Research article Special Issues

Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions

  • Received: 22 July 2020 Accepted: 15 October 2020 Published: 11 November 2020
  • MSC : Primary 05A30, 30C45; Secondary 11B65, 47B38

  • In this paper, we first investigate some subclasses of q-starlike functions. We then apply higher-order q-derivative operators to introduce and study a new subclass of q-starlike functions, which involves the Janowski functions. Several coefficient inequalities and a sufficient condition are derived. Relevant connections with a number of earlier works on this subject are also pointed out.

    Citation: Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan. Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions[J]. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067

    Related Papers:

  • In this paper, we first investigate some subclasses of q-starlike functions. We then apply higher-order q-derivative operators to introduce and study a new subclass of q-starlike functions, which involves the Janowski functions. Several coefficient inequalities and a sufficient condition are derived. Relevant connections with a number of earlier works on this subject are also pointed out.


    加载中


    [1] S. Agrawal, S. K. Sahoo, A generalization of starlike functions of order α, Hokkaido Math. J., 46 (2017), 15-27. doi: 10.14492/hokmj/1498788094
    [2] H. Aldweby, M. Darus, On a subclass of bi-univalent functions associated with the q-derivative operator, J. Math. Computer Sci., 19 (2019), 58-64. doi: 10.22436/jmcs.019.01.08
    [3] M. Arif, O. Barkub, H. M. Srivastava, S. Abdullah, S. A. Khan, Some Janowski type harmonic q-starlike functions associated with symmetrical points, Mathematics, 8 (2020), Article ID 629, 1-16.
    [4] M. Arif, H. M. Srivastava, S. Umar, Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM), 113 (2019), 1211-1221.
    [5] Á. Baricz, A. Swaminathan, Mapping properties of basic hypergeometric functions, J. Class. Anal., 5 (2014), 115-128.
    [6] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
    [7] S. Elhaddad, M. Darus, Coefficient estimates for a subclass of bi-univalent functions defined by q-derivative operator, Mathematics, 8 (2020), Article ID 306, 1-14.
    [8] S. Elhaddad, H. Aldweby, M. Darus, Univalence of New General Integral Operator Defined by the Ruscheweyh Type q-Difference Operator, European J. Pure Appl. Math., 13 (2020), 861-872. doi: 10.29020/nybg.ejpam.v13i4.3817
    [9] A. W. Goodman, Univalent Functions, Vols. Ⅰ and Ⅱ, Mariner Publishing Company, Tempa, Florida, U.S.A,, 1983.
    [10] T. Hayami, S. Owa, Hankel determinant for p-valently starlike and convex functions of order α, Gen. Math., 4 (2009), 29-44.
    [11] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77-84. doi: 10.1080/17476939008814407
    [12] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
    [13] F. H. Jackson, q-Difference equations, Amer. J. Math., 32 (1910), 305-314. doi: 10.2307/2370183
    [14] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28 (1973), 297-326. doi: 10.4064/ap-28-3-297-326
    [15] Q. Khan, M. Arif, M. Raza, G. Srivastava, H. Tang, Some applications of a new integral operator in q-analog for multivalent functions, Mathematics, 7 (2019), Article ID 1178, 1-13.
    [16] N. Khan, Q. Z. Ahmad, T. Khalid, B. Khan, Results on spirallike p-valent functions, AIMS Math., 3 (2017), 12-20.
    [17] N. Khan, M. Shafiq, M. Darus, B. Khan, Q. Z. Ahmad, Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with Lemniscate of Bernoulli, J. Math. Inequal., 14 (2020), 51-63.
    [18] B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent q-starlike functions involving higher-order q-Derivatives, Mathematics, 8 (2020), 1470. doi: 10.3390/math8091470
    [19] B. Khan, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Q. Z. Ahmad, Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain, Mathematics, 8 (2020), 1334. doi: 10.3390/math8081334
    [20] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992) (Z. Li, F. Y. Ren, L. Yang, S. Zhang, Editors), 157-169. International Press, Cambridge, Massachusetts, U.S.A., 1994.
    [21] S. Mahmood, Q. Z. Ahmad, H. M. Srivastava, N. Khan, B. Khan, M. Tahir, A certain subclass of meromorphically q-starlike functionsassociated with the Janowski functions, J. Inequal. Appl., 2019 (2019), Article 88, 1-11.
    [22] S. Mahmood, N. Raza, E. S. AbuJarad, G. Srivastava, H. M. Srivastava, S. N. Malik, Geometric properties of certain classes of analytic functions associated with a q-integral operator, Symmetry, 11 (2019), Article ID 719, 1-14.
    [23] S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, B. Khan, I. Ali, Upper bound of the third Hankel determinant for a subclass of q-starlike functions, Symmetry, 11 (2019), Article ID 347, 1-13.
    [24] M. S. Rehman, Q. Z. Ahmad, H. M. Srivastava, B. Khan, N. Khan, Partial sums of generalized q-Mittag-Leffler functions, AIMS Math. 5 (2019), 408-420.
    [25] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., 48 (1943), 48-82.
    [26] M. Shafiq, N. Khan, H. M. Srivastava, B. Khan, Q. Z. Ahmad, M. Tahir, Generalisation of closeto-convex functions associated with Janowski functions, Maejo Int. J. Sci. Technol., 14 (2020), 141-155.
    [27] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116. doi: 10.1090/S0002-9939-1975-0369678-0
    [28] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent Functions, Fractional Calculus, and Their Applications (H. M. Srivastava, S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), 329-354, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.
    [29] H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327-344. doi: 10.1007/s40995-019-00815-0
    [30] H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain, Mathematics, 7 (2019), 181, 1-15. doi: 10.3390/math7020181
    [31] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407-425. doi: 10.14492/hokmj/1562810517
    [32] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, M. Tahir, A generalized conic domain and its applications to certain subclasses of analytic functions, Rocky Mountain J. Math., 49 (2019), 2325-2346. doi: 10.1216/RMJ-2019-49-7-2325
    [33] H. M. Srivastava, N. Khan, M. Darus, M. T. Rahim, Q. Z. Ahmad, Y. Zeb, Properties of spiral-like close-to-convex functions associated with conic domains, Mathematics, 7 (2019), Article ID 706, 1-12.
    [34] H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava, M. H. AbuJarad, Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM), 113 (2019), 3563-3584.
    [35] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of q-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1-14.
    [36] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general families of q-starlike functions associated with the Janowski functions, Filomat, 33 (2019), 2613-2626. doi: 10.2298/FIL1909613S
    [37] H. E. Ö. Uçar, Coefficient inequality for q-starlike functions, Appl. Math. Comput., 276 (2016), 122-126.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4117) PDF downloads(226) Cited by(27)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog