Citation: Rui Zhu, Yuhang Chen, Qianqian Yu, Siqing Liu, Jianjie Wang, Zhili Zeng, Liming Cheng. Effects of contusion load on cervical spinal cord: A finite element study[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2272-2283. doi: 10.3934/mbe.2020120
[1] | A. E. Nkusi, S. Muneza, D. Hakizimana, S. Nshuti, P. Munyemana, Missed or delayed cervical spine or spinal cord injuries treated at a tertiary referral hospital in rwanda, World Neurosurg., 87 (2016), 269-276. |
[2] | R. M. Quencer, R. P. Bunge, M. Egnor, B. A. Green, W. Puckett, T. P. Naidich, et al., Acute traumatic central cord syndrome: MRI-pathological correlations, Neuroradiology, 34 (1992), 85-94. |
[3] | A. Curt, P. H. Ellaway, Clinical neurophysiology in the prognosis and monitoring of traumatic spinal cord injury, in Handbook of clinical neurology, Elsevier, 109 (2012), 63-75. |
[4] | R. Zhu, T. Zander, M. Dreischarf, G. N. Duda, A. Rohlmann, H. Schmidt, Considerations when loading spinal finite element model with predicted muscle forces from inverse static analyses, J. Biomech., 46 (2013), 1376-1378. |
[5] | R. Zhu, A. Rohlmann, Discrepancies in anthropometric parameters between different models affect intervertebral rotations when loading finite element models with muscle forces from inverse static analyses, Biomed. Eng./Biomed. Tech., 59 (2014), 197-202. |
[6] | J. Scifert, K. Totoribe, V. Goel, J. Huntzinger, Spinal cord mechanics during flexion and extension of the cervical spine: a finite element study, Pain Physician, 5 (2002), 394-400. |
[7] | X. F. Li, L. Y. Dai, Acute central cord syndrome: injury mechanisms and stress features, Spine, 35 (2010), 955-964. |
[8] | B. Khuyagbaatar, K. Kim, W. Man Park, et al., Biomechanical behaviors in three types of spinal cord injury mechanisms, J. Biomech. Eng., 138 (2016). |
[9] | B. Khuyagbaatar, K. Kim, T. Purevsuren, S. H. Lee, Y. H. Kim, Biomechanical effects on cervical spinal cord and nerve root following laminoplasty for ossification of the posterior longitudinal ligament in the cervical spine: A comparison between open-door and double-door laminoplasty using finite element analysis, J. Biomech. Eng., 140 (2018), 071006. |
[10] | N. Zareen, M. Shinozaki, D. Ryan, H. Alexander, A. Amer, D. Q. Truong, et al., Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury, Exp. Neurol., 297 (2017), 179-189. |
[11] | C. Persson, J. Summers, R. M. Hall, The importance of fluid-structure interaction in spinal trauma models, J. Neurotrauma., 28 (2011), 113-125. |
[12] | N. Nishida, Y. Kato, Y. Imajo, S. Kawano, T. Taguchi, Biomechanical study of the spinal cord in thoracic ossification of the posterior longitudinal ligament, J. Spinal Cord Med., 34 (2011), 518-522. |
[13] | K. Polak-Krasna, S. Robak-Nawrocka, S. Szotek, M. Czyż, D. Gheek, C. Pezowicz, The denticulate ligament-tensile characterisation and finite element micro-scale model of the structure stabilising spinal cord, J. Mech. Behav. Biomed. Mater., 91 (2019), 10-17. |
[14] | C. Y. Greaves, M. S. Gadala, T. R. Oxland, A three-dimensional finite element model of the cervical spine with spinal cord: an investigation of three injury mechanisms, Ann. Biomed. Eng., 36 (2008), 396-405. |
