Citation: María Ángeles García-Ferrero, Angkana Rüland. Strong unique continuation for the higher order fractional Laplacian[J]. Mathematics in Engineering, 2019, 1(4): 715-774. doi: 10.3934/mine.2019.4.715
[1] | Chang SYA, Gonzalez MdM (2011) Fractional Laplacian in conformal geometry. Adv Math 226: 1410–1432. doi: 10.1016/j.aim.2010.07.016 |
[2] | Graham CR, Zworski M (2003) Scattering matrix in conformal geometry. Invent Math 152: 89–118. doi: 10.1007/s00222-002-0268-1 |
[3] | Schild B (1984) A regularity result for polyharmonic variational inequalities with thin obstacles. Ann Scuola Norm-Sci 11: 87–122. |
[4] | Caffarelli LA, Friedman A (1979) The obstacle problem for the biharmonic operator. Ann Scuola Norm-Sci 6: 151–184. |
[5] | Antil H, Khatri R, Warma M (2018) External optimal control of nonlocal PDEs. arXiv preprint arXiv:1811.04515. |
[6] | Biccari U, Hernández-Santamarıa V (2017) Controllability of a one-dimensional fractional heat equation: Theoretical and numerical aspects. hal-01562358v2. |
[7] | Ghosh T, Salo M, Uhlmann G (2016) The Calderón problem for the fractional Schrödinger equation. Anal PDE, in press. |
[8] | Ghosh T, Rüland A, Salo M, et al. (2018) Uniqueness and reconstruction for the fractional Calderón problem with a single measurement. arXiv preprint arXiv:1801.04449. |
[9] | Rüland A, Salo M (2017) The fractional Calderón problem: Low regularity and stability. Nonlinear Anal, in press. |
[10] | Rüland A (2015) Unique continuation for fractional Schrödinger equations with rough potentials. Commun Part Diff Eq 40: 77–114. doi: 10.1080/03605302.2014.905594 |
[11] | Yu H (2017) Unique continuation for fractional orders of elliptic equations. Ann PDE 3: 16. doi: 10.1007/s40818-017-0033-9 |
[12] | Colombini F, Koch H (2010) Strong unique continuation for products of elliptic operators of second order. Trans Am Math Soc 362: 345–355. |
[13] | Koch H, Tataru D (2001) Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients. Commun Pure Appl Math 54: 339–360. doi: 10.1002/1097-0312(200103)54:3<339::AID-CPA3>3.0.CO;2-D |
[14] | Caffarelli LA, Stinga PR (2016) Fractional elliptic equations, Caccioppoli estimates and regularity. Ann Inst H Poincaré Anal Non Linéaire 33: 767–807. doi: 10.1016/j.anihpc.2015.01.004 |
[15] | Yang R (2013) On higher order extensions for the fractional Laplacian. arXiv preprint arXiv:1302.4413. |
[16] | Miller K (1974) Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint divergence form with Hölder continuous coefficients. Arch Ration Mech Anal 54: 105–117. doi: 10.1007/BF00247634 |
[17] | Mandache N (1998) On a counterexample concerning unique continuation for elliptic equations in divergence form. Math Phys Anal Geom 1: 273–292. doi: 10.1023/A:1009745125885 |
[18] | Seo I (2014) On unique continuation for Schrödinger operators of fractional and higher orders. Math Nachr 5: 699–703. |
[19] | Fall MM, Felli V (2014) Unique continuation property and local asymptotics of solutions to fractional elliptic equations. Commun Part Diff Eq 39: 354–397. doi: 10.1080/03605302.2013.825918 |
[20] | Caffarelli L,Silvestre L (2007) An extension problem related to the fractional Laplacian. Commun Partial Diff Eq 32: 1245–1260. doi: 10.1080/03605300600987306 |
[21] | Roncal L, Stinga PR (2016) Fractional Laplacian on the torus. Commun Contemp Math 18: 1550033. doi: 10.1142/S0219199715500339 |
[22] | Felli V, Ferrero A (2018) Unique continuation and classification of blow-up profiles for elliptic systems with Neumann boundary coupling and applications to higher order fractional equations. arXiv preprint arXiv:1810.10765. |
