
Citation: Matthew E. Bechard, Payam Farahani, Dina Greene, Anna Pham, Andrew Orry, Madeline E. Rasche. Purification, kinetic characterization, and site-directed mutagenesis of Methanothermobacter thermautotrophicus RFAP Synthase Produced in Escherichia coli[J]. AIMS Microbiology, 2019, 5(3): 186-204. doi: 10.3934/microbiol.2019.3.186
[1] | Debao Yan . Existence results of fractional differential equations with nonlocal double-integral boundary conditions. Mathematical Biosciences and Engineering, 2023, 20(3): 4437-4454. doi: 10.3934/mbe.2023206 |
[2] | Abdon Atangana, Jyoti Mishra . Analysis of nonlinear ordinary differential equations with the generalized Mittag-Leffler kernel. Mathematical Biosciences and Engineering, 2023, 20(11): 19763-19780. doi: 10.3934/mbe.2023875 |
[3] | Allaberen Ashyralyev, Evren Hincal, Bilgen Kaymakamzade . Crank-Nicholson difference scheme for the system of nonlinear parabolic equations observing epidemic models with general nonlinear incidence rate. Mathematical Biosciences and Engineering, 2021, 18(6): 8883-8904. doi: 10.3934/mbe.2021438 |
[4] | Sebastian Builes, Jhoana P. Romero-Leiton, Leon A. Valencia . Deterministic, stochastic and fractional mathematical approaches applied to AMR. Mathematical Biosciences and Engineering, 2025, 22(2): 389-414. doi: 10.3934/mbe.2025015 |
[5] | Hardik Joshi, Brajesh Kumar Jha, Mehmet Yavuz . Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data. Mathematical Biosciences and Engineering, 2023, 20(1): 213-240. doi: 10.3934/mbe.2023010 |
[6] | Barbara Łupińska, Ewa Schmeidel . Analysis of some Katugampola fractional differential equations with fractional boundary conditions. Mathematical Biosciences and Engineering, 2021, 18(6): 7269-7279. doi: 10.3934/mbe.2021359 |
[7] | Jian Huang, Zhongdi Cen, Aimin Xu . An efficient numerical method for a time-fractional telegraph equation. Mathematical Biosciences and Engineering, 2022, 19(5): 4672-4689. doi: 10.3934/mbe.2022217 |
[8] | Yingying Xu, Chunhe Song, Chu Wang . Few-shot bearing fault detection based on multi-dimensional convolution and attention mechanism. Mathematical Biosciences and Engineering, 2024, 21(4): 4886-4907. doi: 10.3934/mbe.2024216 |
[9] | H. M. Srivastava, Khaled M. Saad, J. F. Gómez-Aguilar, Abdulrhman A. Almadiy . Some new mathematical models of the fractional-order system of human immune against IAV infection. Mathematical Biosciences and Engineering, 2020, 17(5): 4942-4969. doi: 10.3934/mbe.2020268 |
[10] | Guodong Li, Ying Zhang, Yajuan Guan, Wenjie Li . Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Mathematical Biosciences and Engineering, 2023, 20(4): 7020-7041. doi: 10.3934/mbe.2023303 |
Fractional calculus is a main branch of mathematics that can be considered as the generalisation of integration and differentiation to arbitrary orders. This hypothesis begins with the assumptions of L. Euler (1730) and G. W. Leibniz (1695). Fractional differential equations (FDEs) have lately gained attention and publicity due to their realistic and accurate computations [1,2,3,4,5,6,7]. There are various types of fractional derivatives, including Riemann–Liouville, Caputo, Grü nwald–Letnikov, Weyl, Marchaud, and Atangana. This topic's history can be found in [8,9,10,11]. Undoubtedly, fractional calculus applies to mathematical models of different phenomena, sometimes more effectively than ordinary calculus [12,13]. As a result, it can illustrate a wide range of dynamical and engineering models with greater precision. Applications have been developed and investigated in a variety of scientific and engineering fields over the last few decades, including bioengineering [14], mechanics [15], optics [16], physics [17], mathematical biology, electrical power systems [18,19,20] and signal processing [21,22,23].
One of the definitions of fractional derivatives is Caputo-Fabrizo, which adds a new dimension in the study of FDEs. The new derivative's feature is that it has a nonsingular kernel, which is made from a combination of an ordinary derivative with an exponential function, but it has the same supplementary motivating properties with various scales as in the Riemann-Liouville fractional derivatives and Caputo. The Caputo-Fabrizio fractional derivative has been used to solve real-world problems in numerous areas of mathematical modelling for example, numerical solutions for groundwater pollution, the movement of waves on the surface of shallow water modelling [24], RLC circuit modelling [25], and heat transfer modelling [26,27] were discussed.
