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Abstract: In this article we study the strong unique continuation property for solutions of higher
order (variable coefficient) fractional Schrödinger operators. We deduce the strong unique continuation
property in the presence of subcritical and critical Hardy type potentials. In the same setting,
we address the unique continuation property from measurable sets of positive Lebesgue measure.
As applications we prove the antilocality of the higher order fractional Laplacian and Runge type
approximation theorems which have recently been exploited in the context of nonlocal Calderón type
problems. As our main tools, we rely on the characterisation of the higher order fractional Laplacian
through a generalised Caffarelli-Silvestre type extension problem and on adapted, iterated Carleman
estimates.
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1. Introduction

Higher order local and nonlocal elliptic equations arise naturally in problems from conformal
geometry and scattering theory [1, 2], (nonlinear) higher order elliptic PDEs and free boundary value
problems [3, 4], control theory [5, 6] and inverse problems [7–9]. Motivated by these applications, in
this article we study the strong unique continuation property for higher order fractional Schrödinger
equations. More precisely, here we are concerned with equations of the form

(−∆)γu + qu = 0 in Rn, (1.1)
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where γ ∈ R+\Nwith suitable, possibly singular (critical and subcritical) potentials q. Here we say that
a solution u to (1.1) satisfies the strong unique continuation property if the condition that u vanishes of
infinite order at a point x0 ∈ R

n, i.e., if for all m ∈ N

lim
r→0

r−m‖u‖2L2(Br(x0)) = 0,

already implies that u ≡ 0 in Rn. The strong unique continuation property can hence be viewed as a
generalisation of analyticity to rougher equations.

Apart from dealing with the model setting of equation (1.1), we also address the corresponding
differential inequalities and the setting of variable coefficient fractional Schrödinger operators with
coefficients which might be only of low regularity. This provides new proofs for the results from [10]
and [11], where respectively C2 and C0,1 regular coefficients had been treated in the case γ ∈ (0, 1),
and extends appropriately adapted versions of these low regularity results to higher order equations.
Further, we discuss possible applications of the unique continuation results to inverse and control
theoretic problems.

1.1. Main results on the strong unique continuation property

Let us outline our main results: As a model situation we deal with the strong unique continuation
property (SUCP) for Schrödinger equations of the form (1.1). Without loss of generality, here we
normalise our set-up such that x0 = 0.

Theorem 1 (SUCP). Let γ ∈ R+ \ N and let u ∈ H2γ(Rn) be a solution to (1.1), where the potential q
satisfies the following bounds

|q(x)| ≤


Cq|x|−2γ, if γ > 1

2 ,

c0|x|−2γ, if γ = 1
2 ,

Cq|x|−2γ+ε , if γ ∈ ( 1
4 ,

1
2 ).

Here c0 > 0 is a sufficiently small constant, and Cq > 0 is an arbitrarily large, finite constant. Assume
that u vanishes of infinite order at x0 = 0, i.e., for all m ∈ N

lim
r→0

r−m‖u‖2L2(Br(0)) = 0.

Then u ≡ 0 in Rn.

Remark 1.1. We remark that the limitation of the result to γ > 1
4 arises naturally and was already

present in [10]: Relying on Carleman estimates with weights which only have a radial dependence, we
do not directly obtain positive boundary contributions but have to derive these through boundary-bulk
interpolation estimates (see Lemma 2.2). With respect to bulk estimates, L2 Carleman estimates are
however subelliptic in the large parameter τ. Through the boundary-bulk estimates this is propagated
to the boundary which is then reflected in the loss of a quarter derivative in τ on the boundary. In
the case that one only considers radial Carleman weights this loss seems unavoidable. In order to
extend the unique continuation results to the regime γ ∈ (0, 1

4 ) in a setting where only radial Carleman
weights are used, the loss in τ has thus to be compensated by regularity of the potential (see [10] for
corresponding results). In this case the lower order contributions would be included in the main part
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of the operator in the Carleman estimates (this then allows one to treat exact Hardy type potentials,
but any type of perturbation of such potentials will need to obey regularity assumptions).

One could hope to avoid this loss of derivatives by considering Carleman weights which are not
only of a radial structure but also depend on the normal directions. However, due to the weighted form
of the inequalities, the exact Lopatinskii type conditions necessary for this are not immediate. We do
not pursue this further in this article but postpone this to future work.

Remark 1.2. It would also have been possible to treat additional nonlinear terms in the the equations.
As we are mainly interested in the associated differential inequalities, we do not consider them here.

Motivated by the work on the strong unique continuation properties on higher order elliptic
equations (see [12] and the references therein), it is natural to wonder whether it is possible to extend
the unique continuation property to (Hardy type higher) gradient potentials. Using iterative
applications of our main Carleman estimate, we note that this is indeed the case:

Theorem 2 (SUCP with gradient potentials). Let γ ∈ R+ \N and let u ∈ H2γ(Rn) be a weak solution to
the differential inequality

|(−∆)γu(x)| ≤
bγc∑
j=0

|q j(x)||∇ ju(x)| in Rn,

where the potentials q j satisfy the following bounds

|q j(x)| ≤ Cq j |x|
−2γ+ j if j < bγc,

|qbγc(x)| ≤


Cqbγc |x|

−2γ+bγc, if γ − bγc > 1
2 ,

c0|x|−2γ+ j, if γ − bγc = 1
2 ,

Cqbγc |x|
−2γ+bγc+ε , if

{
γ ∈ (1

4 ,
1
2 ),

bγc ≥ 1 and γ − bγc ∈ (0, 1
2 ),

Here c0 > 0 is a sufficiently small constant, and Cq j > 0 are arbitrarily large, finite constants. Assume
that u vanishes of infinite order at x0 = 0. Then u ≡ 0 in Rn.

Remark 1.3. As in [12] it would have been possible to extend this result even further to (slightly
subcritical) gradient potentials involving also contributions |q j(x)||∇ ju(x)| with j ∈ (bγc, 3

2bγc). As this
requires some extra care, we do not present the details of this here but refer to the ideas in [12].

Further, relying on the methods from [10, 13] as well as the spliting argument from [8], we also
address the case with variable coefficient metrics and study the unique continuation properties at a
point x0 ∈ R

n. In the sequel, without loss of generality, we will normalise our set-up such that x0 = 0.
Under this assumption, we consider the operator

L = −∇ · ã∇

for Lipschitz metrics with the following structural conditions:

(A1) ã : Rn → Rn×n is symmetric, (strictly) positive definite, bounded.
(A2) ã ∈ Cµ,1

loc (Rn,Rn×n
sym) with [ãi j]Ċµ,1(B′4) + [ãi j]Ċ0,1(B′4) � δ, where B′4 := {x ∈ Rn : |x| ≤ 4}, for some

small parameter δ > 0. The constant µ > 0 is specified below.

Mathematics in Engineering Volume 1, Issue 4, 715–774.



718

(A3) We assume that ãi j(0) = δi j.

For this class of coefficients, we can prove the analogue of Theorem 2:

Theorem 3 (SUCP with variable coefficients). Let γ ∈ R+ \ N and let u ∈ Dom(Lγ) be a solution to

|(−∇ · ã∇)γu(x)| ≤
bγc∑
j=0

|q j(x)||∇ ju(x)| in Rn, (1.2)

where

• the metric ã satisfies the conditions (A1)–(A3) with µ = 2bγc,
• the potentials q j satisfy the following bounds

|q j(x)| ≤ Cq j |x|
−2γ+ j if j < bγc,

|qbγc(x)| ≤


Cqbγc |x|

−2γ+bγc, if γ − bγc > 1
2 ,

c0|x|−2γ+ j, if γ − bγc = 1
2 ,

Cqbγc |x|
−2γ+bγc+ε , if

{
γ ∈ ( 1

4 ,
1
2 ),

bγc ≥ 1 and γ − bγc ∈ (0, 1
2 ),

where c0 > 0 is a sufficiently small constant, and Cq j > 0 are arbitrarily large, finite constants.

Then the strong unique continuation property holds at x0 = 0, i.e., if u vanishes of infinite order at
x0 = 0, then u ≡ 0 in Rn.

Remark 1.4. As explained in the Appendix (Section A.2), we interpret the variable coefficient
fractional Laplacian through its spectral decomposition as directly related to a generalised
Caffarelli-Silvestre extension. Relying on spectral theory in order to establish this, we restrict to
functions u ∈ Dom(Lγ). Using ideas as outlined in [14] and [15], it would also have been possible to
lower the required regularity of u in this discussion.

Remark 1.5. Based on counterexamples to the weak unique continuation property with metrics of any
C0,α Hölder regularity with α ∈ (0, 1) due to Miller [16] and Mandache [17], it is expected that the
coefficient regularity stated in condition (A2) in our variable coefficient strong unique continuation
result is optimal in the case bγc = 0. This strengthens the results from [10, Section 7] and [11].

The condition (A3) is to be read as a normalisation condition which can be assumed without loss
of generality. We remark that condition (A2) together with interpolation estimates implies that
[ai j]Ċ`,1(B′4) ≤ C̃δ for any ` ∈ {1, . . . , µ}.

In both the settings of Theorems 1 and 3 also the unique continuation property from measurable
sets (MUCP) holds:

Theorem 4 (MUCP). Let γ ∈ R+ \ N and let u ∈ Dom(Lγ) be a solution to

|(−∇ · ã∇)γu(x)| ≤ |q(x)||u(x)| in Rn, (1.3)

where ãi j satisfies the conditions (A1)–(A3) with µ = 2bγc and q ∈ L∞(Rn). If there exists a measurable
set E ⊂ Rn with |E| > 0 and density one at x0 = 0 such that u|E = 0, then u ≡ 0 in Rn.
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Let us comment on the results of Theorems 1–4 in the context of the literature on fractional
Schrödinger equations: The weak unique continuation property, i.e., the question whether for
solutions u of (1.1) the condition that u = 0 on an open set in Rn already implies that u ≡ 0 in the
whole of Rn is rather well understood for constant coefficient fractional Schrödinger equations, even
for potentials in very rough, non-L2-based function spaces (see [18]). In contrast, the understanding of
the strong unique continuation properties of solutions to (higher order) fractional Schrödinger
equations is still much less developed (for non-fractional higher order Schrödinger operators we refer
to [12] and the references therein). The main known results are here given in the regime γ ∈ (0, 1) and
can be summarised as the following statements:

• Strong unique continuation for constant coefficient fractional Schrödinger equations with
essentially L∞ potentials. In the regime γ ∈ (0, 1) the articles [10, 19] deal with the strong unique
continuation property for L∞ as well as “Hardy type” critical and subcritical potentials. Both
results crucially exploit the possibility of rephrasing the fractional Schrödinger operator in terms
of the Caffarelli-Silvestre extension (see [20]), i.e., in terms of a (degenerate)
Dirichlet-to-Neumann map associated with a (degenerate) elliptic, local equation in the upper
half-plane. Technically, this allowed the authors of [19] to rely on frequency function methods
for local equations, while, similarly, the key tool in [10] consisted of several Carleman
inequalities for the Caffarelli-Silvestre extension.
• Unique continuation property from measurable sets. Relying on the arguments from [10,19] also

unique continuation results from measureable sets can be proved in the regime γ ∈ (0, 1). Indeed,
in [19] this is formulated as one of the main results. For rougher equations this is deduced in [8]
based on variants of the Carleman estimates from [10].
• Variable coefficient operators. Using more refined frequency function or Carleman estimates, also

the case of variable coefficient fractional Schrödinger equations has been treated in [10, Section
7] (C2 regular coefficients) and in [11] (Lipschitz regular coefficients).

In contrast, the situation for higher order fractional Schrödinger operators is much less studied. Here
the main known properties are:

• Representation of the equation through a Caffarelli-Silvestre type extension problem. In [15] and
in [1] and later also in [21] it was observed that the higher order fractional Laplacian can be
realised as a Dirichlet-to-Neumann map of a Caffarelli-Silvestre type extension problem. This
can either take the form of a scalar equation (however with a weight which is no longer in the
Muckenhoupt class) or a system of Caffarelli-Silvestre extensions.
• Strong unique continuation for fractional harmonic functions. Exploiting the systems

characterisation from [15], Yang also sketches the proof of the strong unique continuation
property for fractional harmonic functions based on frequency function methods for systems of
equations. In the regime γ ∈ (1, 2) this was further detailed in [22], where the authors also
obtained precise asymptotics of the solutions under consideration.
• Strong unique continuation for fractional Schrödinger equations. In the case γ = 3

2 the strong
unique continuation property for Schrödinger equations with Hardy type potentials was recently
proved in [23]. In this context, the regime γ = 3

2 is special, since the degeneracy of the problem
disappears and the result can be viewed as a boundary unique continuation result for the
Bilaplacian. The authors again rely on frequency function methods.
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In contrast, in this article we study Carleman estimates to deduce the desired unique continuation
property. Also relying on the systems Caffarelli-Silvestre extension of the higher order fractional
Laplacian (which is recalled in the Appendix), we view the various unique continuation properties from
above as boundary unique continuation results. In order to deduce these, we hence derive Carleman
estimates for the associated systems. This is inspired by the work in [12] in which unique continuation
in the interior is discussed for higher order equations (or equivalently systems). As in [10] we combine
these Carleman estimates with careful compactness and blow-up arguments.

We emphasise that the results from Theorems 1–4 improve significantly on the known strong unique
continuation results for the fractional Laplacian by for instance including (Hardy type) potentials and
variable coefficients of low regularity. The strength of these aspects are even novel for the regime
γ ∈ (0, 1).

Remark 1.6. Using a characterisation of the higher order fractional Laplacian through a system and
a bootstrap argument, for ai j = δi j we here impose H2γ regularity on the solutions to the equations at
hand. We remark that even in the setting of fractional Schrödinger equations in bounded domains, it
would be possible to apply our arguments: Indeed, starting from Hγ solutions, it would be possible to
bootstrap the regularity properties of the solutions by means of the estimates in [24] (away from the
boundary).

We however emphasise that by pseudolocality of the fractional Laplacian our results could also
be formulated under only local regularity assumptions: Assuming that we had a weak notion of a
generalised Caffarelli-Silvestre extension (which is the case for any Hr(Rn), r ∈ R, boundary datum,
see Section A.1) as well as only local H2γ(B′1) regularity for u, it would have been possible to invoke
our unique continuation arguments. We refer to Proposition 1.9 and Remark 1.10 for more on this.

1.2. Main ideas

Approaching the problem by means of the generalised systems Caffarelli-Silvestre extension, our
arguments for unique continuation rely on several Carleman estimates for the localised equation in
combination with a careful blow-up analysis. To this end, we rely on similar ideas as in [8, 10].

A crucial technical tool thus is the derivation of higher order Carleman estimates, which we address
by iteration of second order estimates. As a consequence, we obtain the following bounds:

Proposition 1.7. Let m ∈ N ∪ {0} and b ∈ (−1, 1). Let a ∈ C2m,1(B+
4 ,R

(n+1)×(n+1)) ∩C0,1(B+
4 ,R

(n+1)×(n+1))
be of a block form

a(x) =

(
ã(x′) 0

0 1

)
, (1.4)

where the metric ã satisfies the conditions (A1)–(A3) from above with µ = 2m. Assume that ũ0, . . . , ũm ∈

H1(B+
4 , x

b
n+1) with supp(ũ j) ⊂ B+

4 \ {0}, j ∈ {0, . . . ,m}, are solutions to the bulk system

x−b
n+1∇ · x

b
n+1a∇ũ0 = ũ1 + f0,

x−b
n+1∇ · x

b
n+1a∇ũ1 = ũ2 + f1,

...

x−b
n+1∇ · x

b
n+1a∇ũm = fm,

(1.5)
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in B+
4 with f0, . . . , fm ∈ H1(B+

4 , x
b
n+1). Further suppose that on B′4 we have

lim
xn+1→0

xb
n+1∂n+1ũ j = 0 for j ∈ {0, . . . ,m − 1},

lim
xn+1→0

xb
n+1∂n+1ũm = g,

lim
xn+1→0

ũ0 = u,

(1.6)

where all limits are considered with respect to the L2 topology. Then, there exists τ0 > 1 such that for
all τ > τ0 there is a weight h such that

τm+ 1−b
2 ‖eh(− ln(|x|))(1 + h)

m+1
2 |x|−2m+ b−1

2 ũ0‖L2(B′4)

+

m∑
j=0

(
τm+1− j‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m+1− j
2 |x|−2m−1+2 jũ j‖L2(B+

4 )

+ τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇ũ j‖L2(B+

4 )

)
≤ C

( m∑
j=0

τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m− j
2 |x|−2m+1+2 j f j‖L2(B+

4 )

+ τ
1+b

2 ‖eh(− ln(|x|))|x|
1−b

2 g‖L2(B′4)

)
.

(1.7)

Here h(x) := h′′(t)|t=− ln(|x|).

This estimate improves previous results even in the case m = 0 by allowing for only Lipschitz
continuous metrics a. It includes strengthened bounds which exploit the spectral gap of the fractional
Laplacian on the sphere with Neumann (or Dirichlet) conditions (see the Appendix A, Section 8.3
in [25] for these spectral gap properties). A relevant ingredient in the derivation of this Carleman
estimate involves the use of a splitting technique in a similar way as in [8].

Estimating the commutators, the bounds from Proposition 1.7 can be further improved to include
higher order tangential derivatives on the left hand side of (1.7):

Proposition 1.8. Let m ∈ N∪{0}, b ∈ (−1, 1) and a : Rn+1
+ → R(n+1)×(n+1) as in Proposition 1.7. Assume

that ũ0, . . . , ũm ∈ H1(B+
4 , x

b
n+1) with supp(ũ j) ⊂ B+

4 \ {0}, j ∈ {0, . . . ,m}, are solutions to the bulk system
(1.5) in B+

4 with f j ∈ Hm− j(B+
4 , x

b
n+1) for j ∈ {0, . . . ,m}. Further suppose that on B′4 the boundary

conditions (1.6) hold, where all limits are considered with respect to the L2 topology. Then, there exists
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τ0 > 1 such that for all τ > τ0 there is a weight h such that

m∑
j=0

τm− j+ 1−b
2 ‖eh(− ln(|x|))(1 + h)

m+1
2 |x|−2m+ j+ b−1

2 (∇′) jũ0‖L2(B′4)

+

m∑
j=0

j∑
k=0

(
τm+1− j‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m+1−k
2 |x|−2m−1+ j+k(∇′) j−kũk‖L2(B+

4 )

+ τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1−k
2 |x|−2m+ j+k∇(∇′) j−kũk‖L2(B+

4 )

)
≤ C

( m∑
j=0

j∑
k=0

τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m−k
2 |x|−2m+1+ j+k(∇′) j−k fk‖L2(B+

4 )

+ τ
1+b

2 ‖eh(− ln(|x|))|x|
1−b

2 g‖L2(B′4)

)
.

(1.8)

Here h(x) := h′′(t)|t=− ln(|x|).

It is in this form that we exploit the Carleman estimates to infer our main results.

1.3. Applications of the unique continuation results

Motivated by the recent introduction of the fractional Calderón problem [7–9], we here discuss
applications of our unique continuation results in inverse problems. As a first main property, we deduce
the antilocality of the higher order fractional Laplacian:

Proposition 1.9 (Antilocality). Let γ ∈ R+ \ N and let L = −∇ · ã∇, where ã satisfies the conditions
(A1)–(A3) from above with µ = 2bγc. Let u ∈ Dom(Lγ). Assume that for some open set W ⊂ Rn

containing the (n-dimensional) unit ball B1 ⊂ R
n we have

u = 0 and Lγu = 0 in W.

Then, u ≡ 0 in Rn.

We emphasise that in this result the function u is not assumed to satisfy any equation globally.
This result thus provides a strong global rigidity property in which the nonlocality of the equation
under consideration plays a major role. Originally, the notion of antilocality appeared in the context of
quantum field theory as the Reeh-Schlieder theorem [26], but has recently found various applications
in inverse problems [7–9, 27, 28] and control theory [5, 6].

Remark 1.10. We remark that a result of the form stated in Proposition 1.9 also holds in a large range
of less regular spaces. The only ingredient needed is the presence of a Caffarelli-Silvestre extension at
the given regularity (but this holds under very weak assumptions, see Proposition A.6 in the constant
coefficient setting). The pseudolocality of the associated operators then allows one to locally deduce
the vanishing of u from which it is possible to propagate the deduced information to an arbitrary point
through the upper half plane (in which the extension problem is formulated).

As a property dual to the antilocality of the higher order fractional Laplacian, we further obtain
approximation properties for these operators:
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Proposition 1.11 (Runge approximation). Let Ω ⊂ Rn be open, bounded and non-empty and let Ω̃ ⊂ Rn

be open with Ω ⊂ Ω̃ and B′1 ⊂ Ω̃ \Ω. Let v ∈ Hγ(Ω) with γ ∈ R+ \N. Assume that L = −∇ · ã∇, where
ã satisfies the conditions (A1)–(A3) from above with µ = 2bγc. Suppose that q ∈ L∞(Ω) is such that
zero is not a Dirichlet eigenvalue of the operator Lγ + q. Then, for any ε > 0 there exists a solution to

Lγu + qu = 0 in Ω, supp(u) ⊂ Ω̃,

such that ‖v − u‖L2(Ω) ≤ ε.

Remark 1.12. The assumptions on the sets W and Ω̃ \ Ω with respect to the unit ball B′1 = {x ∈
Rn : |x| < 1} are taken without loss of generality after normalising the set-up in such a way that the
assumptions (A2), (A3) on ã are satisfied.

These type of approximation properties again crucially exploit the nonlocality of the operator.
They were first observed in [29] and generalised to larger classes of equations in [28, 30–34]. As first
highlighted in [7] in the context of nonlocal inverse problems they play an important role in deducing
injectivity. In [9] these properties were strengthened to quantitative estimates which were applied in
proving stability of the associated inverse problem.

In addition to the rigidity and flexibility properties from Propositions 1.9 and 1.11, it is possible
to make use of our unique continuation results in many further contexts. As in [22, 23, 35] one could
for instance study the associated problems more quantitatively and derive vanishing order or nodal
domain estimates. Using Carleman estimates, one could here proceed similarly as in [36]. Also control
theoretic questions similar to for instance [6] could be addressed with our results. We postpone such a
discussion to future work.

1.4. Organisation of the article

The remainder of the article is organised as follows: After first recalling a number of auxiliary
results (including the generalised Caffarelli-Silvestre extension) in Section 2, in Section 3 we then
deduce the Carleman estimates which form the basis of our unique continuation results. In Section 4
we derive compactness results for the systems which are associated with the SUCP for fractional
Schrödinger operators. Here we reduce the SUCP to the weak unique continuation property (WUCP)
for the associated systems. This is complemented by a bootstrap argument to derive the WUCP in
Section 5. In Section 6 we combine all the previous results and deduce the statements of
Theorems 1–4 and Propositions 1.9 and 1.11. Finally, in the Appendix, we present a sketch of the
derivation of the generalised Caffarelli-Silvestre extension for the higher order fractional Laplacian
which had been introduced in [15] and which we here discuss at low regularity.

2. Auxiliary results

In this section we recall several auxiliary results that will be used frequently throughout the text:
On the one hand, we recall a higher order Caffarelli-Silvestre extension result. On the other hand, we
discuss appropriate boundary-bulk estimates.

2.1. Notation

We summarise the notation that we will use in the sequel:
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2.1.1. Sets

Working in Rn+1
+ := {x ∈ Rn+1 : xn+1 ≥ 0}, we will always use the convention that x = (x′, xn+1)

with x′ ∈ Rn and xn+1 ≥ 0. For x0 ∈ R
n × {0} we will denote (half) balls in Rn+1

+ and Rn × {0} by

B+
r (x0) = {x ∈ Rn+1

+ : |x − x0| ≤ r}, B′r(x0) = {x ∈ Rn × {0} : |x − x0| ≤ r}.

If x0 = 0, we will simply write B+
r and B′r.

In the sequel and in particular in the proofs of the Carleman inequalities, we will often use conformal
polar coordinates in the upper half space: x = e−tθ, where t = − ln(|x|) and θ = x

|x| . Here θ ∈ S n
+, where

S n
+ denotes the upper half (unit) sphere in Rn+1

+ .

2.1.2. Operators

We will frequently use the operator

Lb := x−b
n+1(∂xn+1 xb

n+1∂xn+1 − xb
n+1L), (2.1)

where L = −∇′ · ã∇′ and ã satisfies the conditions from (A1)–(A3) with µ = 2bγc. Usually, we will be
thinking of b = 1 − 2bγc + 2γ, where bt = max{k ∈ N : k ≤ t}.

We define the variable coefficient fractional Laplacian through functional calculus, see Section A.2.
The set Dom(Lγ) is then defined as the space in which this functional calculus can be directly applied.

In analogy to our convention for the space variables, we often use the notation

∇′, ∂′`, ` ∈ {1, . . . , n},

to denote the corresponding tangential gradient and partial derivatives.

2.1.3. Function spaces

Studying operators of the form (2.1), in the sequel, we will often work in function spaces of the
form

H1(Ω, xb
n+1) := {u : Ω→ R : ‖x

b
2
n+1u‖L2(Ω) + ‖x

b
2
n+1∇u‖L2(Ω) < ∞},

where Ω ⊂ Rn+1
+ is a relatively open set. Similarly, we also deal with the function spaces

Ḣ1(Ω, xb
n+1) := {u : Ω→ R : ‖x

b
2
n+1∇u‖L2(Ω) < ∞},

L2(Ω, xb
n+1) := {u : Ω→ R : ‖x

b
2
n+1u‖L2(Ω) < ∞}.

We denote the homogeneous Hölder norms by [·]Ċk,α(Ω) for k ∈ N ∪ {0}, α ∈ (0, 1) and Ω ⊂ Rn or
Ω ⊂ Rn+1

+ .
For a sequence {ak}k∈N ⊂ `

1, we set

‖ak‖`1 :=
∞∑

k=1

|ak|.
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2.2. The higher order fractional Laplacian

We first recall that the higher order fractional Laplacian can be interpreted by means of a Caffarelli-
Silvestre-type extension [1, 15, 20, 21]:

Proposition 2.1. Let γ > 0, f ∈ Dom(Lγ) and L := −∇′ ·ã∇′, where ã satisfies the conditions (A1)–(A3)
with µ = 2bγc. Then, there exists an extension operator

Eγ : Dom(Lγ)→ C2,1
loc(Rn × (0,∞)) ∩ H1

loc(R
n+1
+ , xb

n+1), f 7→ u := Eγ( f ),

such that u = Eγ( f ) is a weak solution to the scalar higher order problem

Lbγc+1
b u = 0 in Rn+1

+ ,

lim
xn+1→0

u = f on Rn × {0},

lim
xn+1→0

Lk
bu = cn,γ,kLk f on Rn × {0} for k ∈ {1, . . . , bγc},

lim
xn+1→0

x1−2γ+2bγc
n+1 ∂xn+1 Lbγcb u = cn,γLγ f on Rn × {0},

lim
xn+1→0

x1−2γ+2bγc
n+1 ∂xn+1 Lk

bu = 0 on Rn × {0} for k ∈ {0, · · ·, bγc − 1}.

(2.2)

Here Lb := x−b
n+1(∂xn+1 xb

n+1∂xn+1 + xb
n+1∇

′ · ã∇′) and b = 1 − 2bγc + 2γ. All boundary conditions in (2.2)
are attained as L2(Rn) limits.

Moreover, setting u0 := u and u j+1 = Lbu j for j ∈ {0, . . . , bγc − 1}, the functions u j are in C2,1(Rn ×

(0, 1)) ∩ H1
loc(R

n+1
+ , xb

n+1). They are weak solutions of the following system of second order equations

Lbum = 0 in Rn+1
+ ,

Lbu j = u j+1 in Rn+1
+ for j ∈ {0, . . . ,m − 1},

lim
xn+1→0

u j = cn,γ, jL j f on Rn × {0} for j ∈ {0, . . . ,m},

lim
xn+1→0

xb
n+1∂xn+1um = cn,γLγ f on Rn × {0},

lim
xn+1→0

xb
n+1∂xn+1u j = 0 on Rn × {0} for j ∈ {0, . . . ,m − 1},

(2.3)

where m = bγc. All boundary conditions hold in an L2(Rn) sense.

In order to keep our presentation self-contained, we provide a short sketch of the proof of this
statement in the Appendix.

Compared to the original nonlocal Eqs (1.1) and (1.2), the Eqs (2.2) and (2.3) arising from the
generalised Cafferelli-Silvestre extension have the advantage that they can be approached with tools
from the analysis of unique continuation properties of local elliptic equations. As in [10], [37] the
price to pay for this localisation is the introduction of the additional dimension in which the solutions
u have to be controlled through the corresponding equations. This gives our problem and our argument
the flavour of boundary unique continuation results (see for instance [38] and the references therein).

2.3. Boundary-bulk interpolation estimates

We recall the boundary-bulk interpolation inequality from [10] for fractional Sobolev spaces on the
sphere:
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Lemma 2.2. Let u : S n
+ → R and let b ∈ (−1, 1). Then, identifying ∂S n

+ with S n−1, there exists a
constant C > 0 such that for any τ > 1

‖u‖L2(S n−1) ≤ C(τ
1+b

2 ‖θ
b
2
n u‖L2(S n

+) + τ
b−1

2 ‖θ
b
2
n∇S nu‖L2(S n

+)).

Proof. The proof follows as in [37] by using the trace inequality in the associated weighted Sobolev
spaces. We discuss the details:

First, by the trace inequality, any function w ∈ H1(Rn+1
+ , xb

n+1) with b ∈ (−1, 1) satisfies

‖w‖L2(Rn) ≤ C(‖x
b
2
n+1w‖L2(Rn+1

+ ) + ‖x
b
2
n+1∇w‖L2(Rn+1

+ )). (2.4)

Indeed, for w ∈ C∞(Rn+1
+ ) with compact support in the tangential directions this follows from the

fundamental theorem of calculus: For t ∈ (0, 1)

|w(x′, 0) − w(x′, t)| =

∣∣∣∣∣∣∣∣
t∫

0

∂zw(x′, z)dz

∣∣∣∣∣∣∣∣ ≤
1∫

0

|∂zw(x′, z)|dz ≤

1∫
0

z−
b
2 z

b
2 |∂zw(x′, z)|dz

≤ Cb


1∫

0

zb|∂zw(x′, z)|2dz


1
2

,

where we used that b ∈ (−1, 1). Thus, applying the triangle inequality, integrating in t ∈ [0, 1] and
applying the Cauchy-Schwarz inequality, we infer

|w(x′, 0)| ≤ Cb‖x
b
2
n+1∂xn+1w(x′, ·)‖L2((0,1)) + ‖x−

b
2

n+1x
b
2
n+1w(x′, ·)‖L1((0,1))

≤ Cb

(
‖x

b
2
n+1∂xn+1w(x′, ·)‖L2((0,1)) + ‖x

b
2
n+1w(x′, ·)‖L2((0,1))

)
.

Taking squares and integrating in x′ ∈ Rn then yields

‖w‖2L2(Rn) ≤ Cb

(
‖x

b
2
n+1∂xn+1w‖

2
L2(Rn×(0,1)) + ‖x

b
2
n+1w‖2L2(Rn×(0,1))

)
≤ Cb

(
‖x

b
2
n+1∂xn+1w‖

2
L2(Rn+1

+ ) + ‖x
b
2
n+1w‖2L2(Rn+1

+ )

)
.

By density considerations, this concludes the proof of the trace estimate (2.4).
Rescaling (2.4), we then infer

‖w‖L2(Rn) ≤ C(τ
1+b

2 ‖x
b
2
n+1w‖L2(Rn+1

+ ) + τ
b−1

2 ‖x
b
2
n+1∇w‖L2(Rn+1

+ )).

Finally, we apply this to w(x) = η(|x|)u( x
|x| ), where η is a smooth, positive cut-off function supported on

B+
2 \ B+

1/2 and which is identically one on B+
3/2 \ B+

3/4. This yields the desired claim.

2.4. Caccioppoli inequality

We derive a Caccioppoli type inequality for tangential derivatives of a solution to a variable
coefficient equation associated with the operator Lb from above.
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Lemma 2.3. Let b ∈ (−1, 1) and a : B+
4 → R

(n+1)×(n+1) be of the block form (1.4) with ã satisfying the
conditions (A1)–(A3) with µ = 2m. Let u ∈ H1(B+

4 , x
b
n+1) be a solution to

x−b
n+1∇ · axb

n+1∇u = f in B+
4 ,

lim
xn+1→0

xb
n+1∂xn+1u = g on B′4,

with f , |∇′ f |, · · · , |(∇′)k f | ∈ L2(B+
4 , x

b
n+1) and g ∈ Hk(B′4) for some k ∈ N ∪ {0}. Then there exists a

constant C > 0 such that for any J ∈ N ∪ {0} with J ≤ min{2m, k} and for any r ∈ (0, 2)

J∑
j=0

r j‖x
b
2
n+1∇(∇′) ju‖L2(B+

r/2) ≤ C
J∑

j=0

(
r j−1‖x

b
2
n+1(∇′) ju‖L2(B+

r ) + r j+1‖x
b
2
n+1(∇′) j f ‖L2(B+

r )

+ r j
( ∫

B′r

|(∇′) jg||(∇′) ju|dx′
) 1

2
)
.

(2.5)

Proof. First of all we note that by scaling it suffices to prove the estimate for r = 1. Next, we observe
that by the block structure of the metric a for any j ∈ {1, . . . , 2m}

x−b
n+1∇ · axb

n+1∇(∇′) ju = (∇′) j(x−b
n+1∇ · axb

n+1∇u
)
−

j−1∑
k=0

∇′ · ((∇′) j−kã)∇′(∇′)ku,

provided that these expressions are j-times differentiable in the tangential directions. Hence, formally
(∇′) ju is a weak solution to

Lb(∇′) ju = (∇′) j f −
j−1∑
k=0

∇′ · ((∇′) j−kã)∇′(∇′)ku in B+
3 ,

lim
xn+1→0

xb
n+1∂xn+1(∇

′) ju = (∇′) jg on B′3,

Using difference quotient arguments together with the regularity of f and g, these formal
differentiations in the tangential directions can be justified. As a consequence, elliptic regularity
implies that (∇′) ju ∈ H1(B+

3 , x
b
n+1). In particular, for any test function ϕ it holds∫

B+
1

xb
n+1∇ϕ · a∇(∇′) judx = −

∫
B+

1

xb
n+1ϕ(∇′) j f dx −

j−1∑
k=0

∫
B+

1

xb
n+1∇

′ϕ · ((∇′) j−kã)∇′(∇′)kudx

+

∫
B′1

ϕ(∇′) jgdx′.

Let η be a radial cut-off function equal to one on B+
1/2 which vanishes outside of B+

1 and satisfies
|∇η| ≤ C. We remark that the function ϕ = η2(∇′) ju is an admissible test function since by the above
considerations as an H1(B+

1 , x
b
n+1) function it is sufficiently regular. Using that by condition (A2) it

holds |(∇′)αã(x)| ≤ Cα for x ∈ B+
4 and |α| ≤ 2m, we obtain the following estimate

‖x
b
2
n+1η∇(∇′) ju‖2L2(B+

1 ) ≤ C
( ∫

B+
1

xb
n+1η|∇(∇′) ju||∇η||(∇′) ju|dx +

∫
B+

1

xb
n+1η

2|(∇′) ju||(∇′) j f |dx
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+

j−1∑
k=0

∫
B+

1

xb
n+1

(
η2|∇(∇′) ju| + η|∇η||(∇′) ju|

)
|(∇′)k+1u|dx

+

∫
B′1

η2|(∇′) jg||(∇′) ju|dx′
)
.

By virtue of Young’s inequality and absorbing terms into the left hand side we infer

‖x
b
2
n+1η∇(∇′) ju‖L2(B+

1 ) ≤ C
(
‖x

b
2
n+1|∇η|(∇

′) ju‖L2(B+
1 ) + ‖x

b
2
n+1η(∇′) ju‖L2(B+

1 )

+ ‖x
b
2
n+1η(∇′) j f ‖L2(B+

1 ) +

j−1∑
k=0

‖x
b
2
n+1η(∇′)k+1u‖L2(B+

1 )

+

∫
B′1

η2|(∇′) jg||(∇′) ju|dx′
)
.

Lastly, we use the bounds for η to obtain

‖x
b
2
n+1∇(∇′) ju‖L2(B+

1/2) ≤ C
( j∑

k=1

‖x
b
2
n+1(∇′)ku‖L2(B+

1 ) + ‖x
b
2
n+1(∇′) j f ‖L2(B+

1 )

+
( ∫

B′1

|(∇′) jg||(∇′) ju|dx′
) 1

2
)
.

The estimate for j = 0 is straightforward. Rescaling and summing over j ∈ {0, . . . , J} with the
corresponding factors, yields the desired estimate.

3. Carleman estimates for systems in the upper half-plane

In order to deduce the Carleman estimates from Propositions 1.7 and 1.8, we first prove Carleman
estimates for second order (degenerate elliptic) equations. Here we proceed in two steps: First, we
discuss the situation for constant coefficient metrics but in the presence of divergence form right hand
side contributions, and then, in a second step, we deduce the estimates for variable coefficient metrics.

3.1. Constant coefficient Carleman estimates

As a main ingredient in our argument we make use of the following (constant coefficient) Carleman
estimate:

Proposition 3.1. Let b ∈ (−1, 1) and let u ∈ H1(B+
4 , x

b
n+1) with supp(u) ⊂ B+

4 \ {0} be a solution to

∇ · xb
n+1∇u = f +

n∑
j=1

∂ jxb
n+1F j in B+

4 ,

lim
xn+1→0

xb
n+1∂n+1u = g on B′4,

where f ∈ L2(B+
4 , x

−b
n+1), g ∈ L2(B′4) and F = (F1, . . . , Fn) ∈ L2(B+

4 , x
b
n+1)n with supp( f ), supp(F) ⊂

B+
4 \ {0} and supp(g) ⊂ B′4 \ {0}. Then, for each τ > τ0 � 1 there is a weight function h(− ln(|x|)) such
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that there exists a constant C > 0 which is independent of τ such that it holds

τ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

1
2 |x|−1u‖L2(Rn+1

+ ) + ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

1
2∇u‖L2(Rn+1

+ )

+ τ
1−b

2 ‖eh(− ln(|x|))(1 + h)
1
2 |x|

b−1
2 u‖L2(Rn×{0})

≤ C
(
‖eh(− ln(|x|))|x|x−

b
2

n+1 f ‖L2(Rn+1
+ ) + τ‖eh(− ln(|x|))x

b
2
n+1F‖L2(Rn+1

+ )

+τ
1+b

2 ‖eh(− ln(|x|))|x|
1−b

2 g‖L2(Rn×{0})

)
.

(3.1)

Here h(x) := h′′(t)|t=− ln(|x|).

The proof of Proposition 3.1 relies on a splitting strategy, in which all inhomogeneities (be they
bulk or boundary contributions) are dealt with in an elliptic estimate. As a consequence, the subelliptic
part, i.e., the actual Carleman estimate, becomes rather clean. In particular, as shown in the following
section, the estimates are strong enough to deal with only Lipschitz regular metrics in a perturbative
way.

Proof. We proceed in three main steps: First, we construct an appropriate Carleman weight. Then, we
deduce the desired Carleman estimate by a splitting argument in conformal polar coordinates. In a
final step, we concatenate the obtained information.

Step 1: Construction of the weight. We begin by constructing a family of Carleman weights h(t) :
R→ R. Anticipating the use of polar conformal coordinates, we require it to satisfy

h′ ∈ (C−1τ,Cτ) for all τ � 1,
1
4
≤ h′′ + dist(h′, spec(∇S n · θb

n∇S n)),

|h′′′|, |h(4)| ≤ εh′′ ≤ Cτ,

(3.2)

where ε > 0 is a constant which is to be determined later (see Step 1 in the proof of Proposition 1.7),
and C > 1 is a constant independent of τ. We recall that by the results of [25] the operator ∇S n · θb

n∇S n

with θn := xn+1
|x| has a spectral gap if it is considered with Neumann (or Dirichlet) data (see Section 8.3

in the Appendix A in [25]). We follow the argument from [13] and [12] to obtain the desired properties
for the Carleman weight. To this end, we consider a sequence {c j} j∈N ∈ `

1, ‖c j‖`1 < δ of non-negative
numbers and define the sequence {a j} j∈N as the convolution of c j with 2−ν j for some ν > 0 small. Then,
the sequence a j is slowly varying (i.e., 2−νa j+1 ≤ a j ≤ 2νa j+1) and obeys the bound c j ≤ a j. With this
preparation, we define h(0) = 0, h′(−∞) = bτc + c1, where c1 > 0 is a suitable constant independent of
τ, and

h′′ =
∑

j

b jχ[ j, j+1], (3.3)

with

b j

{
= 0 if a j ≤ ντ

−1,

∈ [τa j, 2τa j] if a j ≥ ντ
−1.
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In order to obtain the desired higher order regularity properties for h, we regularise this by convolution
(on the unit scale). Thus, the last estimate in (3.2) is fulfilled for any given, small ε > 0 provided that
the difference of consecutive values of a j is small enough, i.e., if δ and ν are taken sufficiently small.

Step 2: Conformal polar coordinates and splitting argument. We proceed by a splitting argument.
In order to obtain more transparent expressions, we pass to conformal coordinates by setting t =

− ln(|x|), θ = x
|x| . We further pass from the function u to the function ũ(t, θ) = e

1−b−n
2 tu(e−tθ). In these

coordinates we consider (the weak form) of the equation

(θb
n∂

2
t + ∇S n · θb

n∇S n + cn,bθ
b
n)ũ = f̃ − θb

n∂tF̃ t + divS n
+
θb

nF̃′ in S n
+ × R,

lim
θn→0

θb
nν · ∇S n ũ = g̃ on ∂S n

+ × R,
(3.4)

where

f̃ (t, θ) = e−
n+3−b

2 t f (e−tθ) +
n + b − 1

2
θb

nF̃ t(t, θ),

g̃(t, θ) = e(−1+b)te
1−b−n

2 tg(e−tθ),

F̃ t(t, θ) = e−
n+1+b

2 t

 n∑
i=2

θi−1F i(e−tθ) ±

√√1 − n∑
i=1

θ2
i

F1(e−tθ)

 ,
F̃ j(t, θ) = e−

n+1+b
2 t

n∑
i=1

δi, j+1F i(e−tθ) − θ jF̃ t(t, θ), j ∈ {1, . . . , n},

F̃′(t, θ) = (F̃1(t, θ), . . . , F̃n(t, θ)),

cn,b = −

(
n + b − 1

2

)2

, θ j =
x j+1

|x|
, j ∈ {1, . . . , n}.

Here divS n
+

denotes the divergence with respect to the standard metric on the sphere and the choice of
the sign in the expression for F̃ t(t, θ) depends on the specific chart.

We split the problem into two parts ũ = u1 + u2, where u1 is a solution to the following elliptic
problem

(θb
n∂

2
t + ∇S n · θb

n∇S n + θb
ncn,b − θ

b
nτ

2K2)u1 = f̃−θb
n∂tF̃ t + divS n

+
θb

nF̃′ in S n
+ × R,

lim
θn→0

θb
nν · ∇S nu1 = g̃ on ∂S n × R.

(3.5)

Here K � 1 is a sufficiently large parameter (to be specified later). The function u2 = ũ − u1 thus
solves a corresponding problem. In order to derive the desired estimate, we discuss the bounds for u1

and u2 separately.

Step 2a: Bounds for u1. By virtue of the positivity of K � 1, the estimates for u1 are elliptic energy
estimates. Indeed, by the Lax-Milgram theorem, we obtain that a solution to (3.5) exists in the energy
space H1(S n

+ × R, θ
b
n). We test the weak form of (3.5) with the test function τ2e2hM,δ(t)u1, where

hM,δ(t) := min{M,max{h(t),−M}} ∗ ηδ(t),

for M ∈ N and with ηδ denoting a standard mollifier.
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This leads to the following identity

τ2(θb
n∂tu1, e2hM,δ(t)∂tu1) + 2τ2(θb

n∂tu1, h′M,δe
2hM,δ(t)u1) + τ2(θb

ne2hM,δ(t)∇S nu1,∇S nu1)
− (cn,bτ

2 − K2τ4)(θb
ne2hM,δ(t)u1, u1)

= −τ2( f̃ , e2hM,δ(t)u1) − τ2(div θb
nF̃′, e2hM,δ(t)u1)+τ2(θb

n∂tF̃ t, e2hM,δ(t)u1) + τ2(g̃, e2hM,δ(t)u1)0.

(3.6)

Here (·, ·) := (·, ·)L2(S n
+×R) and (·, ·)0 := (·, ·)L2(∂S n

+×R). Recalling that by definition (see (3.2))

|h′M,δ(t)| ≤ Cτ, (3.7)

an application of Young’s inequality leads to

2τ2|(θb
n∂tu1, h′M,δe

2hM,δ(t)u1)|
(3.7)
≤

1
4
τ2|(θb

n∂tu1, e2hM,δ(t)∂tu1)| + 16C2τ4|(θb
nu1, e2hM,δ(t)u1)|,

τ2|( f̃ , e2hM,δ(t)u1)| ≤
1
4
τ4|(θb

nu1, e2hM,δ(t)u1)| + C|(θ−b
n f̃ , e2hM,δ(t) f̃ )|,

τ2|(div θb
nF̃′, e2hM,δ(t)u1)| ≤

1
4
τ2|(e2hM,δ(t)θb

n∇S n
+
u1,∇S n

+
u1)| + Cτ2|(θb

nF̃ i, e2hM,δ(t)F̃ i)|,

τ2|(θb
n∂tF̃ t, e2hM,δ(t)u1)|

(3.7)
≤ τ2|(θb

nF̃ t, e2hM,δ(t)∂tu1)| + 2Cτ3|(θb
nF̃ t, e2hM,δ(t)u1)|

≤
1
4
τ2|(e2hM,δ(t)θb

n∂tu1, ∂tu1)| + Cτ2|(θb
nF̃ t, e2hM,δ(t)F̃ t)|

+τ4|(e2hM,δ(t)u1, θ
b
nu1)| + 4C2τ2|(θb

nF̃ t, e2hM,δ(t)F̃ t)|.

Absorbing the contributions involving u1 as well as the other non-positive terms from (3.6) into either
the positive derivative contributions or (for K2 � 1 sufficiently large) into the coercive term involving
K2 in (3.6), then yields

τ‖θ
b
2
n ehM,δ(t)∂tu1‖ + τ‖θ

b
2
n ehM,δ(t)∇S nu1‖ +

K
2
τ2‖θ

b
2
n ehM,δ(t)u1‖

≤ C
(
‖θ
− b

2
n ehM,δ(t) f̃ ‖ + τ‖θ

b
2
n ehM,δ(t)F̃‖ + ετ

3−b
2 ‖ehM,δ(t)u1‖0 + Cετ

1+b
2 ‖ehM,δ(t)g̃‖0

)
.

As above, here and in the sequel, we use the notation ‖ · ‖ := ‖ · ‖L2(S n
+×R) and ‖ · ‖0 := ‖ · ‖L2(∂S n

+×R).
Applying the boundary-bulk interpolation estimate from Lemma 2.2, allows us to absorb the first
boundary contribution into the left hand side, which then results in

τ‖θ
b
2
n ehM,δ(t)∂tu1‖ + τ‖θ

b
2
n ehM,δ(t)∇S nu1‖ +

K
2
τ2‖θ

b
2
n ehM,δ(t)u1‖

≤ C
(
‖θ
− b

2
n ehM,δ(t) f̃ ‖ + τ‖θ

b
2
n ehM,δ(t)F̃‖ + Cετ

1+b
2 ‖ehM,δ(t)g̃‖0

)
.

(3.8)

Using the compact supports of f̃ , F̃ and g̃, by dominated convergence, we may pass to the limits
M → ∞ and δ→ 0 which leads to

τ‖θ
b
2
n eh∂tu1‖ + τ‖θ

b
2
n eh∇S nu1‖ +

K
2
τ2‖θ

b
2
n ehu1‖

≤ C
(
‖θ
− b

2
n eh f̃ ‖ + τ‖θ

b
2
n ehF̃‖ + Cετ

1+b
2 ‖ehg̃‖0

)
.

(3.9)
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We remark that this estimate not only contains the right weighted bounds for u1 but also implies that
u1 has (quantitative) fast decay as |t| → ∞ (which corresponds to |x| → 0 and |x| → ∞). By the
compact support assumption on ũ a similarly fast decay then also holds for u2.

Step 2b: Bounds for u2. The estimates for u2 will be sub-elliptic (in τ) Carleman estimates. We
recall that by construction, u2 is a weak solution of

(θb
n∂

2
t + ∇S n · θb

n∇S n + θb
ncn,b)u2 = −K2τ2θb

nu1 in S n × R,

lim
θn→0

θb
nν · ∇S nu2 = 0 on ∂S n × R,

(3.10)

i.e., it satisfies

−(θb
n∂tu2, ∂tϕ) − (θb

n∇S nu2,∇S nϕ) + cn,b(θb
nu2, ϕ) = −K2τ2(θb

nu1, ϕ). (3.11)

We test this with a Neumann eigenfunction to the spherical operator, i.e., with a function ψλ which
satisfies

∇S n · θb
n∇S nψλ = −λ2θb

nψλ in S n
+,

lim
θn→0

θb
nν · ∇S nψλ = 0 on ∂S n

+ × R.

We recall that the set {ψλ}λ forms an orthogonal, complete system in L2(θb
n, S

n
+). More precisely, we

insert ϕ(t, θ) = ψλ(θ)γ(t) with γ(t) a compactly supported smooth function into (3.11). Since the set
{ψλ} forms an orthonormal set in both H1(S n

+, θ
b
n) and L2(S n

+, θ
b
n), we infer that αλ(t) := (u2, θ

b
nψλ) is a

distributional (but then by uniqueness also a classical) solution to the ODE

α′′λ − λ
2αλ + cn,bαλ = −K2τ2βλ, (3.12)

where βλ(t) = (u1, θ
b
nψλ).

Conjugating this modewise equation with the weight eh(t) yields the equation

α̃′′λ − λ
2α̃λ + |h′|2α̃λ + cn,bα̃λ − 2h′α̃′λ − h′′α̃λ = K2τ2β̃λ,

where α̃λ = eh(t)αλ and β̃λ = eh(t)βλ. Noting that the symmetric and antisymmetric parts of the
conjugated operator turn into

S α̃λ = α̃′′λ − λ
2α̃λ + |h′|2α̃λ + cn,bα̃λ,

Aα̃λ = −2h′α̃′λ − h′′α̃λ,

we expand the conjugated operator to infer

K4τ4‖β̃λ‖
2
L2(R) = ‖S α̃λ‖2L2(R) + ‖Aα̃λ‖2L2(R) + ([S , A]α̃λ, α̃λ)L2(R), (3.13)

where

([S , A]α̃λ, α̃λ) = 4
∫
R

(
h′h′′h′α̃2

λ + h′′(α̃′λ)
2
)
dt −

∫
R

h(4)α̃2
λdt.
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We observe that the first two contributions in the expansion of the commutator are non-negative. The
last term which does not necessarily carry a sign can be absorbed into these positive contributions
(recall the last condition in (3.2) for that) and can hence be neglected for τ ≥ τ0 > 1 sufficiently large,
whence

([S , A]α̃λ, α̃λ) ≥ 3
∫
R

(
h′h′′h′α̃2

λ + h′′(α̃′λ)
2
)
dt, (3.14)

if τ ≥ τ0 > 1 is chosen sufficiently large.
Next we exploit the spectral gap of the Neumann data version of the operator ∇S n · θb

n∇S n (see [25,
Appendix A, Section 8.3]) in connection with the symmetric and antisymmetric parts of the operator.
To this end, we consider two cases: If λ2 ∈ [0, 2C2τ2) with C > 1 as in (3.2), we have that |h′| ≥ C−2

√
2
λ.

Using the antisymmetric part of the operator, we estimate

1
2
‖Aα̃λ‖2L2(R) ≥ ‖h

′α̃′λ‖
2
L2(R) −

1
2
‖h′′α̃λ‖2L2(R) ≥

C−4

2
‖max{|h′|, λ}α̃′λ‖

2
L2(R) −

1
2
‖h′′α̃λ‖2L2(R). (3.15)

If λ2 ≥ 2C2τ2, we estimate the symmetric part of the operator and integrate by parts

‖S α̃λ‖2L2(R) ≥ ‖α̃
′′
λ ‖

2
L2(R) + 2(α̃′′λ , (|h

′|2 − λ2)α̃λ)L2(R) + ‖(λ2 − |h′|2)α̃λ‖2L2(R) − c2
n,b‖α̃λ‖

2
L2(R)

= ‖α̃′′λ ‖
2
L2(R) + 2(α̃′λ, (λ

2 − |h′|2)α̃′λ)L2(R) − 4(α̃′λ, h
′′h′α̃λ)L2(R)

+ ‖(λ2 − |h′|2)α̃λ‖2L2(R) − c2
n,b‖α̃λ‖

2
L2(R).

(3.16)

We note that non-positive or not necessarily positive contributions are given by the third and the fifth
term on the right hand side of (3.16), which we hence seek to bound. Since λ2 ≥ 2C2τ2 ≥

|h′ |2

2 , taking
τ > τ0 large enough, we have

c2
n,b‖α̃λ‖

2
L2(R) ≤

1
2
‖(λ2 − |h′|2)α̃λ‖2L2(R).

Thus the fifth term on the right hand side of (3.16) can be absorbed into the fourth term on the right
hand side of (3.16). We estimate the remaining possibly non-positive contribution which is the third
term (as λ2 ≥ 2C2τ2): To this end, we again integrate by parts and obtain that for sufficiently large
τ ≥ τ0 > 1

4|(α̃′λ, h
′′h′α̃λ)L2(R)| = 2|(α̃λ, (h′′h′′ + h′′′h′)α̃λ)| ≤

∫
R

h′h′′h′α̃2
λdt.

Thus, if λ2 ≥ 2C2τ2, we infer
1
2
‖S α̃λ‖2L2(R) ≥

1
2
‖α̃′′λ ‖

2
L2(R) + (α̃′λ, (λ

2 − |h′|2)α̃′λ)L2(R) − 2(α̃′λ, h
′′h′α̃λ)L2(R)

+
1
4
‖(λ2 − |h′|2)α̃λ‖2L2(R)

≥
1
4
‖(λ2 − |h′|2)α̃λ‖2L2(R) −

1
2

∫
R

h′h′′h′α̃2
λdt

≥
1
4

dist(h′, spec(∇S n · θb
n∇S n))‖max{|h′|, |λ|}α̃λ‖2L2(R)

−
1
2

∫
R

h′h′′h′α̃2
λdt.

(3.17)
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Hence, combining (3.15) and (3.17), we deduce that for some constant c0 > 0 which is independent of
τ > 1

1
2
(
‖Aãλ‖2L2(R) + ‖S ãλ‖2L2(R)

)
≥ c0 dist(h′, spec(∇S n · θb

n∇S n))‖max{|h′|, |λ|}α̃λ‖2L2(R)

−
1
2

∫
R

h′h′′h′α̃2
λdt −

1
2
‖h′′α̃λ‖2L2(R).

(3.18)

Further using the antisymmetric part to bound (for τ ≥ τ0 > 1 sufficiently large)

1
2
‖Aα̃λ‖2L2(R) ≥ τ

−2‖h′α̃′λ‖
2
L2(R) − τ

−2‖h′′α̃λ‖2L2(R),

and combining this with (3.14) and (3.18) we arrive at

K4τ4‖β̃λ‖
2
L2(R) = ‖S α̃λ‖2L2(R) + ‖Aα̃λ‖2L2(R) + ([S , A]α̃λ, α̃λ)L2(R)

≥ c0‖max{|h′|, |λ|}α̃λ‖2L2(R) + ‖h′(h′′)1/2α̃λ‖
2
L2(R) + ‖(h′′)1/2α̃′λ‖

2
L2(R)

+ τ−2‖h′α̃′λ‖
2
L2(R).

(3.19)

We remark that we have given up a factor τ2 in the antisymmetric estimate. This is due to the fact,
that in undoing the conjugation with the weight eh(t), we obtain a term originating from the t derivative
falling onto the weight. Without the loss of the factor τ2 this would carry a weight τ4. We would not
be able to absorb this into the L2 contributions on the left hand side of the estimates.

We further complement the estimate (3.19) by a bound on the spherical part of the gradient. To this
end, we make use of the symmetric part of the operator. Indeed, we have

(S α̃λ, h′′α̃λ) = −(α̃′λ, h
′′α̃′λ) +

1
2

(α̃λ, h′′′α̃λ) − λ2(α̃λ, h′′α̃λ)

+ (|h′|2h′′α̃λ, α̃λ) + cn,b(α̃λ, h′′α̃λ).

As a consequence, if c0 > 0 is sufficiently small,

c0λ
2(α̃λ, h′′α̃λ) ≤ c0|(S α̃λ, h′′α̃λ)| + c0|(α̃′λ, h

′′α̃′λ)| +
c0

2
|(α̃λ, h′′′α̃λ)| + c0|(|h′|2h′′α̃λ, α̃λ)|

+ c0cn,b|(α̃λ, h′′α̃λ)|

≤
c2

0

2
‖Sαλ‖2 +

c2
0

2
‖h′′α̃λ‖2 + c0|(α̃′λ, h

′′α̃′λ)| +
c0

2
|(α̃λ, h′′′α̃λ)|

+ c0Cτ2‖(h′′)
1
2 α̃λ‖

2

≤ K4τ4‖β̃λ‖
2.

Here the last estimate follows from the previously deduced bounds from (3.19). Hence, we conclude

2K4τ4‖β̃λ‖
2
L2(R) = 2(‖S α̃λ‖2L2(R) + ‖Aα̃λ‖2L2(R) + ([S , A]α̃λ, α̃λ)L2(R))

≥ c0‖max{|h′|, |λ|}α̃λ‖2L2(R) + ‖h′(h′′)1/2α̃λ‖
2
L2(R) + ‖(h′′)1/2α̃′λ‖

2
L2(R)

+ τ−2‖h′α̃′λ‖
2
L2(R) + c0λ

2‖(h′′)1/2α̃λ‖
2
L2(R).

(3.20)
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By orthogonality, summing the estimate (3.20) over λ, integrating over S n
+, using the properties of

h and undoing the conjugation, we thus obtain

τ‖eh(1 + h′′)1/2θ
b
2
n u2‖ + ‖eh(1 + h′′)1/2θ

b
2
n∇u2‖ ≤ K2τ2‖θ

b
2
n ehu1‖. (3.21)

Step 3: Conclusion. Last but not least, we combine the estimates from Steps 1 and 2 and deduce
the Carleman estimate from Proposition 3.1 from this. We obtain

τ‖eh(1 + h′′)
1
2 θ

b
2
n ũ‖ + ‖eh(1 + h′′)

1
2 θ

b
2
n∇ũ‖

≤ τ‖eh(1 + h′′)
1
2 θ

b
2
n u1‖ + ‖eh(1 + h′′)

1
2 θ

b
2
n∇u1‖ + τ‖eh(1 + h′′)

1
2 θ

b
2
n u2‖ + ‖eh(1 + h′′)

1
2 θ

b
2
n∇u2‖

≤ C(‖ehθ
− b

2
n f̃ ‖ + ‖ehθ

b
2
n F̃‖ + τ

1+b
2 ‖ehg̃‖0).

Using the bulk-boundary interpolation estimate from Lemma 2.2, this can further be strengthened by a
boundary contribution on the left hand side:

τ
1−b

2 ‖eh(1 + h′′)
1
2 ũ‖0 + τ‖ehθ

b
2
n (1 + h′′)

1
2 ũ‖ + ‖ehθ

b
2
n (1 + h′′)

1
2∇ũ‖

≤ C(‖ehθ
− b

2
n f̃ ‖ + ‖ehθ

b
2
n F̃‖ + τ

1+b
2 ‖ehg̃‖0).

Transforming back into Cartesian coordinates yields the desired estimate.

Analogous arguments as in the proof of Proposition 3.1 allow us to derive a slight variation of the
estimate from Proposition 3.1 which we will exploit in the sequel.

Corollary 3.2. Let K be a finite set of positive integers. Under the same assumptions as in Proposition
3.1, for each τ > τ0 � 1 there is a weight function h(− ln(|x|)) such that there exists a constant C > 0
which is independent of τ such that for any k ∈ K it holds

τ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

1
2 |x|−k−1u‖L2(Rn+1

+ ) + ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

1
2 |x|−k∇u‖L2(Rn+1

+ )

+ τ
1−b

2 ‖eh(− ln(|x|))(1 + h)
1
2 |x|−k+ b−1

2 u‖L2(Rn×{0})

≤ C
(
‖eh(− ln(|x|))|x|−k+1x−

b
2

n+1 f ‖L2(Rn+1
+ ) + τ‖eh(− ln(|x|))x

b
2
n+1|x|

−kF‖L2(Rn+1
+ )

+τ
1+b

2 ‖eh(− ln(|x|))|x|−k+ 1−b
2 g‖L2(Rn×{0})

)
.

Proof. Let h be the family of Carleman weights constructed in the proof of Proposition 3.1 and consider
for k ∈ K the following new family

h̃(t) = h(t) − kt.

It also satisfies (3.2) for τ > τ0 and τ0 sufficiently large: Notice that h̃′ differs from h′ by a constant
and hence all the higher order derivatives coincide. In particular, the first and the last estimates in (3.2)
hold directly. Adding a suitable extra term of the form αt to the original h, we can ensure to keep a
positive distance between h̃′ and the spectrum of ∇S n · θb

n∇S n for finitely many k.
Therefore, estimate (3.1) holds with h̃ playing the role of h. Finally, observe that

eh̃(− ln(|x|)) = eh(− ln(|x|))|x|−k

(1 + h̃) = (1 + h),

so the claimed estimate is obtained.
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3.2. Variable coefficient metrics

Considering second order equations of the form

∇ · xb
n+1a∇u = f in B+

4 ,

lim
xn+1→0

xb
n+1∂n+1u = g on B′4,

(3.22)

in the sequel, we seek to introduce variable coefficients in the Carleman estimate of Proposition 3.1.
Throughout this section, the metric a is assumed to be of a block form as in (1.4) where the metric ã
satisfies the conditions (A1)–(A3) from the introduction with µ = 0.

We first note that the estimate in Proposition 3.1 remains valid for a constant coefficient metric
in the block form (1.4). This follows immediately from a change of coordinates (only involving the
tangential variables). In order to extend Proposition 3.1 to variable coefficient problems, we exploit
the presence of the divergence contribution and in conformal coordinates localise the problem to scales
of the size C(a jτ)−

1
2 or of size one, respectively (depending on the size of the metric). Here {a j} j∈N

denotes the sequence that was used in the definition of the Carleman weight h (see Step 1 in the proof
of Proposition 3.1).

We follow the argument in [13] and argue in two steps: First, in the regime in which h is convex, we
localise to very small scales (Lemma 3.3). In the regime in which no convexity is present anymore, we
localise to scales of order one in conformal coordinates (Lemma 3.4). Finally, we patch these estimates
together to derive the desired global bound of Proposition 1.7.

Lemma 3.3. Let τ ≥ 1 and ε > 0. Assume that h is convex and

h′ ∈ [τ, 2τ], h′′ ∈ [ετ, 2ετ], |h′′′| ≤ τ.

Assume that

|x||∇ai j(x)| ≤ δε in I` := {x ∈ Rn+1
+ : |x| ∈ [e−`−1, e−`]}

for some sufficiently small constant δ > 0. Then, for all u with supp(u) ⊂ I` and all τ ≥ τ0 ≥ 1 we have

τ‖eh(− ln(|x|))x
b
2
n+1(1 + ετ)

1
2 |x|−1u‖L2(Rn+1

+ ) + ‖eh(− ln(|x|))x
b
2
n+1(1 + ετ)

1
2∇u‖L2(Rn+1

+ )

+ τ
1−b

2 ‖eh(− ln(|x|))(1 + ετ)
1
2 |x|

b−1
2 u‖L2(Rn×{0})

≤ C
(
‖eh(− ln(|x|))|x|x−

b
2

n+1∂ixb
n+1ai j∂ ju‖L2(Rn+1

+ )

+τ
1+b

2 ‖eh(− ln(|x|))|x|
1−b

2 lim
xn+1→0

xb
n+1∂n+1u‖L2(Rn×{0})

)
.

Proof. Step 1: Restricted support. We first assume that u is supported on a ball B
C0 |x0 |(ετ)−

1
2
(x0) for some

x0 ∈ I` or in some half ball B+

C0 |x0 |(ετ)−
1
2
(x0) for some x0 ∈ I` ∩ (Rn × {0}) and where the constant C0 > 0

is still to be determined (see Step 2). As the arguments are similar in both cases, we only discuss the
case of the full ball in detail in the sequel. We note that for x ∈ B

C0 |x0 |(ετ)−
1
2
(x0) ∩ I` we have

|ai j(x) − ai j(x0)| ≤ sup
x∈B

C0 |x0 |(ετ)
− 1

2
(x0)
|∇ai j(x)||x − x0|

≤ Cδε
C0

|x0|
(ετ)−

1
2 |x0| ≤ CC0δ(ετ−1)

1
2 .

(3.23)
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Next, we apply the Carleman estimate from Proposition 3.1 to the equation

∂ixb
n+1ai j(x0)∂ ju = f + ∂i(ai j(x0) − ai j(x))∂ ju in B

C0 |x0 |(ετ)−
1
2
(x0),

lim
xn+1→0

xb
n+1∂n+1u = g,

where f = ∂ixb
n+1ai j∂ ju and where we recall the block structure (1.4) of ai j. By virtue of Proposition 3.1

we obtain

τ‖eh(− ln(|x|))x
b
2
n+1(1 + ετ)

1
2 |x|−1u‖L2(Rn+1

+ ) + ‖eh(− ln(|x|))x
b
2
n+1(1 + ετ)

1
2∇u‖L2(Rn+1

+ )

+ τ
1−b

2 ‖eh(− ln(|x|))(1 + ετ)
1
2 |x|

b−1
2 u‖L2(Rn×{0})

≤ C
(
‖eh(− ln(|x|))|x|x−

b
2

n+1 f ‖L2(Rn+1
+ ) + τ‖eh(− ln(|x|))x

b
2
n+1(ai j − ai j(x0))∂ ju‖L2(Rn+1

+ )

+τ
1+b

2 ‖eh(− ln(|x|))|x|
1−b

2 lim
xn+1→0

xb
n+1∂n+1u‖L2(Rn×{0})

)
.

(3.24)

In order to deduce the desired estimate under the support constraint, it suffices to bound the second
bulk term on the right hand side of (3.24). To this end, we invoke (3.23) and estimate

‖eh(− ln(|x|))x
b
2
n+1(ai j − ai j(x0))∂ ju‖L2(Rn+1

+ ) ≤ CC0δ(ετ−1)
1
2 ‖eh(− ln(|x|))x

b
2
n+1∇u‖L2(Rn+1

+ ).

For δ > 0 sufficiently small (but independent of u), it is possible to absorb this contribution into the
left hand side of (3.24).

Step 2: Localisation. We seek to apply the previous argument by localising a general solution u
with supp(u) ⊂ I` by a partition of unity. Here commutator estimates play a crucial role and provide a
natural limitation to the possible localisation scale.

We consider a partition of unity {ψk}k∈{1,...,K} associated with the half annulus I` and a finite
collection {xk}k∈{1,...,K} of points in I` such that supp(ψk) ⊂ B

C0 |xk |(ετ)−
1
2
(xk) or supp(ψm) ⊂ B+

C0 |xm |(ετ)−
1
2
(xm)

(where in the latter case xm ∈ I` ∩ (Rn × {0})) and such that the balls and half-balls B
C0 |xk |(ετ)−

1
2
(xk) and

B+

C0 |xm |(ετ)−
1
2
(xm) cover the interval I` (with controlled overlap). Without loss of generality, we choose

the partition of unity and the points xk such that the following estimate hold:

|∇αψk| ≤ C−|α|1 |xk|
−|α|(ετ)

|α|
2 for |α| ∈ {0, 1, 2}, (3.25)

and C1 = C1(C0) > 0. Further, by for instance choosing ψk to have a dependence on |x − xk| only, we
may assume that

lim
xn+1→0

xb
n+1∂n+1ψk(x) = 0

in I`. We then write u =
K∑

k=1
ψku. With this in hand, we apply the triangle inequality as well as the
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Carleman estimate from Step 1:

τ‖eh(− ln(|x|))x
b
2
n+1(1 + ετ)

1
2 |x|−1u‖L2(Rn+1

+ ) + ‖eh(− ln(|x|))x
b
2
n+1(1 + ετ)

1
2∇u‖L2(Rn+1

+ )

+ τ
1−b

2 ‖eh(− ln(|x|))(1 + ετ)
1
2 |x|

b−1
2 u‖L2(Rn×{0})

≤

K∑
k=1

(
τ‖eh(− ln(|x|))x

b
2
n+1(1 + ετ)

1
2 |x|−1ψku‖L2(Rn+1

+ ) + ‖eh(− ln(|x|))x
b
2
n+1(1 + ετ)

1
2∇(ψku)‖L2(Rn+1

+ )

)
+

K∑
k=1

τ
1−b

2 ‖eh(− ln(|x|))(1 + ετ)
1
2 |x|

b−1
2 ψku‖L2(Rn×{0})

≤ C
K∑

k=1

(
‖eh(− ln(|x|))x−

b
2

n+1|x| fk‖L2(Rn+1
+ )

+ τ
1+b

2 ‖eh(− ln(|x|))|x|
1−b

2 lim
xn+1→0

xb
n+1∂n+1(ψku)‖L2(Rn×{0})

)
.

(3.26)

We first consider the bulk contribution on the right hand side for which

fk = ∂ixb
n+1ai j∂ j(uψk) = ψk f + 2ai jxb

n+1∂iψk∂ ju + uai j∂i(xb
n+1∂ jψk) + uxb

n+1(∂iai j)(∂ jψk).

Using the bounds for ψk from (3.25) as well as the estimate for |∇ai j|, we obtain

‖eh(− ln(|x|))|x|x−
b
2

n+1 fk‖L2(Rn+1
+ ) ≤ ‖e

h(− ln(|x|))|x|x−
b
2

n+1 fψk‖L2(Rn+1
+ )

+ C−1
1 (1 + (ετ)

1
2 )‖eh(− ln(|x|))x

b
2
n+1ψk∇u‖L2(Rn+1

+ )

+ C−1
1 (1 + ετ)‖eh(− ln(|x|))x

b
2
n+1|x|

−1ψku‖L2(Rn+1
+ ).

(3.27)

Choosing C1 = C1(C0) > 1 sufficiently large (by choosing C0 > 0 appropriately), then allows us to
absorb the second and third contribution from the right hand side of (3.27) into the left hand side of
(3.26).

For the boundary term in (3.26), we use the fact that by construction of the partition of unity
lim

xn+1→0
xb

n+1∂n+1(ψku) = ψk lim
xn+1→0

xb
n+1∂xn+1u.

Using this and the finite overlap of the supports of the functions ψk, allows us to turn (3.26) into

τ‖eh(− ln(|x|))x
b
2
n+1(1 + ετ)

1
2 |x|−1u‖L2(Rn+1

+ ) + ‖eh(− ln(|x|))x
b
2
n+1(1 + ετ)

1
2∇u‖L2(Rn+1

+ )

+ τ
1−b

2 ‖eh(− ln(|x|))(1 + ετ)
1
2 |x|

b−1
2 u‖L2(Rn×{0})

≤ C
K∑

k=1

(
‖eh(− ln(|x|))|x|x−

b
2

n+1ψk f ‖L2(Rn+1
+ )

+τ
1+b

2 ‖eh(− ln(|x|))|x|
1−b

2 ψk lim
xn+1→0

xb
n+1∂n+1u‖L2(Rn×{0})

)
≤ C

(
‖eh(− ln(|x|))x−

b
2

n+1|x| f ‖L2(Rn+1
+ ) + τ

1+b
2 ‖eh(− ln(|x|))|x|

1−b
2 lim

xn+1→0
xb

n+1∂n+1u‖L2(Rn×{0})

)
,

(3.28)

which concludes the proof of the argument.
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Similarly as in Lemma 3.3, it is also possible to deal with the situation of even smaller perturbations
of the metric without invoking the convexity of the weight:

Lemma 3.4. Let τ ≥ 1. Assume that

|x||∇ai j| ≤ δτ−1 in I` := {x ∈ Rn+1
+ : |x| ∈ [e−`−1, e−`]}

for some sufficiently small constant δ > 0. Then, for all u with supp(u) ⊂ I` and all τ ≥ τ0 ≥ 1 we have

τ‖eh(− ln(|x|))x
b
2
n+1|x|

−1u‖L2(Rn+1
+ ) + ‖eh(− ln(|x|))x

b
2
n+1∇u‖L2(Rn+1

+ )

+ τ
1−b

2 ‖eh(− ln(|x|))|x|
b−1

2 u‖L2(Rn×{0})

≤ C
(
‖eh(− ln(|x|))|x|x−

b
2

n+1∂ixb
n+1ai j∂ ju‖L2(Rn+1

+ )

+ τ
1+b

2 ‖eh(− ln(|x|))|x|
1−b

2 lim
xn+1→0

xb
n+1∂n+1u‖L2(Rn×{0})

)
.

Proof. The argument follows along the same lines as the proof of Lemma 3.4, however now we directly
localise to scales of the order C0|xk| around a finite number of points xk ∈ I`. Using an associated
partition of unity then yields the desired result.

Relying on the previous result, we obtain global Carleman estimates:

Proposition 3.5. Let the metric a : Rn+1
+ → R(n+1)×(n+1) be of a block form as in (1.4) where the metric ã

is assumed to satisfy the conditions (A1)–(A3) with µ = 0. Let u ∈ H1(B+
4 , x

b
n+1) with supp(u) ⊂ B+

4 \{0}.
Then, for each τ > τ0 ≥ 1 there exist a weight function h and a constant C > 0 independent of τ such
that it holds

τ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

1
2 |x|−1u‖L2(Rn+1

+ ) + ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

1
2∇u‖L2(Rn+1

+ )

+ τ
1−b

2 ‖eh(− ln(|x|))(1 + h)
1
2 |x|

b−1
2 u‖L2(Rn×{0})

≤ C
(
‖eh(− ln(|x|))|x|x−

b
2

n+1∇ · x
b
n+1a∇u‖L2(Rn+1

+ )

+ τ
1+b

2 ‖eh(− ln(|x|))|x|
1−b

2 lim
xn+1→0

xb
n+1∂n+1u‖L2(Rn×{0})

)
.

Here h(x) := h′′(t)|t=− ln(|x|).

Proof. In order to deduce this, we use the properties of the weight h. By relying on a partition of unity,
we localise the set-up to dyadic intervals. Then, with the constants a j as in Step 1 in the proof of
Proposition 3.1, if a jτ > 1, we apply Lemma 3.3, while if a jτ < 1, we invoke Lemma 3.4.

As before, by the same arguments as in the proof of Proposition 3.5, it is possible to obtain a slight
variation of this, which we will use in the sequel:

Corollary 3.6. Let K be a finite set of positive integers. Under the same assumptions as in Proposition
3.5, for each τ > τ0 � 1 there is a weight function h(− ln(|x|)) such that there exists a constant C > 0
which is independent of τ such that for any k ∈ K it holds

τ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

1
2 |x|−k−1u‖L2(Rn+1

+ ) + ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

1
2 |x|−k∇u‖L2(Rn+1

+ )
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+ τ
1−b

2 ‖eh(− ln(|x|))(1 + h)
1
2 |x|−k+ b−1

2 u‖L2(Rn×{0})

≤ C
(
‖eh(− ln(|x|))|x|−k+1x−

b
2

n+1∇ · x
b
n+1a∇u‖L2(Rn+1

+ )

+ τ
1+b

2 ‖eh(− ln(|x|))|x|−k+ 1−b
2 lim

xn+1→0
xb

n+1∂n+1u‖L2(Rn×{0})

)
.

Proof. The proof follows in the same way as Proposition 3.5 but instead of using Proposition 3.1 we
use Corollary 3.2.

3.3. Proof of Propositions 1.7 and 1.8

Proposition 1.7 arises as an iteration of the Carleman estimate from Proposition 3.5 (or directly
from Proposition 3.1 if ai j = δi j). In the sequel, we present the variable and constant coefficient proofs
simultaneously.

Proof of Proposition 1.7. We seek to iterate the second order Carleman estimates in order to obtain an
estimate for the full system. To this end, we apply Corollary 3.6 with K = {k j}

m
j=0, k j = 2m − 2 j to

w̃ j = (1 + h)
m− j

2 ũ j. We argue in two steps.

Step 1: Building block estimate. For j ∈ {0, . . . ,m} we have

Lbw̃ j(x) = (1 + h)
m− j

2 (Lbũ j)(x) + 2∇
(
(1 + h)

m− j
2
)
· a(x)∇ũ j(x)

+ ũ j(x)Lb
(
(1 + h)

m− j
2
)

= (1 + h)
m− j

2
(
f j(x) + ũ j+1(x)

)
+ 2∇

(
(1 + h)

m− j
2
)
· a(x)∇ũ j(x)

+ ũ j(x)Lb
(
(1 + h)

m− j
2
)
.

Hence, as consequence of Corollary 3.6, we deduce the estimate

τm+1− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m−1+2 jũ j‖L2(B+

4 )

+ τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

1
2 |x|−2m+2 j∇((1 + h)

m− j
2 ũ j)‖L2(B+

4 )

≤ C
(
τm− j‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m− j
2 |x|−2m+1+2 j( f j + ũ j+1)‖L2(B+

4 )

+ τm− j+ 1+b
2 ‖eh(− ln(|x|))(1 + h)

m− j
2 |x|−2m+2 j+ 1−b

2 g j‖L2(B′4)

+ τm− j‖eh(− ln(|x|))x
b
2
n+1|x|

−2m+1+2 j∇
(
(1 + h)

m− j
2
)
· a∇ũ j‖L2(B+

4 )

+τm− j‖eh(− ln(|x|))x
b
2
n+1|x|

−2m+1+2 jLb
(
(1 + h)

m− j
2
)
ũ j‖L2(B+

4 )

)
.

(3.29)

By virtue of the triangle inequality, the second term on the left hand side of (3.29) can be estimated as

τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

1
2 |x|−2m+2 j∇((1 + h)

m− j
2 ũ j)‖L2(B+

4 )

≥ τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇ũ j‖L2(B+

4 )

− τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

1
2 |x|−2m+2 jũ j∇((1 + h)

m− j
2 )‖L2(B+

4 ).

(3.30)

Mathematics in Engineering Volume 1, Issue 4, 715–774.



741

Using the last condition in (3.2), we obtain

|∇α
(
(1 + h)

m− j
2 )| ≤ Cε|x|−|α|(1 + h)

m− j
2 , for |α| ∈ {1, 2},

Hence, the negative term on the right hand side of (3.30) can be absorbed into the first left hand side
contribution in (3.29) if τ ≥ τ0 > 1 is sufficiently large. Further by the regularity of the metric a, and
by choosing ε sufficiently small, we may absorb the last two contributions on the right hand side of
(3.29) into the left hand side of (3.29).

As a consequence, we obtain

τm+1− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m−1+2 jũ j‖L2(B+

4 )

+ τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇ũ j‖L2(B+

4 )

≤ C
(
τm− j‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m− j
2 |x|−2m+1+2 j( f j + ũ j+1)‖L2(B+

4 )

+ τm− j+ 1+b
2 ‖eh(− ln(|x|))(1 + h)

m− j
2 |x|−2m+2 j+ 1−b

2 g j‖L2(B′4)

)
.

(3.31)

For later use, we remark that an analogous argument for w̃ j,` := (1 + h)
`
2 ũ j for ` ∈ Z and k ∈ {k j}

m
j=0

yields

τm+1− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

`+1
2 |x|−k−1ũ j‖L2(B+

4 )

+ τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

`+1
2 |x|−k∇ũ j‖L2(B+

4 )

≤ C
(
τm− j‖eh(− ln(|x|))x

b
2
n+1(1 + h)

`
2 |x|−k+1( f j + ũ j+1)‖L2(B+

4 )

+ τm− j+ 1+b
2 ‖eh(− ln(|x|))(1 + h)

`
2 |x|−k+ 1−b

2 g j‖L2(B′4)

)
.

(3.32)

Step 2: Iteration. Using the C2m,1 coefficient regularity, we iterate the building block estimate:

τm+1− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m−1+2 jũ j‖L2(B+

4 )

+ τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇ũ j‖L2(B+

4 )

≤ C
(
τm− j‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m− j
2 |x|−2m+1+2 j f j‖L2(B+

4 )

+ τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m− j
2 |x|−2m+1+2 jũ j+1‖L2(B+

4 )

)
≤ C

( j+1∑
k= j

τm−k‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m−k
2 |x|−2m+1+2k fk‖L2(B+

4 )

+ τm− j−1‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m− j−1
2 |x|−2m+1+2( j+1)ũ j+2‖L2(B+

4 )

)
≤ C

( m∑
k= j

τm−k‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m−k
2 |x|−2m+1+2k fk‖L2(B+

4 )

+ τ
1+b

2 ‖eh(− ln(|x|))|x|
1−b

2 g‖L2(B′4)

)
.
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Here we used that g j = 0 except for gm = g and applied the triangle inequality to separate the bulk
terms on the right hand side. Summing these estimates from j = 0 to m, then yields the desired bulk
estimate in (1.7).

Step 3: Boundary-bulk interpolation. In order to deduce the boundary estimate, we apply
Lemma 2.2 to the function

eh(− ln(|x|))(1 + h)
m+1

2 |x|−2m+ b−1
2 ũ0(x)

on each sphere |x| = r. Recall that h and h are independent of the spherical variables so the integration
with respect to the radial directions implies

τm+ 1−b
2 ‖eh(− ln(|x|))(1 + h)

m+1
2 |x|−2m+ b−1

2 ũ0‖L2(B′4)

≤ C
(
τm+1‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m+1
2 |x|−2m−1ũ0‖L2(B+

4 )

+ τm‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1
2 |x|−2m∇ũ0‖L2(B+

4 )

)
.

Combining this with Step 2 then concludes the proof.

Proof of Proposition 1.8. We split the proof into two steps: First we deal with commutation relations
arising in iterations of the second order estimates of Proposition 3.5 and then we iterate the resulting
bounds.

Step 1: Commutators. We observe that

∂′kLb = Lb∂
′
k + (∂′kã

i j)∂′i j + (∂′ikã
i j)∂′j, (3.33)

where ∂′k denotes derivatives in tangential directions.
Due to the assumptions in condition (A2), the contributions in the Carleman estimate arising from

∇′Lbu j−1 for j ∈ {1, . . . ,m} can be bounded from below by terms which are controlled by Lb∇
′u j−1 if

δ > 0 is chosen sufficiently small: Indeed, by using the commutator (3.33), we first obtain

‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇′Lbũ j−1‖L2(B+

4 )

(3.33)
≥ ‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 jLb∇

′ũ j−1‖L2(B+
4 )

− ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j|∇a||(∇′)2u j−1|‖L2(B+

4 )

− ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j|∇2a||∇′ũ j−1|‖L2(B+

4 ).

Invoking the bounds from condition (A2) for the metric and interpolating, we obtain |x||∇a(x)|,
|x|2|∇2a(x)| ≤ C̃δ for x ∈ B+

4 and thus

‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇′Lbũ j−1‖L2(B+

4 )

(3.33)
≥ ‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 jLb∇

′ũ j−1‖L2(B+
4 )

− ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j|∇a||(∇′)2u j−1|‖L2(B+

4 )

− ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j|∇2a||∇′ũ j−1|‖L2(B+

4 )
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≥ ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 jLb∇

′ũ j−1‖L2(B+
4 )

− C̃δ
(
‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m+2− j
2 |x|−2m−1+2 j|∇∇′u j−1|‖L2(B+

4 )

+ τ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+2− j
2 |x|−2m−2+2 j∇′ũ j−1‖L2(B+

4 )

)
.

Applying the Carleman estimate from Step 1 in combination with equation (3.32) in the proof of
Proposition 1.7 with k j = 2m + 1 − 2 j, ` = m + 1 − j, it is possible to bound

‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+2− j
2 |x|−2m−1+2 j|∇∇′u j−1|‖L2(B+

4 )

+ τ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+2− j
2 |x|−2m−2+2 j∇′ũ j−1‖L2(B+

4 )

≤ C‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 jLb∇

′ũ j−1‖L2(B+
4 ),

whence, in combination with the previous estimates,

‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇′Lbũ j−1‖L2(B+

4 )

≥ ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 jLb∇

′ũ j−1‖L2(B+
4 )

−CC̃δ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 jLb∇

′ũ j−1‖L2(B+
4 ).

Choosing δ > 0 so small that CC̃δ ≤ 1
2 , it is possible to absorb the last contribution into the left hand

side, which leads to the estimate

‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇′Lbũ j−1‖L2(B+

4 )

≥
1
2
‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 jLb∇

′ũ j−1‖L2(B+
4 ).

This allows us to apply the estimate (3.32) from Step 1 in the proof of Proposition 1.7 with k j =

2m + 2 − 2 j, ` = m + 1 − j and thus to deduce that for j ∈ {1, . . . ,m} the following bounds hold

‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇ũ j‖L2(B+

4 )

≥ ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇′ũ j‖L2(B+

4 )

= ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇′(Lbũ j−1 − f j−1)‖L2(B+

4 )

≥ ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇′Lbũ j−1‖L2(B+

4 )

− ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇′ f j−1‖L2(B+

4 )

≥
C
2

(
τ‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m+2− j
2 |x|−2m−2+2 j∇′ũ j−1‖L2(B+

4 )

+ ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+2− j
2 |x|−2m−1+2 j∇∇′ũ j−1‖L2(B+

4 )

− ‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇′ f j−1‖L2(B+

4 )

)
.

(3.34)
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Step 2: Iteration. With the additional bounds from (3.34) in hand, we can iterate the Carleman
estimate. For j ≥ 1 and ` ∈ {1, . . . , j} we infer

‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m−1+2 jũ j‖L2(B+

4 )

≥ C
( `−1∑

k=0

τ`−k‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j+`
2 |x|−2m−1+2 j−2`+k(∇′)kũ j−`‖L2(B+

4 )

+

`−1∑
k=0

τ`−k−1‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j+`
2 |x|−2m+2 j−2`+k∇(∇′)kũ j−`‖L2(B+

4 )

−
∑̀
i=1

i−1∑
k=0

τi−k−1‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m− j+i
2 |x|−2m+1+2 j−2i+k(∇′)k f j−i‖L2(B+

4 )

)
.

A similar estimate holds for the gradient term. Adding these estimates to the bounds from Proposition
1.7 and summing over all j ∈ {1, . . . ,m} implies the desired bulk estimate.

Step 3: Boundary-bulk interpolation. The boundary estimates can be deduced as in the proof of
Proposition 1.7. Applying Lemma 2.2 to the functions

eh(− ln(|x|))(1 + h)
m+1− j

2 |x|−2m+ j+ b−1
2 (∇′) jũ0(x)

on each sphere |x| = r and integrating with respect to the radial directions we infer

m∑
j=0

τm− j+ 1−b
2 ‖eh(− ln(|x|))(1 + h)

m+1
2 |x|−2m+ j+ b−1

2 (∇′) jũ0‖L2(B′4)

≤ C
m∑

j=0

(
τm+1− j‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m+1
2 |x|−2m−1+ j(∇′) jũ0‖L2(B+

4 )

+ τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1
2 |x|−2m+ j∇(∇′) jũ0‖L2(B+

4 )

)
.

Combining the previous steps concludes the proof.

4. On the strong unique continuation property for the extension problem

In this section we study the strong unique continuation property for the system (2.3) and seek
to reduce it to the weak unique continuation property. As in [8, 10, 19] we achieve this by careful
compactness and blow-up arguments.

From a technical point of view, the main challenge is to control solutions to our system also in the
normal direction in which we can only obtain information through the equation itself. Here two cases
arise:

• If we had vanishing of infinite order in the tangential and normal directions, an immediate
application of the Carleman estimate (1.8) would allow us to prove the strong unique
continuation property.
• If we are however dealing with solutions which a priori do not vanish of infinite order in the

normal direction, we have to argue more carefully, exploiting properties of our equations.
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In this section, we consider solutions u j ∈ H1
loc(R

n+1
+ , xb

n+1) with b ∈ (−1, 1) of the system (1.5), (1.6)
with f0, . . . , fm = 0 satisfying the following conditions:

(C) a is of a block form (1.4) and such that ã satisfies (A1)–(A3) with µ = 2m and

|g(x′)| ≤
m∑

j=0

|q j(x′)||(∇′) ju0(x′, 0)|

with |q j(x′)| ≤ Cq j |x|
−2m+ j+b−1 for j = {0, . . . ,m − 1} and

|qm(x′)| ≤


Cqm |x|

−m+b−1, if b < 0,
c0|x|−m+b−1, if b = 0,

Cqm |x|
−m+b−1+ε , if

{
b ∈ (0, 1

2 ) and m = 0,
b ∈ (0, 1) and m ≥ 1.

Here c0 > 0 is a sufficiently small constant (which is specified below), and Cq j > 0 are arbitrarily
large, finite constants.

As the vanishing of infinite order in the normal directions is not a direct consequence of our
assumptions on the infinite order vanishing in the tangential directions, we split the argument into two
parts:

• In the case of infinite order vanishing in all directions, i.e., for all j ∈ {0, . . . ,m}

lim
r→0

r−k‖x
b
2
n+1u j‖L2(B+

r ) = 0 for all k ∈ N,

we directly apply the Carleman estimate from Proposition 1.8 (see Section 4.2).
• If this is (a priori) not the case, i.e., there exist some j ∈ {0, . . . ,m}, a subsequence r` → 0 and a

constant k0 ∈ N such that

lim
`→∞

r−k0
` ‖x

b
2
n+1u j‖L2(B+

r` ) ≥ C0 > 0, (4.1)

we deduce doubling properties and then exploit these in a compactness argument to reduce the
strong unique continuation property to the weak unique continuation property (see Section 4.1).

4.1. Reduction to the weak unique continuation property

In the sequel, we seek to reduce the strong unique continuation property to a weak unique
continuation result by a blow-up argument under the assumption that the solution vanishes to infinite
order just in the tangential directions (but not in the normal directions, see (4.1)).

In order to deduce sufficient compactness for a blow-up argument, we first prove a doubling
estimate for the functions u j. Here we exploit elliptic estimates and deal with the resulting boundary
contributions by absorbing these into the bulk terms with finite order of vanishing (for sufficiently
small radii).

Proposition 4.1 (Doubling). Let u j ∈ H1
loc(R

n+1
+ , xb

n+1) for j ∈ {0, . . . ,m} be weak solutions of the system
(1.5), (1.6) with f0, . . . , fm = 0 satisfying the conditions from (C). Assume also that the tangential
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restrictions u j(x′, 0) vanish of infinite order at x0 = 0 and that there exist some j ∈ {0, . . . ,m}, a
subsequence r` → 0 and a constant k0 ∈ N such that (4.1) holds. Then, there exist a universal constant
C > 1, a positive integer `0 and a radius ru0 > 0 (the latter depending on u0) such that for any ` > `0

and all r ∈ (r`, 2m+3r`) ∩ (0, ru0) we have
m∑

j=0

r2 j‖x
b
2
n+1u j‖L2(B+

2r) +

m∑
j=0

r2 j+1‖x
b
2
n+1∇u j‖L2(B+

2r) ≤ C
m∑

j=0

r2 j‖x
b
2
n+1u j‖L2(B+

r ). (4.2)

Here r` > 0 denotes the radii from (4.1).

Remark 4.2. In the case of bounded potentials, the same result holds without assuming that the
functions u j(x′, 0) vanish of infinite order in the tangential directions. Moreover, in the setting of
bounded potentials, the statement holds for all r ∈ (0, r0) (there is no intersection with the interval
around r` here), where r0 is sufficiently small but independent of u0. We refer to the proof of
Proposition 4.1 for further details on this.

Remark 4.3. Instead of restricting our doubling results to radii around r`, we could also have argued
as in Section 3 in [36]. This would have allowed us to conclude that the vanishing order is defined
not only through a subsequence of radii but is independent of such a sequence. As a consequence, we
would have obtained the statement of Proposition 4.1 for any choice of radius less that ru0 . As our
unique continuation argument does not rely on quantitative order of vanishing estimates, we do not
further pursue this approach here.

Proof of Proposition 4.1. Consider ũ j := ηu j, where η is a radial cut-off function which is equal to one
in B+

3 \ B+
r/4, vanishes outside of B+

4 \ B+
r/8 and satisfies the following bounds

|∇αη| ≤ C in B+
4 \ B+

3 for |α| ≤ m + 2, α ∈ Nn,

|∇αη| ≤ Cr−|α| in B+
r/4 \ B+

r/8 for |α| ≤ m + 2.

Here r ∈ (0, r0) where r0 � 1 is chosen sufficiently small (with a choice that is explained later). We
note that the functions ũ j are solutions to the system from Proposition 1.7 with
f j := 2∇η · (a∇u j) + u jLbη and |g(x′)| ≤ |η|

∑m
j=0 |q j(x′)||(∇′) ju0(x′, 0)|. Hence the Carleman estimates

(1.7) and (1.8) hold.

Step 1: Boundary contributions. Let us assume that for all j ∈ {0, . . . ,m} it holds
|q j(x)| ≤ Cq j |x|

−2m+ j+b−1+ε , where ε ≥ 0 is a constant which will be specified below. We seek to absorb
the boundary contributions from the right hand side of the estimate (1.8) in Proposition 1.8 into the
ones on the left hand side. To this end, we compare the relevant contributions: The left hand side of
the Carleman estimate controls contributions of the form

m∑
j=0

τm− j+ 1−b
2 ‖eh(− ln(|x|))(1 + h)

m+1
2 |x|−2m+ j+ b−1

2 (∇′) jũ0‖L2(B′4), (4.3)

while the boundary terms on the right hand side can be estimated from above by

Cτ
1+b

2

m∑
j=0

Cq j‖e
h(− ln(|x|))|x|−2m+ j+ b−1

2 +ε |(∇′) ju0|‖L2(B′4). (4.4)

In order to carry out the absorption argument, we distinguish three cases:
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• If b < m − j, for any ε ≥ 0, it suffices to choose τ sufficiently large, in order to absorb the
contributions from (4.3) into (4.4). Note that this always holds for j ∈ {0, . . . ,m − 1} and also for
j = m if b < 0.

• If j = m and b = 0, it is still possible carry out this absorption argument in the case that ε = 0
provided the constant c0 is small enough. More precisely, after plugging the estimate (4.3) into
(1.8), the relevant boundary contribution will carry the prefactor Cc0. Requiring that c0 ≤

1
2C then

allows us to implement an absorption argument.
• Lastly, in the case of subcritical potentials, i.e., if ε > 0, a wider range of values of b is admissible

by using the properties of h. Indeed, by the construction of h′′

τm− j+ 1−b
2 ‖eh(− ln(|x|))(1 + h)

m+1
2 |x|−2m+ j+ b−1

2 (∇′) jũ0‖L2(B′4)

≥ τm− j+ 1−b
2 + m+1

2 ‖eh(− ln(|x|))|x|−2m+ j+ b−1
2 +νm+1

2 (∇′) jũ0‖L2(B′4)

Analogous estimates hold for the gradient contributions. Hence, by a sufficiently small choice
of ν > 0 (in the construction of the Carleman weight in the proof of Proposition 3.1 which in
particular is compatible with the other requirements there) it is possible to absorb all boundary
contributions as long as b < 3m+1

2 − j for any finite constant Cq j by choosing τ sufficiently large.
This enlarges the range of b for m = 0 to b < 1

2 and for j = m ≥ 1 to b < 1.

Step 2: Bulk contributions. In discussing the bulk contributions, we first deal with the bulk terms
of the right hand side of the Carleman estimate which are localised on the unit scale. We will absorb
these into the left hand side of the Carleman estimate. Secondly, we treat the contributions on the small
scale r > 0 for which we deduce the desired doubling estimate.

In the sequel, we use the following abbreviations for the respective half annuli

I1 := B+
r/4 \ B+

r/8, I2 := B+
2r \ B+

r/2, I3 := B+
5/2 \ B+

2 , I4 := B+
7/2 \ B+

3 .

For the convenience of the reader, we split the proof of the bulk estimates into two steps: In Step
2a, we deal with the case without gradient contributions. This allows us to introduce the ideas without
resorting to too many technicalities. Then, in Step 2b, we deal with the full case including gradient
terms.

Step 2a: Lowest order potentials. After having dealt with the boundary terms in Step 1, the
Carleman estimate (1.7) turns into

m∑
j=0

(
τm+1− j‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m+1− j
2 |x|−2m−1+2 ju j‖L2(I2∪I3)

+ τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇u j‖L2(I2∪I3)

)
≤ C

m∑
j=0

(
τm− j‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m− j
2 |x|−2m+1+2 j|∇η||∇u j|‖L2(I1∪I4)

+ τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m− j
2 |x|−2m+1+2 j|Lbη||u j|‖L2(I1∪I4)

)
,

(4.5)

with |Lbη| ≤ C(|∇2η| + |x|−1|∇η|).
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As a first simplification step, we deal with the contributions on the unit scale: Using the
monotonicity of h, we infer

m∑
j=0

(
τm− j‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m− j
2 |x|−2m+1+2 j|∇η||∇u j|‖L2(I4)

+ τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m− j
2 |x|−2m+1+2 j||Lbη|u j|‖L2(I4)

)
≤ Ceh(− ln 3)τ

3m
2

m∑
j=0

(
‖x

b
2
n+1u j‖L2(Ĩ4) + ‖x

b
2
n+1∇u j‖L2(Ĩ4)

)
,

(4.6)

where Ĩ4 = B+
4 \B

+
5/2. Estimating the terms on the left hand side of (4.5) from below by

Ceh(− ln 5
2 )

m∑
j=0

(
‖x

b
2
n+1u j‖L2(I3) + ‖x

b
2
n+1∇u j‖L2(I3)

)
,

and relying on the monotonicity of h, by choosing τ > τ0 sufficiently large, we can absorb the
contribution (4.6) into the left hand side of (4.5) (this yields a dependence of τ on u, but only on the
unit scale).

As a consequence, we are left with the estimate

m∑
j=0

(
τm+1− j‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m+1− j
2 |x|−2m−1+2 ju j‖L2(I2)

+ τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1− j
2 |x|−2m+2 j∇u j‖L2(I2)

)
≤ C

m∑
j=0

(
τm− j‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m− j
2 |x|−2m+1+2 j|∇u j||∇η|‖L2(I1)

+ τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m− j
2 |x|−2m+1+2 j|u j||Lbη|‖L2(I1)

)
,

(4.7)

where τ has been fixed in the previous step. Using the monotonicity of h, the bound of (1 + h) and the
estimates on the derivatives of η in I1, we obtain

eh(− ln 2r)
m∑

j=0

(
r−2m−1+2 j‖x

b
2
n+1u j‖L2(I2) + r−2m+2 j‖x

b
2
n+1∇u j‖L2(I2)

)
≤ Ceh(− ln r

8 )
m∑

j=0

(
r−2m−1+2 j‖x

b
2
n+1u j‖L2(I1) + r−2m+2 j‖x

b
2
n+1∇u j‖L2(I1)

)
.

(4.8)

We observe that the difference |h(− ln r
8 ) − h(− ln 2r)| is bounded independently of r > 0, since

|h(− ln
r
8

) − h(− ln 2r)| =

∣∣∣∣∣∣
(
−

h′(− ln ξr)
ξr

) (
−

15r
8

)∣∣∣∣∣∣ ,
where ξ ∈ ( 1

8 , 2), and h′ ∈ (C−1τ,Cτ).
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Thus, dividing (4.8) by eh(− ln(2r)) and adding to both sides

m∑
j=0

(
r−2m−1+2 j‖x

b
2
n+1u j‖L2(B+

r/2) + r−2m+2 j‖x
b
2
n+1∇u j‖L2(B+

r/2)

)
,

we obtain
m∑

j=0

(
r−2m−1+2 j‖x

b
2
n+1u j‖L2(B+

2r) + r−2m+2 j‖x
b
2
n+1∇u j‖L2(B+

2r)

)
≤ C

m∑
j=0

(
r−2m−1+2 j‖x

b
2
n+1u j‖L2(B+

r/2) + r−2m+2 j‖x
b
2
n+1∇u j‖L2(B+

r/2)

)
.

(4.9)

Step 2b: Gradient potentials. The proof is similar to the one in Step 2a but instead of the Carleman
estimate from Proposition 1.7, we here use the one from Proposition 1.8. After Step 1, estimate (1.8)
becomes

m∑
j=0

j∑
k=0

(
τm+1− j‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m+1−k
2 |x|−2m−1+ j+k(∇′) j−kuk‖L2(I2∪I3)

+ τm− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1−k
2 |x|−2m+ j+k∇(∇′) j−kuk‖L2(I2∪I3)

)
≤ C

m∑
j=0

j∑
k=0

j−k∑
i=0

(
τm− j‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m−k
2 |x|−2m+1+ j+k|∇iLbη||(∇′) j−k−iuk|‖L2(I2∪I4)

+ τm− j
i∑

`=0

‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m−k
2 |x|−2m+1+ j+k|∇i+1−`η||∇`a||∇(∇′) j−k−iuk|‖L2(I2∪I4)

)
.

Considering the bounds for derivatives of η and the metric a (i.e., |∇`a| ≤ C̃δ|x|−`), and repeating
the same arguments as in Step 2a, we arrive at

m∑
j=0

j∑
k=0

(
r−2m−1+ j+k‖x

b
2
n+1(∇′) j−kuk‖L2(B+

2r) + r−2m+ j+k‖x
b
2
n+1∇(∇′) j−kuk‖L2(B+

2r)

)

≤ C
m∑

j=0

j∑
k=0

(
r−2m−1+ j+k‖x

b
2
n+1(∇′) j−kuk‖L2(B+

r/2) + r−2m+ j+k‖x
b
2
n+1∇(∇′) j−kuk‖L2(B+

r/2)

)
.

(4.10)

Step 3: Caccioppoli’s inequality. It remains to control the gradient terms of the right hand side in
(4.10) and in (4.9). We can apply Lemma 2.3 to uk with f = uk+1, g = 0 if k ∈ {0, . . . ,m− 1} and f = 0,
|g| ≤

∑m
j=0 |q j||(∇′) ju0| if k = m.

If we just consider the lowest order potentials (i.e., where in the bounds for |g| only q0 is needed),
tangential derivatives are not necessary and after summing over k with suitable factors we arrive at

m∑
k=0

r−2m+2k‖x
b
2
n+1∇uk‖L2(B+

r/2) ≤ C
( m∑

k=0

r−2m+2k−1‖x
b
2
n+1uk‖L2(B+

r ) +
( ∫

B′r

|q0||u0||um|dx′
) 1

2
)
. (4.11)
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We seek to absorb the boundary terms which occur in (4.11) into the bulk term on the right hand side of
(4.11). Before explaining the general case, we discuss the case q0 ∈ L∞. If q0 ∈ L∞, then the boundary
term can be absorbed into the bulk terms for r ∈ (0, r0) with some r0 > 0 independent of u0: By scaling,
it is enough to prove this for r = 1. If m > 0, we do not directly start from (4.11) but return to the proof
of the Caccioppoli estimate which yields

m∑
k=0

r−2m+2k‖x
b
2
n+1η∇uk‖L2(B+

1 ) ≤ C
( m∑

k=0

r−2m+2k−1‖x
b
2
n+1uk‖L2(B+

1 ) +
( ∫

B′1

|q0||ηu0||ηum|dx′
) 1

2
)
, (4.12)

with η as in the proof of Lemma 2.3. By Young’s inequality we can then estimate the boundary term
as ( ∫

B′1

|q0||ηu0||ηum|dx′
) 1

2
≤ δ‖ηum‖L2(B′1) +

C‖q0‖L∞(Rn)

δ
‖ηu0‖L2(B′1)

for some constant δ > 0. Using the Poincaré type inequality ‖ηu j‖L2(B′1) ≤ C‖x
b
2
n+1∇(ηu j)‖L2(B+

1 ) for
j ∈ {0,m}, we obtain the bound( ∫

B′1

|q0||ηu0||ηum|dx′
) 1

2
≤ δ(‖(∇η)um‖L2(B′1) + ‖(∇um)η‖L2(B′1))

+
C‖q0‖L∞(Rn)

δ
(‖(∇η)u0‖L2(B′1) + ‖(∇u0)η‖L2(B′1)).

In order to control the gradient term involving η∇um we note that it is possible to absorb it into the left
hand side of (4.12) by choosing δ small enough. In order to bound the gradient contribution η∇u0, we
use again the Caccioppoli estimate (and observe that in this case no boundary terms appear). Therefore
(4.2) is valid for r ∈ (0, r0) and m > 0. For the case m = 0, we refer to Lemma 5.1 in [37].