[23] | Felli V, Ferrero A (2018) Unique continuation principles for a higher order fractional Laplace equation. arXiv preprint arXiv:1809.09496. |
[24] | Grubb G (2015) Fractional Laplacians on domains, a development of Hörmander's theory of µ-transmission pseudodifferential operators. Adv Math 268: 478–528. doi: 10.1016/j.aim.2014.09.018 |
[25] | Koch H, Rüland A, Shi W (2016) Higher regularity for the fractional thin obstacle problem. arXiv preprint arXiv:1605.06662. |
[26] | Verch R (1993) Antilocality and a Reeh-Schlieder theorem on manifolds. Lett Math Phys 28: 143–154. doi: 10.1007/BF00750307 |
[27] | Ghosh T, Lin YH, Xiao J (2017) The Calderón problem for variable coefficients nonlocal elliptic operators. Commun Part Diff Eq 42: 1923–1961. doi: 10.1080/03605302.2017.1390681 |
[28] | Rüland A, Salo M (2017) Quantitative approximation properties for the fractional heat equation. Maths Control Rel Fields, in press. |
[29] | Dipierro S, Savin O, Valdinoci E (2014) All functions are locally s-harmonic up to a small error. arXiv preprint arXiv:1404.3652. |
[30] | Carbotti A, Dipierro S, Valdinoci E (2018) Local density of Caputo-stationary functions of any order. Complex Var Elliptic 1–24. |
[31] | Carbotti A, Dipierro S, Valdinoci E (2018) Local density of solutions of time and space fractional equations. arXiv preprint arXiv:1810.08448. |
[32] | Dipierro S, Savin O, Valdinoci E (2019) Local approximation of arbitrary functions by solutions of nonlocal equations. J Geom Anal 29: 1428–1455. doi: 10.1007/s12220-018-0045-z |
[33] | Krylov NV (2018) On the paper "All functions are locally s-harmonic up to a small error" by Dipierro, Savin and Valdinoci. arXiv preprint arXiv:1810.07648. |
[34] | Rüland A (2017) Quantitative invertibility and approximation for the truncated Hilbert and Riesz transforms. Rev Mat Iberoam, in press. |
[35] | Rüland A (2017) On quantitative unique continuation properties of fractional Schrödinger equations: Doubling, vanishing order and nodal domain estimates. Trans Am Math Soc 369: 2311–2362. |
[36] | Koch H, Rüland A, Shi W (2016) The variable coefficient thin obstacle problem: Carleman inequalities. Adv Math 301: 820–866. doi: 10.1016/j.aim.2016.06.023 |
[37] | Rüland A, Wang JN (2018) On the fractional Landis conjecture. J Funct Anal, in press. |
[38] | Adolfsson V, Escauriaza L, Kenig C (1995) Convex domains and unique continuation at the boundary. Rev Mat Iberoam 11: 513–525. |
[39] | Riesz M (1938). Intégrales de Riemann-Liouville et potentiels. Acta Sci Math Szeged 9: 1–42. |
[40] | Isakov V (1990) Inverse Source Problems. American Mathematical Soc. |
[41] | Bellassoued M, Le Rousseau J (2015) Carleman estimates for elliptic operators with complex coefficients. Part I: Boundary value problems. J Math Pures Appl 104: 657–728. |
[42] | Stinga PR, Torrea JL (2010) Extension problem and Harnack's inequality for some fractional operators. Commun Part Diff Eq 35: 2092–2122. doi: 10.1080/03605301003735680 |
[43] | Goodman J, Spector D (2018) Some remarks on boundary operators of Bessel extensions. Discrete Cont Dyn-S 11: 493–509. |
[44] | Kwaśnicki M, Mucha J (2018) Extension technique for complete Bernstein functions of the Laplace operator. J Evol Equ 18: 1341–1379. doi: 10.1007/s00028-018-0444-4 |
[45] | Lin FH, Wang L (1998) A class of fully nonlinear elliptic equations with singularity at the boundary. J Geom Anal 8: 583–598. doi: 10.1007/BF02921713 |
[46] | Abramowitz M,Stegun IA (1965) Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables vol. 55. Courier Corporation. |
[47] | Olver FWJ (2010) NIST Handbook of Mathematical Functions Hardback and CD-ROM. Cambridge University Press. |