Rach (1987), Bellomo and Sarafyan (1987) first compared the Adomian Decomposition method (ADM) [28,29,30,31,32] to the Picard method on a variety of examples. These methods have many benefits: they effectively work with various types of linear and nonlinear equations and also provide an analytic solution for all of these equations with no linearization or discretization. These methods are more realistic compared with other numerical methods as each technique is used to solve a specific type of equations, on the other hand ADM and Picard are useful for many types of equations. In the numerical examples provided, we compare ADM and Picard solutions of multidimentional fractional order equations with Caputo-Fabrizio.
The fractional derivative of Caputo-Fabrizio for the function $ x\left(t\right) $ is defined as [33]
$ CFDα0x(t)=B(α)1−α∫t0dds(x(s)) e−α1−α(t−s)ds, $ | (1.1) |
and its corresponding fractional integral is
$ CFIαx(t)=1−αB(α)x(t)+αB(α)∫t0x (s)ds, 0<α<1, $ | (1.2) |
where $ x\left(t\right) $ be continuous and differentiable on [0, T]. Also, in the above definition, the function $ B\left(\alpha \right) > 0 $ is a normalized function which satisfy the condition $ B\left(0\right) = B\left(1\right) = 0. $ The relation between the Caputo–Fabrizio fractional derivate and its corresponding integral is given by
$ (CFIα0)(CFDα0f(t))=f(t)−f(a). $ | (1.3) |
In this section, we will introduce a multidimentional FDE subject to the initial condition. Let $ \alpha \in \; (0, 1] $, $ 0 < \alpha _{1} < \alpha _{2} < ..., \alpha _{m} < 1, $ and $ m $ is integer real number,
$ CFDx=f(t,x,CFDα1x,CFDα2x,...,CFDαmx,) ,x(0)=c0, $ | (2.1) |
where $ x = x\left(t\right), t\in J = \left[ 0, T\right], T\in R^{+}, x\in C\left(J\right) $.
To facilitate the equation and make it easy for the calculation, we let $ x\left(t\right) = c_{0}+X\left(t\right) $ so Eq (2.1) can be witten as
$ CFDαX=f(t,c0+X,CFDα1X,CFDα2X,...,CFDαmX), X(0)=0. $ | (2.2) |
the algorithm depends on converting the initial condition from a constant $ c_{0} $ to 0.
Let $ ^{CF}D^{\alpha }X = y\left(t\right) $ then $ X = \; ^{CF}I^{\alpha }y, $ so we have
$ CFDαiX= CFIα−αi CFDαX= CFIα−αiy, i=1,2,...,m. $ | (2.3) |
Substituting in Eq (2.2) we obtain
$ y=f(t,c0+ CFIαy, CFIα−α1y,..., CFIα−αmy). $ | (2.4) |
Assume $ f $ satisfies Lipschtiz condition with Lipschtiz constant$ \ L $ given by,
$ |f(t,y0,y1,...,ym)|−|f(t,z0,z1,...,zm)|≤Lm∑i=0|yi−zi|, $ | (2.5) |
which implies
$ |f(t,c0+CFIαy,CFIα−α1y,..,CFIα−αmy)−f(t,c0+CFIαz,CFIα−α1z,..,CFIα−αmz)|≤Lm∑i=0| CFIα−αiy− CFIα−αiz|. $ | (2.6) |
The solution algorithm of Eq (2.4) using ADM is,
$ y0(t)=a(t)yn+1(t)=An(t), j⩾0. $ | (2.7) |
where $ a\left(t\right) $ pocesses all free terms in Eq (2.4) and $ A_{n} $ are the Adomian polynomials of the nonlinear term which takes the form [34]
$ An=f(Sn)−n−1∑i=0Ai, $ | (2.8) |
where $ f\left(S_{n}\right) = \sum_{i = 0}^{n}A_{i} $. Later, this accelerated formula of Adomian polynomial will be used in convergence analysis and error estimation. The solution of Eq (2.4) can be written in the form,
$ y(t)=∞∑i=0yi(t). $ | (2.9) |
lastly, the solution of the Eq (2.4) takes the form
$ x(t)=c0+X(t)=c0+ CFIαy(t). $ | (2.10) |
At which we convert the parameter to the initial form $ y $ to $ x $ in Eq (2.10), so we have the solution of the original Eq (2.1).
Define a mapping $ F:E\rightarrow E $ where $ E = \left(C\left[ J\right], \left\Vert \cdot \right\Vert \right) $ is a Banach space of all continuous functions on $ J $ with the norm $ \left\Vert x\right\Vert = \underset{t\epsilon J}{\text{ }\max\limits } \; x\left(t\right) $.
Theorem 3.1. Equation (2.4) has a unique solution whenever $ 0 < \phi < 1 $ where $ \phi = L\left(\sum_{i = 0}^{m}\frac{\left[ \left(\alpha-\alpha _{i}\right) \left(T-1\right) \right] +1}{B\left(\alpha -\alpha_{i}\right) }\right) $.
Proof. First, we define the mapping $ F:E\rightarrow E $ as
$ Fy=f(t,c0+ CFIαy, CFIα−α1y,..., CFIα−αmy). $ |
Let $ y $ and $ z\in E $ are two different solutions of Eq (2.4). Then
$ Fy−Fz=f(t,c0+CFIαy,CFIα−α1y,..,CFIα−αmy)−f(t,c0+CFIαz,CFIα−α1z,...,CFIα−αmz) $ |
which implies that
$ |Fy−Fz|=|f(t,c0+ CFIαy, CFIα−α1y,..., CFIα−αmy)−f(t,c0+ CFIαz, CFIα−α1z,..., CFIα−αmz)|≤Lm∑i=0| CFIα−αiy− CFIα−αiz|≤Lm∑i=0|1−(α−αi)B(α−αi)(y−z)+α−αiB(α−αi)∫t0(y−z)ds|‖Fy−Fz‖≤Lm∑i=01−(α−αi)B(α−αi)maxtϵJ|y−z|+α−αiB(α−αi)maxtϵJ|y−z|∫t0ds≤Lm∑i=01−(α−αi)B(α−αi)‖y−z‖+α−αiB(α−αi)‖y−z‖T≤L‖y−z‖(m∑i=01−(α−αi)B(α−αi)+α−αiB(α−αi)T)≤L‖y−z‖(m∑i=0[(α−αi)(T−1)]+1B(α−αi))≤ϕ‖y−z‖. $ |
under the condition $ 0 < \phi < 1, $ the mapping $ F $ is contraction and hence there exists a unique solution $ y\in C\left[ J\right] $ for the problem Eq (2.4) and this completes the proof.
Theorem 3.2. The series solution of the problem Eq (2.4)converges if $ \left\vert y_{1}\left(t\right) \right\vert < c $ and $ c $ isfinite.
Proof. Define a sequence $ \left\{ S_{p}\right\} $ such that $ S_{p} = \sum_{i = 0}^{p}y_{i}\left(t\right) $ is the sequence of partial sums from the series solution $ \sum_{i = 0}^{\infty }y_{i}\left(t\right), $ we have
$ f(t,c0+ CFIαy, CFIα−α1y,..., CFIα−αmy)=∞∑i=0Ai, $ |
So
$ f(t,c0+ CFIαSp, CFIα−α1Sp,..., CFIα−αmSp)=p∑i=0Ai, $ |
From Eq (2.7) we have
$ ∞∑i=0yi(t)=a(t)+∞∑i=0Ai−1 $ |
let $ S_{p}, S_{q} $ be two arbitrary sums with $ p\geqslant q $. Now, we are going to prove that $ \left\{ S_{p}\right\} $ is a Caushy sequence in this Banach space. We have
$ Sp=p∑i=0yi(t)=a(t)+p∑i=0Ai−1,Sq=q∑i=0yi(t)=a(t)+q∑i=0Ai−1. $ |
$ Sp−Sq=p∑i=0Ai−1−q∑i=0Ai−1=p∑i=q+1Ai−1=p−1∑i=qAi−1=f(t,c0+ CFIαSp−1, CFIα−α1Sp−1,..., CFIα−αmSp−1)−f(t,c0+ CFIαSq−1, CFIα−α1Sq−1,..., CFIα−αmSq−1) $ |
$ |Sp−Sq|=|f(t,c0+ CFIαSp−1, CFIα−α1Sp−1,..., CFIα−αmSp−1)−f(t,c0+ CFIαSq−1, CFIα−α1Sq−1,..., CFIα−αmSq−1)|≤Lm∑i=0| CFIα−αiSp−1− CFIα−αiSq−1|≤Lm∑i=0|1−(α−αi)B(α−αi)(Sp−1−Sq−1)+α−αiB(α−αi)∫t0(Sp−1−Sq−1)ds|≤Lm∑i=01−(α−αi)B(α−αi)|Sp−1−Sq−1|+α−αiB(α−αi)∫t0|Sp−1−Sq−1|ds $ |
$ ‖Sp−Sq‖≤Lm∑i=01−(α−αi)B(α−αi)maxtϵJ|Sp−1−Sq−1|+α−αiB(α−αi)maxtϵJ|Sp−1−Sq−1|∫t0ds≤L‖Sp−Sq‖m∑i=0(1−(α−αi)B(α−αi)+α−αiB(α−αi)T)≤L‖Sp−Sq‖(m∑i=0[(α−αi)(T−1)]+1B(α−αi))≤ϕ‖Sp−Sq‖ $ |
let $ p = q+1 $ then,
$ ‖Sq+1−Sq‖≤ϕ‖Sq−Sq−1‖≤ϕ2‖Sq−1−Sq−2‖≤...≤ϕq‖S1−S0‖ $ |
From the triangle inequality we have
$ ‖Sp−Sq‖≤‖Sq+1−Sq‖+‖Sq+2−Sq+1‖+...‖Sp−Sp−1‖≤[ϕq+ϕq+1+...+ϕp−1]‖S1−S0‖≤ϕq[1+ϕ+...+ϕp−q+1]‖S1−S0‖≤ϕq[1−ϕp−q1−ϕ]‖y1(t)‖ $ |
Since $ 0 < \phi < 1, p\geqslant q $ then $ \left(1-\phi ^{p-q}\right) \leq 1 $. Consequently
$ ‖Sp−Sq‖≤ϕq1−ϕ‖y1(t)‖≤ϕq1−ϕmax∀tϵJ|y1(t)| $ | (3.1) |
but $ \left\vert y_{1}\left(t\right) \right\vert < \infty $ and as $ q\rightarrow \infty $ then, $ \left\Vert S_{p}-S_{q}\right\Vert \rightarrow 0 $ and hence, $ \left\{ S_{p}\right\} $ is a Caushy sequence in this Banach space then the proof is complete.
Theorem 3.3. The maximum absolute truncated error Eq (2.4)is estimated to be $ \underset{t\epsilon J}{\max }\left\vert y\left(t\right)-\sum_{i = 0}^{q}y_{i}\left(t\right) \right\vert \leq \frac{\phi ^{q}}{1-\phi }\underset{t\epsilon J}{\max }\left\vert y_{1}\left(t\right) \right\vert $
Proof. From the convergence theorm inequality (Eq 3.1) we have
$ ‖Sp−Sq‖≤ϕq1−ϕmaxtϵJ|y1(t)| $ |
but, $ S_{p} = \sum_{i = 0}^{p}y_{i}\left(t\right) $ as $ p\rightarrow \infty $ then, $ S_{p}\rightarrow y\left(t\right) $ so,
$ ‖y(t)−Sq‖≤ϕq1−ϕmaxtϵJ|y1(t)| $ |
so, the maximum absolute truncated error in the interval $ J $ is,
$ maxtϵJ|y(t)−q∑i=0yi(t)|≤ϕq1−ϕmaxtϵJ|y1(t)| $ | (3.2) |
and this completes the proof.
In this part, we introduce several numerical examples with unkown exact solution and we will use inequality (Eq 3.2) to estimate the maximum absolute truncated error.
Example 4.1. Application of linear FDE
$ CFDx(t)+2aCFD1/2x(t)+bx(t)=0, x(0)=1. $ | (4.1) |
A Basset problem in fluid dynamics is a classical problem which is used to study the unsteady movement of an accelerating particle in a viscous fluid under the action of the gravity [36]
Set
$ X(t)=x(t)−1 $ |
Equation (4.1) will be
$ CFDX(t)+2aCFD1/2X(t)+bX(t)=0, X(0)=0. $ | (4.2) |
Appling Eq (2.3) to Eq (4.2), and using initial condition, also we take a = 1, b = 1/2,
$ y=−12−2I1/2y−12I y $ | (4.3) |
Appling ADM to Eq (4.3), we find the solution algorithm become
$ y0(t)=−12,yi(t)=−2 CFI1/2yi−1−12 CFI yi−1, i≥1. $ | (4.4) |
Appling Picard solution to Eq (4.2), we find the solution algorithm become
$ y0(t)=−12,yi(t)=−12−2 CFI1/2yi−1−12 CFI yi−1, i≥1. $ | (4.5) |
From Eq (4.4), the solution using ADM is given by $ y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q} y_{i}} \left(t\right) $ while from Eq (4.5), the solution using Picard technique is given by $ y\left(t\right) = \; \underset{i\rightarrow \infty }{ Lim} \; y_{i}\left(t\right) $. Lately, the solution of the original problem Eq (4.2), is
$ x(t)=1+ CFI y(t). $ |
One the same processor (q = 20), the time consumed using ADM is 0.037 seconds, while the time consumed using Picard is 7.955 seconds.
Figure 1 gives a comparison between ADM and Picard solution of Ex. 4.1.
Example 4.2. Consider the following nonlinear FDE [35]
$ CFD1/2x=8t3/23√π−t7/44Γ(114)−t44+18 CFD1/4x+14x2, x(0)=0. $ | (4.6) |
Appling Eq (2.3) to Eq (4.6), and using initial condition,
$ y=8t3/23√π−t7/44Γ(114)−t44+18 CFI1/4y+14(CFI1/2y)2. $ | (4.7) |
Appling ADM to Eq (4.7), we find the solution algorithm will be become
$ y0(t)=8t3/23√π−t7/44Γ(114)−t44,yi(t)=18 CFI1/4yi−1+14(Ai−1), i≥1. $ | (4.8) |
at which A$ _{\text{i}} $ are Adomian polynomial of the nonliner term $ \left(^{CF}I^{1/2}y\right) ^{2}. $
Appling Picard solution to Eq (4.7), we find the the solution algorithm become
$ y0(t)=8t3/23√π−t7/44Γ(114)−t44,yi(t)=y0(t)+18 CFI1/4yi−1+14(CFI1/2yi−1)2, i≥1. $ | (4.9) |
From Eq (4.8), the solution using ADM is given by $ y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q}y_{i}} \left(t\right) $ while from Eq (4.9), the solution using Picard technique is given by $ y\left(t\right) = \underset{i\rightarrow \infty }{Lim} y_{i}\left(t\right) $. Finally, the solution of the original problem Eq (4.7), is.
$ x(t)= CFI1/2y. $ |
One the same processor (q = 2), the time consumed using ADM is 65.13 seconds, while the time consumed using Picard is 544.787 seconds.
Table 1 showed the maximum absolute truncated error of of ADM solution (using Theorem 3.3) at different values of m (when t = 0:5; N = 2):
q | max. absolute error |
2 | 0.114548 |
5 | 0.099186 |
10 | 0.004363 |
Figure 2 gives a comparison between ADM and Picard solution of Ex. 4.2.
Example 4.3. Consider the following nonlinear FDE [35]
$ CFDαx=3t2−128125πt5+110(CFD1/2x)2,x(0)=0. $ | (4.10) |
Appling Eq (2.3) to Eq (4.10), and using initial condition,
$ y=3t2−128125πt5+110(CFI1/2y)2 $ | (4.11) |
Appling ADM to Eq (4.11), we find the solution algorithm become
$ y0(t)=3t2−128125πt5,yi(t)=110(Ai−1), i≥1 $ | (4.12) |
at which A$ _{\text{i}} $ are Adomian polynomial of the nonliner term $ \left(^{CF}I^{1/2}y\right) ^{2}. $
Then appling Picard solution to Eq (4.11), we find the solution algorithm become
$ y0(t)=3t2−128125πt5,yi(t)=y0(t)+110(CFI1/2yi−1)2, i≥1. $ | (4.13) |
From Eq (4.12), the solution using ADM is given by $ y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q}y_{i}} \left(t\right) $ while from Eq (4.13), the solution is $ y\left(t\right) = \underset{i\rightarrow \infty }{Lim}y_{i}\left(t\right) $. Finally, the solution of the original problem Eq (4.11), is
$ x(t)=CFIy(t). $ |
One the same processor (q = 4), the time consumed using ADM is 2.09 seconds, while the time consumed using Picard is 44.725 seconds.
Table 2 showed the maximum absolute truncated error of of ADM solution (using Theorem 3.3) at different values of m (when t = 0:5; N = 4):
q | max. absolute error |
2 | 0.00222433 |
5 | 0.0000326908 |
10 | 2.88273*10$ ^{-8} $ |
Figure 3 gives a comparison between ADM and Picard solution of Ex. 4.3 with $ \alpha = 1 $.
Example 4.4. Consider the following nonlinear FDE [35]
$ CFDαx=t2+12 CFDα1x+14 CFDα2x+16 CFDα3x+18x4,x(0)=0. $ | (4.14) |
Appling Eq (2.3) to Eq (4.10), and using initial condition,
$ y=t2+12(CFIα−α1y)+14(CFIα−α2y)+16(CFIα−α3y)+18(CFIαy)4, $ | (4.15) |
Appling ADM to Eq (4.15), we find the solution algorithm become
$ y0(t)=t2,yi(t)=12(CFIα−α1y)+14(CFIα−α2y)+16(CFIα−α3y)+18Ai−1, i≥1 $ | (4.16) |
where A$ _{\text{i}} $ are Adomian polynomial of the nonliner term $ \left(^{CF}I^{\alpha }y\right) ^{4}. $
Then appling Picard solution to Eq (4.15), we find the solution algorithm become
$ y_{0}\left( t\right) = t^{2}, \\ y_{i}\left( t\right) = t^{2}+\frac{1}{2}\left( ^{CF}I^{\alpha -\alpha _{1}}y_{i-1}\right) +\frac{1}{4}\left( ^{CF}I^{\alpha -\alpha _{2}}y_{i-1}\right) \\+\frac{1}{6}\left( ^{CF}I^{\alpha -\alpha 3}y_{i-1}\right) +\frac{1}{8}\left( ^{CF}I^{\alpha }y_{i-1}\right) ^{4}\ \ \ \ \ i\geq 1. $ | (4.17) |
From Eq (4.16), the solution using ADM is given by $ y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q}y_{i}} \left(t\right) $ while from Eq (4.17), the solution using Picard technique is $ y\left(t\right) = \underset{i\rightarrow \infty }{Lim} y_{i}\left(t\right) $. Finally, the solution of the original problem Eq (4.14), is
$ x(t)=CFIαy(t). $ |
One the same processor (q = 3), the time consumed using ADM is 0.437 seconds, while the time consumed using Picard is (16.816) seconds. Figure 4 shows a comparison between ADM and Picard solution of Ex. 4.4 $ at \; \alpha = 0.7, \; \alpha _{1} = 0.1, \alpha _{2} = 0.3, \alpha _{3} = 0.5. $
The Caputo-Fabrizo fractional deivative has a nonsingular kernel, and consequently, this definition is appropriate in solving nonlinear multidimensional FDE [37,38]. Since the selected numerical problems have an unkown exact solution, the formula (3.2) can be used to estimate the maximum absolute truncated error. By comparing the time taken on the same processor (i7-2670QM), it was found that the time consumed by ADM is much smaller compared with the Picard technique. Furthermore Picard gives a more accurate solution than ADM at the same interval with the same number of terms.
The authors declare there is no conflict of interest.
[1] |
White RH (1996) Biosynthesis of methanopterin. Biochemistry 35: 3447–3456. doi: 10.1021/bi952308m
![]() |
[2] |
Rasche ME, White RH (1998) Mechanism for the enzymatic formation of 4-(beta-D-ribofuranosyl) aminobenzene 5'-phosphate during the biosynthesis of methanopterin. Biochemistry 37: 11343–11351. doi: 10.1021/bi973086q
![]() |
[3] |
Scott JW, Rasche ME (2002) Purification, overproduction, and partial characterization of beta-RFAP synthase, a key enzyme in the methanopterin biosynthesis pathway. J Bacteriol 184: 4442–4448. doi: 10.1128/JB.184.16.4442-4448.2002
![]() |
[4] | Leigh JA (1983) Levels of water-soluble vitamins in methanogenic and non-methanogenic bacteria. Appl Environ Microbiol 45: 800–803. |
[5] | Vanbeelen P, Labro JFA, Keltjens JT, et al. (1984) Derivatives of methanopterin, a coenzyme involved in methanogenesis. EurJ Bioche 139: 359–365. |
[6] |
DiMarco AA, Bobik TA, Wolfe RS (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59: 355–394. doi: 10.1146/annurev.bi.59.070190.002035
![]() |
[7] | Thauer RK, Hedderich R, Fischer R (1993) Reactions and enzymes involved in methanogenesis from CO2 and H2, In Ferry, J.G., Methanogenesis, 5Eds., New York: Chapman Hall, 209–252. |
[8] | White D (2000) C1 metabolism, in The Physiology and Biochemistry of Prokaryotes, New York: Oxford University Press, 348–350. |
[9] | Keltjens JT, Vogels GD (1988) Methanopterin and methanogenic bacteria. Biofactors 1: 95–103. |
[10] |