Let us now return to the general case: If we also consider gradient potentials (i.e., where the full
bound |g| ≤

∑m
j=0 |q j||(∇′) ju0| is needed), a similar estimates holds after considering in (2.5) tangential

derivatives up to the order m − k:

m∑
j=0

j∑
k=0

r−2m+ j+k‖x
b
2
n+1∇(∇′) j−kuk‖L2(B+

r/2)

≤ C
( m∑

j=0

j∑
k=0

r−2m+ j+k−1‖x
b
2
n+1(∇′) j−kuk‖L2(B+

r ) +

m∑
j=0

( ∫
B′r

|q j||(∇′) ju0||um|dx′
) 1

2

)
.

(4.13)

Now the boundary terms in (4.11) and (4.13) (which in general are not in L∞ but might become
singular) can be controlled as follows: We first notice that∫

B′r\B′r/2

|q j||(∇′) ju0||um|dx′ ≤ Cr−2m+ j‖(∇′) ju0‖L2(B′r)‖um‖L2(B′r),

and

‖(∇′) ju0‖L2(B′r) ≤ ‖u0‖H j(B′2r) ≤ C‖u0χ‖H j(Rn) ≤ C‖u0χ‖
1− j

2γ

L2(Rn)‖u0χ‖
j

2γ

H2γ(Rn)
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≤ ‖u0‖
1− j

2γ

L2(B′4r)‖u0‖
j

2γ

H2γ(B′4r),

with χ a suitable cut-off function and γ = 1+2m−b
2 . Since lim

r→0
r−`‖u0‖L2(B′4r) = 0 for any ` ∈ N, given any

δ > 0 there is a radius ru0 > 0 such that if r ∈ (0, ru0)∫
B′r\B′r/2

|q j||(∇′) ju0||um|dx′ ≤ Cδr`.

Therefore ∫
B′r

|q j||(∇′) ju0||um|dx′ ≤
∞∑

k=0

∫
B′

r/2k \B
′

r/2k+1

|q j||(∇′) ju0||um|dx′ ≤
∞∑

k=0

Cδ
( r
2k

)`
≤ Cδr`.

On the other hand,
m∑

j=0
r−2m+2 j−1‖x

b
2
n+1u j‖L2(B+

r ) only vanishes of finite order, so choosing δ sufficiently

small, the boundary term can be absorbed into the bulk terms for suitable ranges of r: Indeed, from
(4.1) we know that for some j ∈ {0, . . . ,m} and some k0 > 0 there exist C0 > 0 and `0 ∈ N such that if
` > `0

‖x
b
2
n+1u j‖L2(B+

r` ) ≥
C0

2
rk0
` ,

and therefore if r ∈ (r`,Rr`), with R > 1 some constant (which we will fix later),

‖x
b
2
n+1u j‖L2(B+

r ) ≥
C̃0

2
rk0

(where C̃0 = R−k0C0). So the bulk term can absorb the boundary contribution in the right hand side of
(4.11) and (4.13) if δ is small enough.

Hence, (4.11) becomes

m∑
j=0

r−2m+2 j‖x
b
2
n+1∇u j‖L2(B+

r/2) ≤

m∑
j=0

r−2m+2 j−1‖x
b
2
n+1u j‖L2(B+

r )

and (4.13) turns into

m∑
j=0

j∑
k=0

r−2m+ j+k‖x
b
2
n+1∇(∇′) j−kuk‖L2(B+

r/2) ≤

m∑
j=0

j∑
k=0

r−2m+ j+k−1‖x
b
2
n+1(∇′) j−kuk‖L2(B+

r ). (4.14)

In order to deal with the remaining derivatives on the left hand side in (4.14), we notice that

m∑
j=0

j∑
k=0

r−2m+ j+k−1‖x
b
2
n+1(∇′) j−kuk‖L2(B+

r )

≤

m∑
j=0

r−2m+2 j−1‖x
b
2
n+1uk‖L2(B+

r ) +

m−1∑
j=0

j∑
k=0

r−2m+ j+k‖x
b
2
n+1∇(∇′) j−kuk‖L2(B+

r ).

(4.15)
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In order to estimate the remaining (lower order) gradient terms we seek to iterate the Caccioppoli
estimate up to m times. This leads to an estimate of the type (4.15) where the norms on the right hand
side are evaluated in increasingly larger balls. In particular, in order to obtain radii of the size r in
the end, the beginning of the iteration should be carried out with radii of the size r̃ = 2−mr. Notice
that in the Caccioppoli estimates the boundary terms only appear in the estimate for um, so they will
only appear in the first iteration, where r̃ = 2−mr. In order to carry out the iteration argument of the
Caccioppoli estimate as outlined above, we thus have to ensure that r̃ ∈ (r`,Rr`) for some R > 1. This
is satisfied if r ∈ (r`,Cr`) with C > 2m. For technical reasons appearing in the proof of Proposition 4.4,
we choose C = 2m+3.

With the doubling property in hand, we apply a blow-up argument reducing the strong unique
continuation property to the weak unique continuation property. To this end, we introduce the following
rescaled functions:

uσ, j(x) :=
σ−2(m− j)u j(σx)

m∑
k=0
σ−

n+1
2 −

b
2−2(m−k)‖x

b
2
n+1uk‖L2(B+

σ)

. (4.16)

We exploit the previous compactness arguments to pass to the blow-up limit σ → 0 which leads to
a boundary weak unique continuation problem of the blown-up system:

Proposition 4.4. Let u j ∈ H1
loc(R

n+1
+ , xb

n+1) for j ∈ {0, . . . ,m} be weak solutions of the system (1.5),
(1.6) with f0, . . . , fm = 0 satisfying the conditions from (C). Assume also that the tangential restrictions
u j(x′, 0) vanish of infinite order at x0 = 0 and that there exist some j ∈ {0, . . . ,m}, a subsequence
r` → 0 and a constant k0 ∈ N such that

lim
`→∞

r−k0
` ‖x

b
2
n+1u j‖L2(B+

r` ) ≥ C0 > 0.

Let uσ, j be the rescaled functions defined by (4.16) and let {r`} denote the sequence of radii from (4.1).
Then, along a subsequence {σ`}`∈N ⊂ {2r`}`>`0 , for some `0 ∈ N, with σ` → 0 we have uσl, j → u0, j

strongly in L2(B+
4 , x

b
n+1), where the functions u0, j are weak solutions to the following elliptic system:

∆bu0,m = 0 in B+
1 ,

∆bu0, j = u0, j+1 in B+
1 for all j ∈ {0, . . . ,m − 1},

lim
xn+1→0

xb
n+1∂xn+1u0, j = 0 on B′1 for all j ∈ {0, . . . ,m},

(4.17)

with ∆b = x−b
n+1∇ · x

b
n+1∇. Moreover, for all j ∈ {0, . . . ,m} we have

u0, j = 0 on B′1,

and

m∑
j=0

‖x
b
2
n+1u0, j‖L2(B+

1 ) = 1. (4.18)
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Proof. We first note that the functions uσ, j are constructed in such a way that

m∑
j=0

‖x
b
2
n+1uσ, j‖L2(B+

1 ) = 1.

Applying Proposition 4.1 twice with σ ∈ {2r`}`>`0 ∩ (0,
ru0
2 ) (so both σ and 2σ ∈ {(r`, 2m+3r`)}`>`0 ∩

(0, ru0) for any given m), we obtain

m∑
j=0

σ2 j‖x
b
2
n+1u j‖L2(B+

4σ) +

m∑
j=0

σ2 j+1‖x
b
2
n+1∇u j‖L2(B+

4σ) ≤ C
m∑

j=0

σ2 j‖x
b
2
n+1u j‖L2(B+

σ).

After rescaling, this turns into

m∑
j=0

(
‖x

b
2
n+1uσ, j‖L2(B+

4 ) + ‖x
b
2
n+1∇uσ, j‖L2(B+

4 )
)
≤ C

m∑
j=0

‖x
b
2
n+1uσ, j‖L2(B+

1 ) = C,

which holds holds uniformly in σ for the whole family uσ, j. By Rellich’s compactness theorem,
there exist a subsequence {σ`}`∈N ⊂ {2r`}`>`0 with σ` → 0 and functions u0, j ∈ H1(xb

n+1, B
+
4 ) such that

uσ`, j → u0, j strongly in L2(B+
4 , x

b
n+1) and weakly in H1(B+

4 , x
b
n+1) and the normalisation (4.18) holds.

In addition, since the embedding H1(B+
4 , x

b
n+1) ↪→ H

1−b
2 (B′3) is continuous and H

1−b
2 (B′3) is compactly

embedded in L2(B′3), up to a redefinition of the subsequence, uσ`, j → u0, j strongly in L2(B′3) and weakly
in H

1−b
2 (B′3).

The functions uσ, j satisfy weakly the same system (1.5), (1.6) as the original functions u j (again
with f0, . . . , fm = 0) however with a rescaled metric and potentials aσ(x) = a(σx) and

|gσ(x)| = σ1−b|g(σx)| ≤
m∑

j=0

σ1−b+2m− j|q j(σx)||(∇′) juσ,0(x′, 0)|.

Hence, ∫
B+

2

xb
n+1∇ϕ · a(σx)∇uσ, j = −

∫
B+

2

xb
n+1uσ, j+1ϕ, j ∈ {0, . . . ,m − 1},∫

B+
2

xb
n+1∇ϕ · a(σx)∇uσ,m =

∫
B′2

gσϕ,

for any ϕ ∈ C1
c (B+

3 ) ∩Cc(B′3). As a result, in the limit σ` → 0∫
B+

2

xb
n+1∇u0, j · ∇ϕ = −

∫
B+

2

xb
n+1u0, j+1ϕ, j ∈ {0, . . . ,m − 1},∫

B+
2

xb
n+1∇u0,m · ∇ϕ = 0.

Here we have used that by the normalising condition (A3) the metric satisfies ai j(σx) → δi j as σ → 0
and that the boundary integrals vanish of infinite order as we proved in Step 3 of the proof of
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Proposition 4.1. This shows that the functions u0, j are indeed weak solutions to the system in the
statement.

Finally, we prove that the functions u0, j, j ∈ {0, . . . ,m}, vanish on B′1. Indeed,

‖uσ, j‖L2(B′1) =
σ−2(m− j)− n

2 ‖u j‖L2(B′σ)
m∑

k=0
σ−

n+1
2 −

b
2−2(m−k)‖x

b
2
n+1uk‖L2(B+

σ)

,

and whereas the numerator vanishes of infinite order, by our assumption (4.1), the denominator
vanishes of only finite order.

4.2. Strong unique continuation

Here we deduce the strong unique continuation property for solutions which vanish of infinite
order in tangential and normal directions. The proof relies on the associated Carleman estimates from
Proposition 1.8.

Proposition 4.5. Let u j ∈ H1
loc(R

n+1, xb
n+1) for j ∈ {0, . . . ,m} be weak solutions of the system (1.5), (1.6)

with f0, . . . , fm = 0 satisfying the conditions from (C). Assume further that for all j ∈ {0, . . . ,m} and all
k ∈ N

lim
r→0

r−k‖x
b
2
n+1u j‖L2(B+

r ) = 0.

Then, u ≡ 0 in B+
1 .

Proof. Consider the functions ũ j := ηεu j, where ηε is a smooth, radial cut-off function which satisfies
the following bounds:

ηε(x) = 1 for |x| ∈ (2ε, 1), supp(ηε) ⊂ {x ∈ Rn+1
+ : |x| ∈ (ε, 2)}, |ηε(x)| ≤ 1,

|∇αηε(x)| ≤ Cε−|α| for |x| ∈ (ε, 2ε) and |α| ≤ m + 2, α ∈ Nn,

|∇αηε(x)| ≤ C for |x| ∈ (1, 2) and |α| ≤ m + 2,
(4.19)

where 0 < ε � 1. The functions ũ j are solutions to the system from Proposition 1.7 with f j =

2∇ηε · a∇u j + u jLbηε .
We insert the functions ũ j into the Carleman estimate (1.8). Notice that we can pass to the limit ε →

0 by virtue of the infinite rate of vanishing of u j. Arguing as in Step 1 of the proof of Proposition 4.1,
we can drop the boundary contributions. Therefore (1.8) turns into

m∑
j=0

j∑
k=0

τm+1− j‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m+1−k
2 |x|−2m−1+ j+k(∇′) j−kuk‖L2(B+

1 )

≤ C
m∑

j=0

j∑
k=0

j−k∑
i=0

(
τm− j‖eh(− ln(|x|))x

b
2
n+1(1 + h)

m−k
2 |x|−2m+1+ j+k|∇iLbη0||(∇′) j−k−iuk|‖L2(B+

2 )

+ τm− j
i∑

`=0

‖eh(− ln(|x|))x
b
2
n+1(1 + h)

m−k
2 |x|−2m+1+ j+k|∇i+1−`η0||∇

`a||∇(∇′) j−k−iuk|‖L2(B+
2 )

)
.

Finally, passing to the limit τ→ ∞, we obtain u j = 0 in B+
1 for all j ∈ {0, . . . ,m}.
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5. Weak unique continuation

In this section we consider the weak unique continuation property for solutions to the system (4.17).
In spite of weak unique continuation results for the fractional Laplacian already existing in the literature
(see in particular [18]), both our argument and our result contain novel aspects: In contrast to the weak
unique continuation results from Seo [18] our result is a localised unique continuation result (as we
do not need the validity of the equation Lγu = qu in Rn), and hence in particular it is formulated for a
local equation (instead of working with the global fractional Laplacian).

Proposition 5.1. Let u j ∈ H1
loc(B

+
1 , x

b
n+1) for j ∈ {0, . . . ,m} be weak solutions of the system (1.5), (1.6)

in B+
1 with f0, . . . , fm = 0, g = 0 and the metric a of a block form (1.4) where ã satisfies the conditions

(A1)–(A3). Assume also that for all j ∈ {0, . . . ,m} the tangential restrictions u j(x′, 0) vanish on B′1.
Then, u j ≡ 0 in B+

1 .

Proof. We bootstrap the system by applying the weak unique continuation property for scalar
equations: Indeed, by the weak unique continuation property of solutions of the fractional Laplacian
(see [10] and [19]) and regularity results from [25], we first infer that um ≡ 0 in B+

1 . Iteratively, this
then also entails that u j ≡ 0 in B+

1 since, once u j+1 ≡ 0 in B+
1 , then u j satisfies the Caffarelli-Silvestre

equation with zero Dirichlet and zero (weighted) Neumann data. We iterate this until we reach u0.

Remark 5.2. We remark that an argument for the WUCP had already been given by Riesz [39] (relying
on certain regularity conditions, see the discussion in Remark 4.2 in [7]). Using a Kelvin transform he
reduced it to the situation with data vanishing in the exterior of a domain. An argument of a related
flavour for a much larger class of pseudodifferential operators was also used in [9] (see also [40]).

Remark 5.3. We remark that the (weak) unique continuation property requires the Lopatinskii
condition to hold (see [41] and the references therein for a precise definition of the Lopatinskii
condition). If this is violated even if “formally” there are sufficiently many boundary conditions
prescribed, one will in general not be able to infer the vanishing of u. This is for instance the case for
problem

∆2u = 0 in B+
1 ⊂ R

2,

u = 0, ∂yu = 0, ∂xu = 0, ∂xxu = 0 on B′1.

By simply invoking counting arguments these boundary conditions should yield an overdetermined
system. They however do not (the function w(x, y) = y2x is a non-trivial solution), as the Lopatinskii
condition is not satisfied.

As a consequence of the localised formulation of our weak unique continuation property, it for
instance applies to settings which arise in inverse problems [7–9]. This allows us to prove the
antilocality of the fractional Laplacian for any order γ > 0 with γ < N, i.e., it allows us to prove
Proposition 1.9, which we postpone to the next section.

6. Proofs of the unique continuation results for the fractional Laplacian

In this section, we rely on the connection between the systems representations for the higher order
fractional Laplacian (see Proposition 2.1 as well as Propositions A.6 and A.7 in the Appendix)
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and–building on the previous compactness results—present the proofs of Theorems 1–4 and of
Propositions 1.9 and 1.11.

6.1. Proofs of strong unique continuation properties for the fractional Laplacian

We begin by proving Theorems 1–3:

Proofs of Theorems 1, 2 and 3. We seek to reduce the strong unique continuation properties for the
fractional Laplacian to the previously deduced results on the systems case. We invoke Proposition 2.1
and rewrite the problem as a system of the form (2.3), where f = u, m = bγc and b = 1 − 2γ + 2bγc.
We seek to apply a combination of Propositions 4.4, 4.5 and 5.1. To this end, we have to show that the
functions u j(x′, 0) = L ju(x′) with j ∈ {1, . . . , bγc} vanish of infinite order in the tangential directions
on the boundary. By assumption, we have that the function u0(x′, 0) = u(x′) vanishes of infinite order
at x′0 = 0 in the tangential directions. In order to obtain the desired infinite order of vanishing of u j in
the tangential directions on the boundary, we use an interpolation argument: Let η be a smooth cut-off

function which is equal to one on B′r and which is supported in B′4r. Then,

‖L ju‖L2(B′r) ≤ ‖u‖H2 j(B′r) ≤ C‖uη‖H2 j(Rn) ≤ C‖uη‖
1− j

γ

L2(Rn)‖uη‖
j
γ

H2γ(Rn)

≤ ‖u‖
1− j

γ

L2(B′4r)‖u‖
j
γ

H2γ(B′4r).

Since lim
r→0

r−`‖u‖L2(B′4r) = 0 for any ` ∈ N and as u ∈ H2γ(B′1), this implies that the same holds for

‖L ju‖L2(B′r) and thus for ‖u j(·, 0)‖L2(B′r) with j ∈ {0, . . . , bγc}. Moreover, due to the previous identification
of b and m in terms of γ and bγc, the conditions from (C) are satisfied.

Hence, if we assume that (4.1) holds for the functions u j with j ∈ {0, . . . ,m}, the blow-up argument
from Proposition 4.4 is applicable and yields blow-up solutions u0, j with u0, j = 0 on B′1 for
j ∈ {0, . . . ,m} which simultaneously satisfy the normalisation condition (4.18). By the weak unique
continuation result from Proposition 5.1, the tangential and normal vanishing of u0, j on B′1 however
entails that u0, j = 0 in B+

1 for j ∈ {0, . . . ,m}, which contradicts (4.18). Therefore, (4.1) cannot hold
and the functions u j for j ∈ {0, . . . ,m} must vanish of infinite order in tangential and normal
directions. Thus we invoke Proposition 4.5 to obtain u j = 0 in B+

1 for j = 0, . . . ,m. Using that the
equation for the generalised Caffarelli-Silvestre extension holds globally, the vanishing of u on B+

1
propagates through the upper half plane Rn+1

+ : Indeed, by the weak unique continuation property for
uniformly elliptic equation and by (2.3) we infer um ≡ 0 in Rn+1

+ . Plugging this into the equation for
um−1 and again using the weak unique continuation property for solutions to uniformly elliptic
equations in the upper half plane implies also um−1 ≡ 0 in Rn+1

+ . Iterating this further leads to u j ≡ 0 in
Rn+1

+ , whence u ≡ 0 in Rn. This concludes the argument.

6.2. Proof of unique continuation from measurable sets

In this section we prove Theorem 4 by reducing it to the weak unique continuation property for the
generalised Caffarelli-Silvestre extension.

By the representations from Proposition 2.1 (see also Propositions A.6 and A.7) we rewrite the
problem of Theorem 4 as a system of the form (2.3), where f = u, m = bγc and b = 1−2γ+2bγc. Notice
that by Proposition 2.1 and the assumptions in Theorem 4 we have that |Lγ f (x′)| ≤ |q(x′)||u0(x′, 0)| with
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q ∈ L∞(Rn) and u0(·, 0) ∈ H2γ(Rn). By assumption, u0(x′, 0) = u(x′) vanishes on a measurable set
E ⊂ Rn × {0} of density one at x0 = 0.

Under these assumptions and supposing that (4.1) holds, we prove an analogous blow-up result as
in Proposition 4.4:

Proposition 6.1. Let u j with j ∈ {0, . . . ,m} be the functions from above and let uσ, j with j ∈ {0, . . . ,m}
be the associated rescaled functions defined in (4.16). Suppose further that (4.1) holds. Then, along a
subsequence {σ`}`∈N ⊂ {2r`}`∈N, `≥`0 with σ` → 0 we have uσ`, j → u0, j strongly in L2(B+

4 , x
b
n+1), where

u0, j is a weak solution to the following elliptic system

∆bu0,m = 0 in B+
1 ,

∆bu0, j = u0, j+1 in B+
1 for all j ∈ {0, . . . ,m − 1},

lim
xn+1→0

xb
n+1∂xn+1u0, j = 0 on B′1 for all j ∈ {0, . . . ,m}.

Moreover, for all j ∈ {0, . . . ,m} we have

u0, j = 0 on B′1,

and
m∑

j=0

‖x
b
2
n+1u0, j‖L2(B+

1 ) = 1.

In order to obtain the properties of the blow-up limit, we deduce a smallness condition for the
(not yet blown-up) function u0 in tangential directions on the boundary. By virtue of an interpolation
inequality, this will be inherited to all the (not yet blown-up) functions u j with j ∈ {0, . . . ,m} on the
boundary.

Lemma 6.2. Let u j with j ∈ {0, . . . ,m} be as in Proposition 6.1. For any ε > 0, there exists a radius
r0 > 0 such that if r ∈ (0, r0)

‖u0‖L2(B′r) ≤ ε

m∑
j=0

r2 j− 1+b
2 ‖x

b
2
n+1u j‖L2(B+

r ).

Proof. Since x0 = 0 is a point of density one in E ∩ B′4, given δ > 0, there exists a radius rδ > 0 such
that if r ∈ (0, rδ)

|B′r ∩ Ec| ≤ δ|B′r|.

On the other hand, using Hölder’s inequality (n > 1 − b)

‖u0‖L2(B′r) = ‖u0‖L2(B′r∩Ec) ≤ |B′r ∩ Ec|
1−b
2n ‖u0‖L

2n
n+1−b (B′r)

. (6.1)

By Sobolev and trace inequalities

‖u0‖L
2n

n+1−b (B′r)
≤ C‖u0‖H

1−b
2 (B′r)
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≤ C(r−1‖x
b
2
n+1u0‖L2(B+

2r) + ‖x
b
2
n+1∇u0‖L2(B+

2r))

≤

m∑
j=0

r2 j−1‖x
b
2
n+1u j‖L2(B+

2r) +

m∑
j=0

r2 j‖x
b
2
n+1∇u j‖L2(B+

2r).

Now we use the estimate from Proposition 4.1, where according with Remark 4.2 no assumptions on
the vanishing order of u j are necessary and it holds for r ∈ (0, r0) with r0 independent of u0:

‖u0‖L
2n

n+1−b (B′r)
≤ C

m∑
j=0

r2 j−1‖x
b
2
n+1u j‖L2(B+

r ).

Therefore, by combining this with (6.1) and recalling the definition of δ > 0 from above, we obtain

‖u0‖L2(B′r) ≤ Cδ
1−b
2n

m∑
j=0

r2 j− 1+b
2 ‖x

b
2
n+1u j‖L2(B+

r ).

Choosing δ such that Cδ
1−b
2n = ε, the result holds.

Proof of Proposition 6.1. The proof of Proposition 6.1 follows along the same lines as the one of
Proposition 4.4 until the moment of proving u0, j|B′1 = 0. Here we use Lemma 6.2 to obtain the same
result: Indeed, after rescaling it implies

‖uσ,0‖L2(B′1) ≤ ε

m∑
j=0

‖x
b
2
n+1uσ, j‖L2(B+

1 ) = ε.

Therefore, in the limit σ` → 0,

‖u0,0‖L2(B′1) ≤ ε.

Since this holds for any ε > 0, in particular for any sequence εk → 0, we infer u0,0|B′1 = 0.
The proof of u0, j|B′1 = 0 for j = 1, . . . ,m relies on an interpolation result together with the previous

bound: Considering a smooth cut-off function η with η = 1 in B′r and supp(η) ⊂ B′4r, we obtain

‖u j‖L2(B′r) ≤ ‖L ju0‖L2(B′r) ≤ C‖u0‖H2 j(B′r) ≤ C‖u0η‖H2 j(Rn)

≤ C‖u0η‖
1− j

γ

L2(Rn)‖u0η‖
j
γ

H2γ(Rn) ≤ C‖u0‖
1− j

γ

L2(B′4r)‖u0‖
j
γ

H2γ(B′4r).

By rescaling, we then also infer

‖uσ, j‖L2(B′r) ≤ C‖uσ,0‖
1− j

γ

L2(B′4r)‖uσ,0‖
j
γ

H2γ(B′4r).

Thus, the smallness of u0 and uσ,0 also entails the smallness of u j and uσ, j on the boundary. The
remainder of the argument follows analogously as in the proof of Proposition 4.4.
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Proof of Theorem 4. We again have a dichotomy: Rewriting the equation as a solution to a system of
the form (2.3), we either have that all functions u j with j ∈ {0, . . . ,m} vanish of infinite order at some
point in E or that (4.1) holds for the points in E.

If (4.1) holds, we may apply Proposition 6.1 which leads to normalised blow-up solutions u0, j with
j ∈ {0, . . . ,m} which are non-trivial in B+

1 . This however contradicts the weak unique continuation
statement from Proposition 5.1 which implies that u0, j = 0 in B+

1 for j ∈ {0, . . . ,m}. Hence, (4.1) cannot
hold. Therefore, all the functions u j with j ∈ {0, . . . ,m} must vanish of infinite order in tangential and
normal directions at x0 = 0 ∈ E. This allows us to directly apply Proposition 4.5, whence we conclude
that u j = 0 in Rn+1

+ for j ∈ {0, . . . ,m} and thus also u ≡ 0 in Rn.

6.3. Applications of the unique continuation results

We turn to the proof of the antilocality result. As above we emphasise that in this case, we do not
assume the validity of an equation on the whole space Rn. Nevertheless the antilocality of the fractional
Laplacian entails the claimed strong rigidity property.

Proof of Proposition 1.9. By Proposition 2.1 we can consider the extension u and the functions u j =

L j
bu for j ∈ {0, . . . , bγc}, which solve a system of the form (2.3). Thus, if f = 0 and Lγ f = 0 on B′1,

(2.3) reduces to the setting in Section 5, whence we conclude that u j = 0 on B+
1 . Since the nonlocal

equation is assumed to hold in Rn, the vanishing of u j can be propagated to the whole upper half space
Rn+1

+ , whence we conclude that u ≡ 0 in Rn.

With the global unique continuation result of Proposition 1.9 in hand, the proof of Proposition 1.11
follows by a duality argument and the Fredholm property of the fractional Schrödinger equation (see
[24]). In particular, this is of similar flavour as a number of approximation properties which had been
used to treat inverse problems for nonlocal equation in [7, 8, 27].

We consider the fractional Schrödinger equation

Lγu + qu = 0 in Ω,

u = f in Rn \Ω.
(6.2)

where L is as in Proposition 1.11.
Considering the bilinear form

Bq(w, v) := (Lγ/2w, Lγ/2v)Rn + (qw, v)Ω,

it is possible to show the well-posedness of the problem, provided zero is not a Dirichlet eigenvalue
of the problem. This follows similarly as explained for instance in [7]. In this setting, we define the
associated Poisson operator as

Pq : Hγ(Rn \Ω)→ Hγ(Ω), f 7→ u f , (6.3)

where u f is a weak solution to (6.2). With this preparation, we address the proof of Proposition 1.11:

Proof of Proposition 1.11. It suffices to prove that the set

R := {u = Pq f , f ∈ C∞0 (W)}
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is dense in L2(Ω), where W ⊂ Ω̃ \ Ω is any open subset. We can suppose without loss of generality
that B′1 ⊂ W by assupmtion. As in [7] we rely on the Hahn-Banach theorem: Assuming that v ∈ L2(Ω)
is such that (Pq f , v)Ω = 0 for all f ∈ C∞0 (W), it suffices to show that v = 0. In order to infer this,
we note that by the well-posedness results for the inhomogeneous fractional Schrödinger equation, we
may define w to be a solution to

(Lγ + q)w = v in Ω,

w = 0 in Rn \Ω.

Then, as in [7],

0 = (Pq f , v)Ω = (Pq f , Lγw + qw)Ω = −( f , Lγw)Rn .

As a consequence, Lγw = 0 = w in W. Thus, by Proposition 1.9, the function w vanishes identically in
Rn, whence also v ≡ 0. This concludes the argument.
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9. Rüland A, Salo M (2017) The fractional Calderón problem: Low regularity and stability.
Nonlinear Anal, in press.
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37. Rüland A, Wang JN (2018) On the fractional Landis conjecture. J Funct Anal, in press.

38. Adolfsson V, Escauriaza L, Kenig C (1995) Convex domains and unique continuation at the
boundary. Rev Mat Iberoam 11: 513–525.
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A. Appendix: The higher order fractional Laplacian and degenerate elliptic systems

In this section, in order to keep our presentation self-contained, we connect the previous discussion
on systems with certain boundary conditions to the properties of the higher order fractional Laplacian.
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Here we mainly recall several known results from the literature and rely heavily on the observations
from [1, 15, 21] but also refer to [42–44] and the references therein.

We split the section into two parts: First, we derive the representation of the constant coefficient
higher order fractional Laplacian operators through a generalised Caffarelli-Silvestre extension. Next,
we deduce analogous results for operators with non-constant coefficients.

A.1. The constant coefficient operator – characterisation through a system of degenerate elliptic
equations

The starting point of our discussion is the definition of the fractional Laplacian as a Fourier
multiplier:

(−∆′)γu(x′) = F −1(|ξ|2γ F u)(x′), γ > 0,

where F denotes the Fourier transform. Since we seek to study the unique continuation property of
the higher order fractional Laplacian by techniques which are available for local (possibly weighted)
equations, we are particularly interested in Caffarelli-Silvestre type extension properties for the higher
order fractional Laplacian. These exist in different generalities, we only recall two of these and refer
to the literature for more general results. As we aim at applying these characterisations of the (higher
order) fractional Laplacian for our study of the unique continuation property, we limit ourselves here to
showing that starting from the fractional Laplacian of a function f , it is possible to find a suitable and
sufficiently regular extension u of f which obeys a corresponding equation/ a corresponding system of
equations. We however do not address the full equivalence (in that we do not show that any solution to
the system at hand is related to the fractional Laplacian of a suitable function). For this we refer to the
literature cited above.

We begin by recalling that also the higher order fractional Laplacian can be realised as the solution
to a degenerate elliptic, second order boundary value problem [1, 15]:

For γ ∈ R+ we consider the equation(
∆ +

1 − 2γ
xn+1

∂xn+1

)
u = 0 in Rn+1

+ ,

u = f on Rn.

(A.1)

Here we are interested in solutions

(i) which (by elliptic regularity) are classical solutions in Rn × (0,∞),
(ii) which attain the boundary data f ∈ Hµ(Rn) with µ ∈ R in an Hµ(Rn) sense as xn+1 → 0,

(iii) and which have some decay at infinity in the sense that u ∈ Ḣ1(Rn+1
+ , x1−2(γ−bγc)

n+1 ), where for t ∈ R
we define btc := max{k ∈ N : k ≤ t}.

Solutions to degenerate elliptic equations of this form have been investigated in the literature, even in
the context of fully nonlinear equations [45]. Working with extensions of a problem from Rn into Rn+1

+ ,
in this section, we use the notational convention that

x = (x′, xn+1) ∈ Rn+1
+ , x′ ∈ Rn, xn+1 > 0.
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As we view the strong unique continuation property for the fractional Laplacian as a strong
boundary unique continuation property of the associated degenerate extension problem, it is one of
our main goals to identify the associated boundary values for the generalised Caffarelli-Silvestre
extension. In particular, we aim at showing that, as in the original Caffarelli-Silvestre characterisation
of the fractional Laplacian, the formulation (A.1) also allows one to compute the fractional Laplacian
(−∆′)γ f (x′) as an “iterated Neumann” map from the knowledge of its generalised Caffarelli-Silvestre
extension u(x′, xn+1).

Lemma A.1. Let γ > 0, µ ∈ R and assume that f ∈ Hµ(Rn). Let F x′ denote the tangential Fourier
transform. Then there exists an extension operator

Eγ : Hµ(Rn)→ C∞loc(R
n × (0,∞)),

f 7→ Eγ f = u = cγ,n F
−1
x′ (F x′( f )(ξ)φγ(|ξ|xn+1))(x) = cγ,n f ∗Gγ(x), cγ,n , 0,

such that Eγ f is a solution to

∆u +
1 − 2γ

xn+1
∂xn+1u = 0 in Rn+1

+ ,

and

Eγ f (x′, xn+1)→ f (x′) in Hµ(Rn) as xn+1 → 0. (A.2)

Here φγ(t) = tγKγ(t) and Kγ(t) denotes a modified Bessel function of the second kind.
Also, there exists a constant c̃γ,n , 0 such that

c̃γ,nx1−2γ+2bγc
n+1 ∂xn+1((x−1

n+1∂xn+1)
bγcu(x′, xn+1))→ (−∆′)γ f (x′) in Hµ−2γ(Rn) as xn+1 → 0. (A.3)

Proof. We first derive the desired representation of the extension operator: To this end, we solve (A.1)
by means of a tangential Fourier transform. Fourier transforming in the tangential directions, one
obtains for the partial Fourier transform û(ξ, xn+1) := F x′ u(ξ, xn+1) the following ODE

û′′ +
1 − 2γ

xn+1
û′ − |ξ|2û = 0 in (0,∞),

û = f̂ on {xn+1 = 0}.

We rewrite û(ξ, xn+1) = v(ξ, |ξ|xn+1) and deduce a similar ODE for this function, but where we can scale
out the |ξ| contribution:

v′′ +
1 − 2γ

xn+1
v′ − v = 0 in (0,∞),

v = f̂ on {xn+1 = 0}.

Further, setting v(ξ, xn+1) = xγn+1g(ξ, xn+1) for some function g, we are lead to a modified Bessel
equation for g (as a function of xn+1):

x2
n+1g′′ + xn+1g′ − (γ2 + x2

n+1)g = 0 in (0,∞),
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with corresponding initial conditions. Since we are looking for a function with decay at infinity, by
the asymptotics of modified Bessel functions (see [47]) we infer that g(xn+1, ξ) = C(ξ)Kγ(xn+1), where
Kγ(t) denotes a modified Bessel function of the second kind.

Returning to our original variables and using the asymptotics of Kγ(t) as t → 0, we thus obtain that
û(ξ, xn+1) = cγ,n f̂ (ξ)φγ(|ξ|xn+1), where φγ(t) = tγKγ(t) and cγ,n , 0.

By the regularity of φγ(t) for t > 0 the function u(x) := F −1
x′ (cγ,n f̂ (ξ)φγ(|ξ|xn+1)) is C∞loc(R

n × (0,∞)).
In order to observe the Hµ(Rn) convergence from (A.2) we note that

‖Eγ f (·, xn+1) − f (·)‖Hµ(Rn) = ‖(1 + |ξ|2)
µ
2
(
cγ,n F x′( f )(ξ)φγ(|ξ|xn+1) − F x′( f )(ξ)

)
‖L2(Rn)

≤ ‖(1 + |ξ|2)
µ
2 F x′( f )(ξ)

(
cγ,nφγ(|ξ|xn+1) − 1

)
‖L2({|ξ|<εx−1

n+1})

+ ‖(1 + |ξ|2)
µ
2 F x′( f )(ξ)(cγ,nφγ(|ξ|xn+1) − 1)‖L2({|ξ|≥εx−1

n+1})

≤ ‖(1 + |ξ|2)
µ
2 F x′( f )(ξ)‖L2(Rn) sup

|z|≤ε
|cγ,nφγ(z) − 1|

+ ‖(1 + |ξ|2)
µ
2 F x′( f )(ξ)‖L2({|ξ|≥εx−1

n+1})
sup
|z|>ε
|cγ,nφγ(z) − 1|.

Using that cn,γφγ(ε)→ 1 as ε → 0, the boundedness of φγ(t) as t → ∞ and the fact that for f ∈ Hµ(Rn),
‖(1 + |ξ|2)

µ
2 F ( f )(ξ)‖L2({|ξ|≥εx−1

n+1})
→ 0 as xn+1 → 0, this implies the desired limiting behaviour.

Finally, in order to obtain (A.3), we now use the asymptotics and recurrence relations of the
modified Bessel functions [47]. We have

d
dt

(tsKs(t)) = cstsKs−1(t),

Ks(t) = cst−s as t → 0, s > 0, K−s(t) = Ks(t) for s ≥ 0.
(A.4)

Recalling the expression for u (or rather û), we thus obtain

x−1
n+1∂xn+1 û(ξ, xn+1) = cγ,nx−1

n+1∂xn+1( f̂ (ξ)φγ(|ξ|xn+1)) = cγ,nx−1
n+1 f̂ (ξ)|ξ|φ′γ||ξ|xn+1

(A.4)
= c̃γ,n|ξ|2 f̂ (ξ)φγ−1(|ξ|xn+1).

Abbreviating Nγ( f )(x′, xn+1) := x1−2γ+2bγc
n+1 ∂xn+1((x−1

n+1∂xn+1)
bγcu(x′, xn+1)), we thus infer

F x′ N( f )(ξ, xn+1) = Cγ,n|ξ|
2bγc f̂ (ξ)|ξ|Kγ−bγc−1(|ξ|xn+1)x1−2γ+2bγc

n+1 (|ξ|xn+1)γ−bγc

= |ξ|2γ f̂ (ξ)
(
Cγ,nK1−γ−bγc(|ξ|xn+1)(|ξ|xn+1)1−γ+bγc

)
.

As a consequence, for Cγ,n := c̃γ,nCγ,n,

‖c̃γ,nNγ f (·, xn+1) − (−∆′)γ f (·)‖Hµ−2γ(Rn)

= ‖(1 + |ξ|2)
µ−2γ

2
(
|ξ|2γ F x′( f )(ξ)

(
Cγ,nK1−γ−bγc(|ξ|xn+1)(|ξ|xn+1)1−γ+bγc

)
− |ξ|2γ F x′( f )(ξ)

)
‖L2(Rn)

≤ ‖(1 + |ξ|2)
µ−2γ

2 |ξ|2γ F x′( f )(ξ)
(
Cγ,nK1−γ−bγc(|ξ|xn+1)(|ξ|xn+1)1−γ+bγc − 1

)
‖L2({|ξ|<εx−1

n+1})

+ ‖(1 + |ξ|2)
µ−2γ

2 |ξ|2γ F x′( f )(ξ)
(
Cγ,nK1−γ−bγc(|ξ|xn+1)(|ξ|xn+1)1−γ+bγc − 1

)
‖L2({|ξ|≥εx−1

n+1})

≤ ‖(1 + |ξ|2)
µ
2 F x′( f )(ξ)‖L2(Rn) sup

|z|≤ε

∣∣∣Cγ,nK1−γ−bγc(z)z1−γ+bγc − 1
∣∣∣
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+ ‖(1 + |ξ|2)
µ
2 F x′( f )(ξ)‖L2({|ξ|≥εx−1

n+1})
sup
|z|>ε

∣∣∣Cγ,nK1−γ−bγc(z)z1−γ+bγc − 1
∣∣∣ .

Due to the asymptotics of the modified Bessel functions (see (A.4)) and the regularity of f in the limit
xn+1 → 0 this implies the desired result for a proper choice of c̃γ,n.

Corollary A.2. Let f ∈ Hγ(Rn) and let u = Eγ f be the extension from Lemma A.1. Then we also have
the following bulk estimates:

‖ F
−1
x′ (|ξ|γ+ 1

2 F x′ u)‖L2(Rn+1
+ ) ≤ C‖ f ‖Hγ(Rn),

‖x
1−2(γ−bγc)

2
n+1 ∇u‖L2(Rn+1

+ ) ≤ C‖ f ‖Hγ−bγc(Rn),
(A.5)

where F x′ denotes the tangential Fourier transform.

Proof. In order to deduce the bulk estimates from (A.5) we note that

‖ F
−1
x′ (|ξ|γ+ 1

2 F x′ u)‖L2(Rn+1
+ ) = ‖|ξ|γ+ 1

2 F x′ u‖L2(Rn+1
+ ) = ‖|ξ|γ+ 1

2 cγ,n f̂ (ξ)φγ(|ξ|xn+1)‖L2(Rn+1
+ )

= cγ,n‖φγ(z)‖L2((0,∞))‖|ξ|
γ F x′ f ‖L2(Rn),

where we used the change of coordinates z = |ξ|xn+1. Using an analogous change of coordinates, we
also obtain

‖x
1−2(γ−bγc)

2
n+1 ∇′u‖L2(Rn+1

+ ) = cγ,n‖(|ξ|xn+1)
1−2(γ−bγc)

2 |ξ|1−
1−2(γ−bγc)

2 (F x′ f (ξ))φγ(|ξ|xn+1)‖L2(Rn+1
+ )

= cγ,n‖z
1−2(γ−bγc)

2 φγ(z)‖L2((0,∞))‖|ξ|
γ−bγc F x′ f ‖L2(Rn),

and

‖x
1−2(γ−bγc)

2
n+1 ∂xn+1u‖L2(Rn+1

+ ) = cγ,n‖x
1−2(γ−bγc)

2
n+1 |ξ|(F x′ f (ξ))φ′γ||ξ|xn+1‖L2(Rn+1

+ )

= Cγ,n‖x
1−2(γ−bγc)

2
n+1 |ξ|(F x′ f (ξ))(|ξ|xn+1)φγ−1(|ξ|xn+1)‖L2(Rn+1

+ )

= Cγ,n‖(|ξ|xn+1)
1−2(γ−bγc)

2 |ξ|1−
1−2(γ−bγc)

2 (F x′ f (ξ))(|ξ|xn+1)φγ−1(|ξ|xn+1)‖L2(Rn+1
+ )

= Cγ,n‖z
3−2(γ−bγc)

2 φγ−1(z)‖L2((0,∞))‖|ξ|
γ−bγc F x′ f ‖L2(Rn).

Here, in the passage from φ′γ(t) to tφγ−1(t), we used the recurrence relations (A.4). This concludes the
discussion of the mapping properties of Eγ and provides the estimates from (A.5).

While the formulation (A.3) already provides a convenient alternative local characterisation of the
fractional Laplacian as an iterated and weighted Dirichlet-to-Neumann map for a second order equation
in the upper half-plane, if γ < (0, 1) it is not immediately associated in a natural way with a finite energy

(the quantity ‖x
1−2γ

2
n+1 ∇u‖L2(Rn+1

+ ) diverges in general).
In order to remedy this, in the sequel, we recall that the fractional Laplacian is also related to a

Dirichlet-to-Neumann map for a system (or, equivalently, a higher order equation) which can
naturally be associated with a finite energy [15]. This provides the natural functional analytic
framework for our discussion of the unique continuation properties of the higher order fractional
Laplacian and explains our focus on unique continuation properties for systems with Muckenhoupt
weights in the earlier sections.

In order to derive the desired higher order equation for u, we begin by discussing the bulk equation:
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Lemma A.3 (Lemma 4.2 in [15]). Let γ > 0 and let u be a solution to the bulk equation in (A.1). Then,
for k ∈ {0, . . . , bγc} the function wk = (∆b)ku with ∆b := x−b

n+1∇ · x
b
n+1∇ and b = 1 − 2γ + 2bγc ∈ (−1, 1)

satisfies

∆wk +
1 − 2γ + 2k

xn+1
∂xn+1wk = 0 in Rn+1

+ . (A.6)

In particular,

(∆b)bγc+1u = 0 in Rn+1
+ . (A.7)

The equation (A.7) provides us with the bulk equation which we are working with in the sequel.
For self-containedness, we recall the argument for Lemma A.3 from [15].

Proof. We show that if a function w solves

∆w +
a

xn+1
∂xn+1w = 0 in Rn+1

+ (A.8)

with a ∈ R, then w1 := ∆bw solves

∆w1 +
a + 2
xn+1

∂xn+1w1 = 0 in Rn+1
+ .

To this end, we observe that

∆w1 = ∆∆bw = ∆

(
∆w +

b
xn+1

∂xn+1w
)

(A.8)
= ∆

(
b − a
xn+1

∂xn+1w
)

=
b − a
xn+1

∆∂xn+1w +
2(a − b)

x2
n+1

∂2
xn+1

w +
2(b − a)

x3
n+1

∂xn+1w

= (2 + a)
b − a
x2

n+1

(
∂xn+1w
xn+1

− ∂2
xn+1

w
)

= −
2 + a
xn+1

∂xn+1

(
b − a
xn+1

∂xn+1w
)

(A.8)
= −

2 + a
xn+1

∂xn+1w1.

This concludes the proof.

Next we seek to complement (A.7) with suitable boundary conditions. To this end, we use the
explicit form of u which was deduced in the proof of Lemma A.1. It entails the validity of certain
weighted Neumann conditions and provides tangential limits for the associated higher order Dirichlet
data:

Lemma A.4. Let γ > 0, µ ∈ R, let f ∈ Hµ(Rn) and let u = Eγ f = Gγ ∗ f be the solution to (A.1) from
Lemma A.1. For xn+1 > 0 and k ∈ {0, . . . , bγc}, define wk := (∆b)ku, where ∆b := x−b

n+1∇ · xb
n+1∇ and

b = 1 − 2γ + 2bγc ∈ (−1, 1). Then we have that for all k ∈ {0, . . . , bγc} it holds

wk(x′, xn+1)→ cn,γ,k(−∆′)ku(x′, 0) = cn,γ,k(−∆′)k f (x′) in Hµ−2k(Rn) as xn+1 → 0, (A.9)
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for some constant cn,γ,k , 0. The functions wk are in C∞loc(R
n × (0,∞)) and for any ν ∈ R they obey the

bounds

‖ F
−1
x′ (|ξ|ν+

1
2 F x′ wk)‖L2(Rn+1

+ ) ≤ ‖ f ‖Ḣν+2k(Rn),

‖|∇′|νx
1−2(γ−bγc)

2
n+1 ∇wk‖L2(Rn+1

+ ) ≤ C‖ f ‖Ḣ2k+γ−bγc+ν(Rn).
(A.10)

Moreover, for any k ∈ {0, . . . , bγc − 1}

x1−2γ+2bγc
n+1 ∂xn+1wk(x′, xn+1)→ 0 in Hµ−2γ+2bγc−2k(Rn) as xn+1 → 0, (A.11)

and for some constant cn,γ , 0

x1−2γ+2bγc
n+1 ∂xn+1wbγc(x′, xn+1)→ cn,γ(−∆′)γ f (x′) in Hµ−2γ(Rn) as xn+1 → 0. (A.12)

Proof. First, by induction, we show that

ŵk(ξ, xn+1) = cn,γ,k|ξ|
2k f̂ (ξ)φγ−k(|ξ|xn+1). (A.13)

For k = 0 this is true by Lemma A.1. It thus suffices to prove the induction step. By Lemma A.3 and
the equation for wk we have

wk+1 = ∆bwk =
2bγc − 2k

xn+1
∂xn+1wk in Rn+1

+ .

Using the claimed representation for wk, i.e., ŵk(ξ, xn+1) = cn,γ,k|ξ|
2k f̂ (ξ)φγ−k(|ξ|xn+1) and the asymptotic

recurrence relations for modified Bessel functions (A.4), this directly implies

ŵk+1(ξ, xn+1) =
2bγc − 2k

xn+1
∂xn+1ŵk(ξ, xn+1)

= (2bγc − 2k)cn,γ,k|ξ|
2k f̂ (ξ)|ξ|2Cγ,kφγ−k−1(|ξ|xn+1)

= cn,γ,k+1|ξ|
2k+2 f̂ (ξ)φγ−k−1(|ξ|xn+1).

The representation from (A.13) together with the asymptotics from (A.4) then directly entails
(A.9), (A.11) and (A.12). Here as in the proof of Lemma A.1 all limits should be understood in the
corresponding Sobolev spaces. Indeed, for instance, if k ∈ {0, . . . , bγc − 1}, by invoking (A.4), we have

∂xn+1ŵk(ξ, xn+1) = cn,γ,k|ξ|
2k f̂ (ξ)|ξ|φ′γ−k||ξ|xn+1 = c̃n,γ,k|ξ|

2k+1 f̂ (ξ)(|ξ|xn+1)φγ−k−1(|ξ|xn+1).

Thus, similarly as in the proof of Lemma A.1, we infer

c̃−1
n,γ,k‖x

1−2γ+2bγc
n+1 ∂xn+1ŵk(ξ, xn+1)‖Hµ−2γ+2bγc−2k(Rn)

= ‖(1 + |ξ|2)
µ−2γ+2bγc−2k

2 |ξ|2k+2γ−2bγc F ( f )(ξ)(|ξ|xn+1)2−2γ+2bγcφγ−k−1(|ξ|xn+1)‖L2(Rn)

≤ ‖(1 + |ξ|2)
µ
2 F ( f )(ξ)‖L2(Rn) sup

|z|≤ε
|z2−2γ+b2γcφγ−k−1(z)|

+ ‖(1 + |ξ|2)
µ
2 F ( f )(ξ)‖L2({|ξ|≥εx−1

n+1})
sup
|z|>ε
|z2−2γ+b2γcφγ−k−1(z)|.

Relying on the asymptotics of the Bessel functions and passing to the limit xn+1 → 0 then leads to
(A.11). The remaining limits are obtained analogously.

Finally, the bounds from (A.10) are deduced as those from (A.5) in Corollary A.2.
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In analogy to the notation from Lemma A.1, we introduce the notation Eγ,k f := wk.
We next show that it is possible to obtain localised regularity estimates for the functions wk from

Lemma A.3. This is helpful in the discussion of the global unique continuation properties for the
fractional Laplacian. These are particularly relevant in the analysis of associated fractional inverse
problems.

Lemma A.5. Let ν ∈ R and assume that f ∈ H2k+γ−bγc+2N(B′1) for some N ∈ N and k ∈ {0, . . . , bγc}.
Then for all r ∈ (0, 1) we have that

‖|∇′|2N x
1−2(γ−bγc)

2
n+1 ∇wk‖L2(B+

r ) ≤ Cr < ∞.

The argument for this relies on the pseudolocality of the operator at hand.

Proof. We split

wk = Eγ,k( fη) + Eγ,k( f (1 − η)),

where η is a cut-off function that is one on B′r for some r ∈ (0, 1) and vanishes outside of B′1. For
Eγ,k( fη) the claim is a direct consequence of Lemma A.4. It hence suffices to study the regularity of
Eγ,k( f (1−η)). To this end, we argue as in [9]. For convenience of notation we only prove the argument
for k = 0; the argument for k ∈ {1, . . . , bγc} is analogous. Let ψ be a second smooth cut-off function
which is equal to one on the support of η and vanishes outside of B′1. Then,

(ψu2)(x′, ε) = ψ(x′)(Pγ
ε ∗ ((1 − η) f ))(x′) =: Tε f (x′).

By an explicit computation, we obtain that Pγ
ε (x′) := F −1

x′ (φγ(ε | · |))(x′) = cγ,n ε2γ

(|x′ |2+ε2)
n+2γ

2
(this exploits

formula 9.6.25 in [46]). Using the explicit form of Pγ
ε (x′) or heat kernel estimates (as outlined in the

next section and in [14]), we obtain that for any a > 0∫
|z|>a

|(∇′)αPγ
ε (z)|dz =

∫
|z|>a

ε−n|(∇′)αPγ
1

( z
ε

)
|dz =

∫
|y|>a/ε

ε−|α||(∇′)αPγ
1(y)|dy

≤ Cn,α,γ

∫
|y|>a/ε

ε−|α||y|−n−2γ−|α|dy ≤ Cε2γ.

(A.14)

As the convolution in the expression for Tε is only active in regions in which |x′ − y′| > a for some
suitable a > 0, by virtue of Schur’s lemma and an integration by parts, we then deduce that

‖〈∇′〉2NTε(〈∇′〉2Ng)‖L2(Rn) ≤ Cε2γ‖g‖L2(Rn),

whence

‖Tε f ‖H2N (Rn) ≤ CNε
2γ‖ f ‖H−2N (Rn).

Integrating in xn+1, then implies that

‖x
1−2(γ−bγc)

2
n+1 (∇′)2Nu2‖L2(B′r×(0,1)) ≤ C‖x

1−2(γ−bγc)
2

n+1 (∇′)2N(ψu2)‖L2(B′r×(0,1))
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≤ C
( 1∫

0

ε1−2(γ−bγc)‖Tε f ‖2H2N (Rn)dε
) 1

2
≤ Cγ‖ f ‖H−2N (Rn),

which is the desired statement.
For the estimate of the normal derivative x1−2(γ−bγc)

n+1 ∂n+1u we notice that a short computation shows
that

x1−2(γ−bγc)
n+1 ∂n+1u =

{
cn,γx2−2(γ−bγc)

n+1 Eγ−1((−∆′) f ), if γ > 1,
cn,γE1−γ((−∆′)γ f ), if γ ∈ (0, 1).

Arguing as above then concludes the proof.

We summarise the results from this section for f ∈ H2γ(Rn):

Proposition A.6. Let γ > 0 and let f ∈ H2γ(Rn). Then the function u := Eγ( f ) ∈ C∞loc(R
n+1
+ ) ∩

H1(Rn+1
+ , x1+2γ−2bγc

n+1 ) is a solution to the scalar higher order problem

(∆b)bγc+1u = 0 in Rn+1
+ ,

lim
xn+1→0

u = f on Rn × {0},

lim
xn+1→0

(∆b)ku = cn,γ,k lim
xn+1→0

(−∆′)k f on Rn × {0} for k ∈ {1, . . . , bγc},

lim
xn+1→0

x1−2γ+2bγc
n+1 ∂xn+1(∆b)bγcu = cn,γ(−∆′)γ f on Rn × {0}

lim
xn+1→0

x1−2γ+2bγc
n+1 ∂xn+1(∆b)ku = 0 on Rn × {0} for k ∈ {0, . . . , bγc − 1}.

All limits xn+1 → 0 are understood in an L2(Rn) sense.
Setting u0 := u and defining the functions u j+1 = ∆bu j for j ∈ {0, . . . , bγc − 1}, this can also be

rewritten as the following system of second order equations

∆bum = 0 in Rn+1
+ ,

∆bu j = u j+1 in Rn+1
+ for j ∈ {0, . . . ,m − 1},

lim
xn+1→0

u j = cn,γ, j(−∆′) j f on Rn × {0} for j ∈ {0, . . . ,m},

lim
xn+1→0

xb
n+1∂xn+1um = cn,γ(−∆′)γ f on Rn × {0},

lim
xn+1→0

xb
n+1∂xn+1u j = 0 on Rn × {0} for j ∈ {0, . . . ,m − 1},

(A.15)

where m = bγc. Again, all limits xn+1 → 0 are understood in an L2(Rn) sense.

A.2. The variable coefficient setting – characterisation through a system of degenerate elliptic
equations

In this section, we derive analogous results to Proposition A.6 in the presence of variable
coefficients, i.e., we are now concerned with the operator Lγ, where L = −∇ · ãi j∇ and the coefficients
ãi j satisfy the conditions stated in (A1)–(A3) with µ = 2bγc. In contrast to the previous argument in
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which the Fourier transform diagonalised the tangential operator, we here rely on a spectral
decomposition. We argue analogously as in [21] and thus only present the arguments formally. For
convenience of notation we set

Lb := x−b
n+1(∂xn+1 xb

n+1∂xn+1 − xb
n+1L),

where L is as above and b = 1 − 2γ + 2bγc.
To this end, we recall that for the self-adjoint, positive operator L we can carry out a spectral

decomposition and obtain a unique associated resolution of the identity which is supported on the
spectrum of L with

(L f , g)L2(Rn) =

∞∫
0

λdE f ,g(λ) for all f ∈ Dom(L), g ∈ L2(Ω).

Based on this we can define the action of the heat semigroup and of the fractional powers of L:

(e−tL f , g)L2(Rn) =

∞∫
0

e−tλdE f ,g(λ), f , g ∈ L2(Ω), t ≥ 0,

(Lγ f , g)L2(Rn) =

∞∫
0

λγdE f ,g(λ), f ∈ Dom(Lγ), g ∈ L2(Ω), t ≥ 0,

where Dom(Lγ) := { f ∈ L2(Ω) :
∞∫
0
λ2γdE f , f (λ) < ∞}.

Our main result in the context of variable coefficients mirrors the statement of the constant
coefficient case:

Proposition A.7. Let γ > 0 and let f ∈ Dom(Lγ). Then the function

u(x′, xn+1) := cγx2γ
n+1

∞∫
0

e−tL f (x′)e−
x2
n+1
4t

dt
t1+γ
∈ C2bγc+2,1

loc (Rn × (0,∞))

is a solution to the scalar higher order problem (2.2). The function u(x′, xn+1) can also be represented
as

u(x′, xn+1) := c̃γ

∞∫
0

e−tLLγ f (x′)e−
x2
n+1
4t

dt
t1−γ .

Setting u0(x′, xn+1) := u(x′, xn+1) and defining the functions u j+1(x′, xn+1) = Lbu j(x′, xn+1) for
j ∈ {1, . . . , bγc}, allows one to rewrite (2.2) as the the system (2.3), where m = bγc. All boundary
conditions hold in an L2(Rn) sense.

Remark A.8. With the systems representation being established, we also obtain that
uk ∈ L2

loc(R
n+1
+ , xb

n+1). Then, direct energy estimates also yield that uk ∈ H1
loc(R

n+1
+ , xb

n+1) for all
k ∈ {1, . . . , bγc}, if f ∈ Dom(Lγ).
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Proof. The fact that u(x′, xn+1) = cγx2γ
n+1

∞∫
0

e−tL f (x′)e−
x2
n+1
4t dt

t1+γ solves the equation

∂xn+1 x1−2γ
n+1 ∂xn+1u − x1−2γ

n+1 Lu = 0 in Rn+1
+ ,

lim
xn+1→0

u = f on Rn × {0}.

follows as in [21, 42]. By interior elliptic regularity estimates and the assumed coefficient regularity,
this also implies the claimed regularity result.

We discuss the attainment of the Dirichlet boundary conditions for the function u: To this end, we
observe that

(u(·, xn+1), g(·)) = cγ

∞∫
0

(e−tL f , g)
(

x2
n+1

t

)γ
e−

x2
n+1
4t

dt
t

= cγ

∞∫
0

∞∫
0

e−tλ

(
x2

n+1

t

)γ
e−

x2
n+1
4t

dt
t

dE f ,g(λ)

= −cγ

∞∫
0

∞∫
0

e−λ
x2
n+1
z zγe−

z
4
dz
z

dE f ,g(λ)

Here we used the change of coordinates z =
x2

n+1
t . Thus, passing to the limit xn+1 → 0 dominated

convergence yields the claimed result.
Next, we seek to show that the function u also satisfies the higher order equation (2.2) and the

system (2.3). To this end, we set wk(x′, xn+1) := Lk
bu(x′, xn+1) for k ∈ {0, . . . , bγc}. We claim that these

functions solve the system (2.3), where all boundary conditions hold in an L2 sense.
In order to observe this, analogously as in Lemma A.3, we infer that the functions wk solve the bulk

equation

(∂2
xn+1

+
1 − 2γ + 2k

xn+1
∂xn+1 − L)wk = 0 in Rn+1

+ ,

whence

Lbwk =
cγ,k
xn+1

∂xn+1wk in Rn+1
+ .

We claim that

wk(x′, xn+1) = cγ,kx2γ−2k
n+1

∞∫
0

e−tLLk f (x′)e−
x2
n+1
4t

dt
t1+γ−k

= c̃γ,k

∞∫
0

e−tLLγ f (x′)e−
x2
n+1
4t

dt
t1−γ+k .

(A.16)
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The latter in particular also shows the equivalent representation for u. We obtain the first representation
for wk by induction and the following computation

(wk+1(·, xn+1), g(·)) = (Lbwk(·, xn+1), g(·)) =

(
cγ,k
xn+1

∂xn+1wk(·, xn+1), g(·)
)

= cγ,k

∞∫
0

(e−tLLk f , g)
1

xn+1
∂xn+1

(
x2(γ−k)

n+1 e−
x2
n+1
4t

)
dt

t1+γ−k

= cγ,k

∞∫
0

(e−tLLk f , g)x2γ−2k−2
n+1

(
2(γ − k)

t1+γ−k −
x2

n+1

2t2+γ−k

)
e−

x2
n+1
4t dt

= 2cγ,kx2γ−2k−2
n+1

∞∫
0

(e−tLLk f , g)∂t

(
tk−γe−

x2
n+1
4t

)
dt

= cγ,k+1x2γ−2k−2
n+1

∞∫
0

(e−tLLk+1 f , g)e−
x2
n+1
4t

dt
tγ−k .

Together with the representation for u this yields the first identity in (A.16). Arguing along the same
lines as above (where the argument is detailed for u), this also immediately implies the claim on the
Dirichlet data.

We next deduce the alternative characterisation of wk(x′, xn+1): We have

(wk(·, xn+1), g(·)) = cγ,k

∞∫
0

∞∫
0

e−tλλk

(
x2

n+1

t

)γ−k

e−
x2
n+1
4t

dt
t

dE f ,g(λ)

= c̃γ,k

∞∫
0

∞∫
0

e−rλλk(rλ)γ−ke−
x2
n+1
4r

dr
r

dE f ,g(λ)

= c̃γ,k

∞∫
0

(e−rLLγ f , g)e−
x2
n+1
4r

dr
r1−γ+k .

Here we used the change of coordinates r =
x2

n+1
4tλ .

It remains to discuss the Neumann data:

(∂n+1wk(·, xn+1), g(·)) = −cγ,k

∞∫
0

(e−tLLγ f , g)rγ−k−1 xn+1

2
e−

x2
n+1
4r

dr
r
.

If γ − k > 1, dominated convergence allows us to infer

lim
xn+1→0

(x1−2γ+2bγc
n+1 ∂n+1wk(·, xn+1), g(·))

= −
cγ,k
2

lim
xn+1→0

x2−2γ+2bγc
n+1

∞∫
0

(e−tLLγ f , g)rγ−k−1e−
x2
n+1
4r

dr
r

= 0,
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as the r powers are still integrable in zero.
For γ − bγc < 1, we argue similarly as in [42]:

(x1−2γ+2bγc
n+1 ∂n+1wk(·, xn+1), g(·)) = c̃γ,k

∞∫
0

∞∫
0

e−rλλγrγ−k−1x2−2γ+2bγc
n+1 e−

x2
n+1
4r

dr
r

dE f ,g(λ)

= c̃γ,k

∞∫
0

∞∫
0

e−
z

xn+1
λ
λγz1−γ+bγce−

z
4
dz
z

dE f ,g(λ).

Here we used the change of coordinates z =
x2

n+1
r . By dominated convergence we may again pass to the

limit and obtain

lim
xn+1→0

(x1−2γ+2bγc
n+1 ∂n+1wk(·, xn+1), g(·)) = c̃γ,k

∞∫
0

z1−γ+bγce−z dz
z

(Lγ f , g).

This concludes the argument.
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