[15] | K. H. Stoverud, M. Alnaes, H. P. Langtangen, V. Haughton, K. A. Mardal, Poro-elastic modeling of Syringomyelia - a systematic study of the effects of pia mater, central canal, median fissure, white and gray matter on pressure wave propagation and fluid movement within the cervical spinal cord, Comput. Methods Biomech. Biomed. Engin., 19 (2016), 686-698. |
[16] | Y. B. Yan, W. Qi, Z. X. Wu, T. X. Qiu, E. C. Teo, W. Lei, Finite element study of the mechanical response in spinal cord during the thoracolumbar burst fracture, PLoS One, 7 (2012), e41397. |
[17] | R. W. Ogden, Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. London, Ser. A, 326 (1972), 565-584. |
[18] | H. Ozawa, T. Matsumoto, T. Ohashi, M. Sato, S. Kokubun, Mechanical properties and function of the spinal pia mater, J. Neurosurg. Spine, 1 (2004), 122-127. |
[19] | M. Czyz, K. Scigala, W. Jarmundowicz, R. Bedzinski, The biomechanical analysis of the traumatic cervical spinal cord injury using finite element approach, Acta Bioeng. Biomech., 10 (2008), 43-54. |
[20] | T. K. Hung, H. S. Lin, L. Bunegin, M. S. Albin, Mechanical and neurological response of cat spinal cord under static loading, Surg. Neurol., 17 (1982), 213-217. |
[21] | Z. Cai, Z. Li, L. Wang, H. Y. Hsu, Z. Xiao, C. J. Xian, A three-dimensional finite element modelling of human chest injury following front or side impact loading, J. Vibroeng., 18 (2016), 539-550. |
[22] | Z. Cai, Z. Li, J. Dong, Z. Mao, L. Wang, C. J. Xian, A study on protective performance of bullet-proof helmet under impact loading, J. Vibroeng., 18 (2016), 2027-2079. |
[23] | L. E. Bilston. L. E. Thibault, The mechanical properties of the human cervical spinal cord in vitro, Ann. Biomed. Eng., 24 (1996), 67-74. |
[24] | Y. Kato, T. Kanchiku, Y. Imajo, K. Kimura, K. Ichihara, S. Kawano, et al., Biomechanical study of the effect of degree of static compression of the spinal cord in ossification of the posterior longitudinal ligament, J. Neurosurg. Spine, 12 (2010), 301-305. |
[25] | B. Khuyagbaatar, K. Kim, W. M. Park, Y. H. Kim, Effect of posterior decompression extent on biomechanical parameters of the spinal cord in cervical ossification of the posterior longitudinal ligament, Proc. Inst. Mech. Eng. H, 230 (2016), 545-552. |
[26] | D. J. Anderson, D. R. Kipke, S. J. Nagel, S. Lempka, A. G. Machado, M. T. Holland, et al., Intradural spinal cord stimulation: Performance modeling of a new modality, Front. Neurosci., 13 (2019), 253. |
[27] | N. B. Ramirez, R. E. Arias-Berrios, C. Lopez-Acevedo, E. Ramos, Traumatic central cord syndrome after blunt cervical trauma: a pediatric case report, Spinal Cord Ser. Cases, 2 (2016), 16014. |
[28] | R. C. Schneider, G. Cherry, H. Pantek, The syndrome of acute central cervical spinal cord injury; with special reference to the mechanisms involved in hyperextension injuries of cervical spine, J. Neurosurg., 11 (1954), 546-577. |
[29] | B. Aarabi, M. N. Hadley, S. S. Dhall, D. E. Gelb, R. J. Hurlbert, C. J. Rozzelle, Management of acute traumatic central cord syndrome (ATCCS), Neurosurgery, 72 (2013), 195-204. |
[30] | S. Z. Hashmi, A. Marra, L. G. Jenis, A. A. Patel, Current concepts: Central cord syndrome, Clin. Spine Surg., 31 (2018), 407-412. |
[31] | C. Xiaofei, N. Bin, L. Qi, J. Chen, H. Guan, Q. Guo, Clinical and radiological outcomes of spinal cord injury without radiologic evidence of trauma with cervical disc herniation, Arch. Orthop. Trauma Surg., 133 (2013), 193-198. |