Deppenmeier U, Muller V, Gottschalk G (1996) Pathways of energy conservation in methanogenic archaea. Arch Microbiol 165: 149–163. doi: 10.1007/BF01692856
![]() |
[11] |
Maden BEH (2000) Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem J 350: 609–629. doi: 10.1042/bj3500609
![]() |
[12] |
Dumitru RV, Ragsdale SW (2004) Mechanism of 4 (β-D-ribofuranosyl) aminobenzene 5'-phosphate synthase, a key enzyme in the methanopterin biosynthetic pathway. J Biol Chem 279: 39389–39395. doi: 10.1074/jbc.M406442200
![]() |
[13] |
Dumitru R, Palencia H, Schroeder SD, et al. (2003) Targeting methanopterin biosynthesis to inhibit methanogenesis. Appl Environ Microbiol 69: 7236–7241. doi: 10.1128/AEM.69.12.7236-7241.2003
![]() |
[14] | Turnbaugh PJ, Ley RE, Mahowald MA, et al. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 44: 1027–1031. |
[15] |
Samuel BS, Hansen EE, Manchester JK, et al. (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci USA 104: 10643–10648 doi: 10.1073/pnas.0704189104
![]() |
[16] |
Rasche ME (2004) Outcomes of a research-driven laboratory and literature course designed to enhance undergraduate contributions to original research. Biochem Molec Biol Education 32: 101–107. doi: 10.1002/bmb.2004.494032020313
![]() |
[17] |
Bechard ME, Chhatwal S, Garcia RE, et al. (2003) Application of a colorimetric assay to identify putative ribofuranosylaminobenzene 5'-phosphate synthase genes expressed with activity in Escherichia coli. Biol Proced Online 5: 69–77. doi: 10.1251/bpo48
![]() |
[18] | Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. |
[19] |
Garfin D (1990) One-dimensional gel electrophoresis. Meth Enzymol 182: 425–441. doi: 10.1016/0076-6879(90)82035-Z
![]() |
[20] |
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. doi: 10.1016/0003-2697(76)90527-3
![]() |
[21] | Abagyan R, Orry A, Raush E, et al. (2010) ICM User Guide 3.7, Molsoft LLC: La Jolla, CA. |
[22] |
Abagyan R, Totrov M (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 235: 983–1002. doi: 10.1006/jmbi.1994.1052
![]() |
[23] |
Abagyan RA, Batalov S (1997) Do aligned sequences share the same fold? J Mol Biol 273: 355–368. doi: 10.1006/jmbi.1997.1287
![]() |
[24] | Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48: 443–453. |
[25] |
Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. (1953) Equation of state calculations by fast computing machines. J Chem Phys 21: 1087–1092. doi: 10.1063/1.1699114
![]() |
[26] |
Maiorov V, Abagyan R (1998) Energy strain in three-dimensional protein structures. Fold 3: 259–269. doi: 10.1016/S1359-0278(98)00037-6
![]() |
[27] | An J, Totrov M, Abagyan R (2004) Comprehensive identification of 'druggable' protein ligand binding sites. Genome Inform 15: 31–41. |
[28] |
Fu Z, Wang M, Potter D, et al. (2002) Structure of a binary complex between a mammalian mevalonate kinase and ATP. J Biol Chem 277: 18134–18142. doi: 10.1074/jbc.M200912200
![]() |
[29] | Kleiger G, Eisenberg D (2002) GXXG and GXXA motifs stabilize FAD and NAD(P)-binding Rossmann Folds through Ca-H....O hydrogen bonds and Van der Waals interactions. J Mol Biol 323: 69–76. |
[30] |
Yang D, Shipman LW, Roessner CA, et al. (2002) Structure of the Methanococcus jannaschii mevalonate kinase, a member of the GHMP kinase superfamily. J Biol Chem 277: 9462–9467. doi: 10.1074/jbc.M110787200
![]() |
[31] | Bechard ME (2004) Purification, characterization, and site-directed mutagenesis of a methanogen ribofuranosylaminobenzene 5'-phosphate synthase. Thesis. University of Florida. |
[32] |
Baca AM, Sirawaraporn R, Turley S, et al. (2000) Crystal structure of Mycobacterium tuberculosis 6-hydroxymethyl-7,8-dihydropteroate synthase in complex with pterin monophosphate: new insight into the enzymatic mechanism and sulfa-drug action. J Mol Biol 302: 1193–1212. doi: 10.1006/jmbi.2000.4094
![]() |
[33] |
White RH (2001) Biosynthesis of the methanogenic cofactors. Vitam Horm 61: 299–337. doi: 10.1016/S0083-6729(01)61010-0
![]() |
[34] |
Smith DR, Doucette-Stamm LA, Deloughery C, et al. (1997) Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol 179: 7135–7155. doi: 10.1128/jb.179.22.7135-7155.1997
![]() |
[35] | Budavari S (1996) The Merck Index. 12th ed., New Jersey: Merck & Co. 438. |
[36] |
Achari A, Somers DO, Champness JN, et al. (1997) Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat Struc Biol 4: 490–497. doi: 10.1038/nsb0697-490
![]() |
[37] |
Scapin G, Ozturk DH, Grubmeyer C, et al. (1995) The crystal structure of the orotate phosphribosyltransferase complexed with orotate and alpha-D-5-phosphoribosyl-1-pyrophosphate. Biochemistry 34: 10744–10754. doi: 10.1021/bi00034a006
![]() |
[38] |
Cao H, Pietrak BL, Grubmeyer C (2002) Quinolinate phosphoribosyltransferases: kinetic mechanism for a type II PRTases. Biochemistry 41: 3520–3528. doi: 10.1021/bi012148g
![]() |
[39] |
Eads JC, Scapin G, Xu YM, et al. (1994) The crystal-structure of human hypoxanthine guanine phosphoribosyltransferase with bound GMP. Cell 78: 325–334. doi: 10.1016/0092-8674(94)90301-8
![]() |
[40] |
Smith JL (1999) Forming and inhibiting PRT active sites. Nat Struc Biol 6: 502–504. doi: 10.1038/9266
![]() |
[41] |
Heroux AELW, Ross LJ, Davis RL, et al. (1999) Crystal structure of Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase with XMP, pyrophosphate, and two Mg2+ ions bound: insights into the catalytic mechanism. Biochemistry 38: 14495–14506. doi: 10.1021/bi990508i
![]() |
[42] | Shi W, Li CM, Tyler PC, et al. (1999) The 2.0 A structure of human hypoxanthineguanine phosphoribosyltransferase in complex with a transition-state analog inhibitor. Nat Struc Biol 6: 588–593. |
[43] | Nicholas KB, Nicholas HB, Deerfield DW II (1997) GeneDoc: analysis and visualization of genetic variation. Embnew News 4: 14. |
[44] |
Zhou T, Daugherty M, Grishin NV, et al. (2000) Structure and mechanism of homoserine kinase: prototype for the GHMP kinase superfamily. Structure 8: 1247–1257. doi: 10.1016/S0969-2126(00)00533-5
![]() |
[45] |
Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen bonded and geometrical features. Biopolymers 22: 2577–2637. doi: 10.1002/bip.360221211
![]() |
1. | Eman A. A. Ziada, Salwa El-Morsy, Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, Monica Botros, Solution of the SIR epidemic model of arbitrary orders containing Caputo-Fabrizio, Atangana-Baleanu and Caputo derivatives, 2024, 9, 2473-6988, 18324, 10.3934/math.2024894 | |
2. | H. Salah, M. Anis, C. Cesarano, S. S. Askar, A. M. Alshamrani, E. M. Elabbasy, Fourth-order differential equations with neutral delay: Investigation of monotonic and oscillatory features, 2024, 9, 2473-6988, 34224, 10.3934/math.20241630 | |
3. | Said R. Grace, Gokula N. Chhatria, S. Kaleeswari, Yousef Alnafisah, Osama Moaaz, Forced-Perturbed Fractional Differential Equations of Higher Order: Asymptotic Properties of Non-Oscillatory Solutions, 2024, 9, 2504-3110, 6, 10.3390/fractalfract9010006 | |
4. | A.E. Matouk, Monica Botros, Hidden chaotic attractors and self-excited chaotic attractors in a novel circuit system via Grünwald–Letnikov, Caputo-Fabrizio and Atangana-Baleanu fractional operators, 2025, 116, 11100168, 525, 10.1016/j.aej.2024.12.064 | |
5. | Zahra Barati, Maryam Keshavarzi, Samaneh Mosaferi, Anatomical and micromorphological study of Phalaris (Poaceae) species in Iran, 2025, 68, 1588-4082, 9, 10.14232/abs.2024.1.9-15 |
q | max. absolute error |
2 | 0.114548 |
5 | 0.099186 |
10 | 0.004363 |
q | max. absolute error |
2 | 0.00222433 |
5 | 0.0000326908 |
10 | 2.88273*10$ ^{-8} $ |