linear Volterra equation of the first order in time $ \dot u(t)+\int_0^t g(s)A u(t-s) d s = 0 $ where $A$ is a positive bounded operator on a Hilbert space $H$. The exponential decay of the related energy is shown to occur, provided that the kernel $g$ is controlled by a negative exponential.


    加载中


    [1] Aifantis EC (1980) On the problem of diffusion in solids. Acta Mech 37: 265-296. doi: 10.1007/BF01202949
    [2] Appleby JAD, Reynolds DW (2004) On necessary and sufficient conditions for exponential stability in linear Volterra integro-differential equations. J Integral Equ Appl 16: 221-240. doi: 10.1216/jiea/1181075283
    [3] Chepyzhov VV, Mainini E, Pata V (2006) Stability of abstract linear semigroups arising from heat conduction with memory. Asymptot Anal 50: 269-291.
    [4] Coleman BD, Gurtin ME (1967) Equipresence and constitutive equations for rigid heat conductors. Z Angew Math Phys 18: 199-208. doi: 10.1007/BF01596912
    [5] Conti M, Dell'Oro F, Pata V (2020) Nonclassical diffusion with memory lacking instantaneous damping. Commun Pure Appl Anal 19: 2035-2050. doi: 10.3934/cpaa.2020090
    [6] Conti M, Gatti S, Pata V (2008) Uniform decay properties of linear Volterra integro-differential equations. Math Mod Meth Appl Anal 18: 21-45. doi: 10.1142/S0218202508002590
    [7] Conti M, Marchini EM, Pata V (2013) Exponential stability for a class of linear hyperbolic equations with hereditary memory. Discrete Contin Dyn Syst Ser B 18: 1555-1565.
    [8] Conti M, Marchini EM, Pata V (2015) Nonclassical diffusion with memory. Math Method Appl Sci 38: 948-958. doi: 10.1002/mma.3120
    [9] Conti M, Pata V, Squassina M (2006) Singular limit of differential systems with memory. Indiana Univ Math J 55: 169-216. doi: 10.1512/iumj.2006.55.2661
    [10] Dafermos CM (1970) Asymptotic stability in viscoelasticity. Arch Ration Mech Anal 37: 554-569.
    [11] Fabrizio M, Lazzari B (1991) On the existence and asymptotic stability of solutions for linear viscoelastic solids. Arch Ration Mech Anal 116: 139-152. doi: 10.1007/BF00375589
    [12] Gatti S, Miranville A, Pata V, et al. (2008) Attractors for semi-linear equations of viscoelasticity with very low dissipation. Rocky Mountain J Math 38: 1117-1138. doi: 10.1216/RMJ-2008-38-4-1117
    [13] Giorgi C, Naso MG, Pata V (2001) Exponential stability in linear heat conduction with memory: A semigroup approach. Commun Appl Anal 5: 121-134.
    [14] Grabmüller H (1977) On linear theory of heat conduction in materials with memory. Proc Roy Soc Edinburgh Sect A 76: 119-137. doi: 10.1017/S0308210500013937
    [15] Gurtin ME, Pipkin AC (1968) A general theory of heat conduction with finite wave speed. Arch Ration Mech Anal 31: 113-126. doi: 10.1007/BF00281373
    [16] Jäckle J (1990) Heat conduction and relaxation in liquids of high viscosity. Phys A 162: 377-404. doi: 10.1016/0378-4371(90)90424-Q
    [17] Liu L, Zheng S (1999) Semigroups Associated with Dissipative Systems, Boca Raton: CRC Press.
    [18] Londen SO, Nohel JA (1984) Nonlinear Volterra integrodifferential equation occurring in heat flow. J Integral Equations 6: 11-50.
    [19] Mainini E, Mola G (2009) Exponential and polynomial decay for first order linear Volterra evolution equations. Quart Appl Math 67: 93-111. doi: 10.1090/S0033-569X-09-01145-X
    [20] Miller RK (1978) An integrodifferential equation for rigid heat conductors with memory. J Math Anal Appl 66: 313-332. doi: 10.1016/0022-247X(78)90234-2
    [21] Muñoz Rivera JE (1994) Asymptotic behaviour in linear viscoelasticity. Quart Appl Math 52: 629-648.
    [22] Murakami S (1991) Exponential asymptotic stability for scalar linear Volterra equations. Differ Integral Equ 4: 519-525.
    [23] Nunziato JW (1971) On heat conduction in materials with memory. Quart Appl Math 29: 187-204. doi: 10.1090/qam/295683
    [24] Pata V (2006) Exponential stability in linear viscoelasticity. Quart Appl Math 64: 499-513. doi: 10.1090/S0033-569X-06-01010-4
    [25] Pata V (2009) Stability and exponential stability in linear viscoelasticity. Milan J Math 77: 333-360. doi: 10.1007/s00032-009-0098-3
    [26] Sun C, Wang S, Zhong C (2007) Global attractors for a nonclassical diffusion equation. Acta Math Sin Engl Ser 23: 1271-1280. doi: 10.1007/s10114-005-0909-6
    [27] Sun C, Yang M (2008) Dynamics of the nonclassical diffusion equations. Asymptot Anal 59: 51-81. doi: 10.3233/ASY-2008-0886
    [28] Wang S, Li D, Zhong C (2006) On the dynamics of a class of nonclassical parabolic equations. J Math Anal Appl 317: 565-582. doi: 10.1016/j.jmaa.2005.06.094
    [29] Wang X, Yang L, Zhong C (2010) Attractors for the nonclassical diffusion equation with fading memory. J Math Anal Appl 362: 327-337. doi: 10.1016/j.jmaa.2009.09.029
    [30] Wang X, Zhong C (2009) Attractors for the non-autonomous nonclassical diffusion equation with fading memory. Nonlinear Anal 71: 5733-5746. doi: 10.1016/j.na.2009.05.001
    [31] Xiao Y (2002) Attractors for a nonclassical diffusion equation. Acta Math Sin Engl Ser 18: 273-276. doi: 10.1007/s102550200026
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3108) PDF downloads(401) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog