Research article

Lie symmetry reductions and exact solutions to a generalized two-component Hunter-Saxton system

  • Received: 03 August 2020 Accepted: 04 November 2020 Published: 09 November 2020
  • MSC : 37L20, 35C05, 35Q53

  • Based on the classical Lie group method, a generalized two-component Hunter-Saxton system is studied in this paper. All of the its geometric vector fields, infinitesimal generators and the commutation relations of Lie algebra are derived. Furthermore, the similarity variables and symmetry reductions of this new generalized two-component Hunter-Saxton system are derived. Under these Lie symmetry reductions, some exact solutions are obtained by using the symbolic computation. Moreover, a conservation law of this system is presented by using the multiplier approach.

    Citation: Huizhang Yang, Wei Liu, Yunmei Zhao. Lie symmetry reductions and exact solutions to a generalized two-component Hunter-Saxton system[J]. AIMS Mathematics, 2021, 6(2): 1087-1100. doi: 10.3934/math.2021065

    Related Papers:

  • Based on the classical Lie group method, a generalized two-component Hunter-Saxton system is studied in this paper. All of the its geometric vector fields, infinitesimal generators and the commutation relations of Lie algebra are derived. Furthermore, the similarity variables and symmetry reductions of this new generalized two-component Hunter-Saxton system are derived. Under these Lie symmetry reductions, some exact solutions are obtained by using the symbolic computation. Moreover, a conservation law of this system is presented by using the multiplier approach.


    加载中


    [1] J. K. Hunter, R. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), 1498-1521.
    [2] R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661
    [3] R. Camassa, D. D. Holm, J. M. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-31. doi: 10.1016/S0065-2156(08)70254-0
    [4] H. Wu, M. Wunsch, Global existence for the generalized two-component Hunter-Saxton system, J. Math. Fluid Mech., 14 (2012), 455-469. doi: 10.1007/s00021-011-0075-9
    [5] B. Moon, Y. Liu, Wave breaking and global existence for the generalized periodic two-component Hunter-Saxton system, J. Diff. Equ., 253 (2012), 319-355. doi: 10.1016/j.jde.2012.02.011
    [6] Z. G. Guo, S. R. Liu, W. M. Wang, On a variation of the two-component Hunter-Saxton system, Appl. Math. Comput., 259 (2015), 45-52.
    [7] J. Lenells, Spheres, Kähler geometry, and the two-component Hunter-Saxton equation, Proc. R. Soc. A, 469 (2013), 20120726.
    [8] M. Wunsch, The generalized Hunter-Saxton system, SIAM J. Math. Anal., 42 (2010), 1286-1304. doi: 10.1137/090768576
    [9] P. Olver, Applications of Lie Groups to Differential Equations, Grad. Texts in Math., vol. 107, Springer, New York, 1993.
    [10] M. Craddock, K. Lennox, Lie group symmetries as integral transforms of fundamental solutions, J. Diff. Equ., 232 (2007), 652-674. doi: 10.1016/j.jde.2006.07.011
    [11] H. Z. Liu, Y. X. Geng, Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid, J. Diff. Equ., 254 (2013), 2289-2303. doi: 10.1016/j.jde.2012.12.004
    [12] H. Z. Yang, W. Liu, B. Y. Yang, et al. Lie symmetry analysis and exact explicit solutions of threedimensional Kudryashov-Sinelshchikov equation, Commun. Nonlinear Sci. Numer. Simulat., 27 (2015), 271-280 doi: 10.1016/j.cnsns.2015.03.014
    [13] S. J. Yang, C. C. Hua, Lie symmetry reductions and exact solutions of a coupled KdV-Burgers equation, Appl. Math. Comput., 234 (2014), 579-583.
    [14] X. Lv, M. S. Peng, Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 2304-2312. doi: 10.1016/j.cnsns.2012.11.006
    [15] Q. S. Liu, R. G. Zhang, L. G. Yang, J. Song, A new model equation for nonlinear Rossby waves and some of its solutions, Phys. Lett. A 383 (2019), 514-525.
    [16] Q. S. Liu, L. G. Chen, Time-space fractional model for complex cylindrical Ion-Acoustic waves in ultrarelativistic plasmas, Complexity, 2020 (2020), 9075823.
    [17] Z. B. Bai, The introduction to the fractional differential equation boundary value problems, Math. Model. Appl., 6 (2017), 1-10
    [18] H. Z. Liu, J. B. li, Q. X. Zhang, Lie symmetry analysis and exact explicit solutions for general Burgers equation, J. Comput. Appl. Math., 228 (2009), 1-9. doi: 10.1016/j.cam.2008.06.009
    [19] H. Z. Liu, J. B. li, Symmetry reductions, dynamical behavior and exact explicit solutions to the Gordon types of equations, J. Comput. Appl. Math., 257 (2014), 144-156.
    [20] S. C. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations, Part Ⅰ: Examples of conservation law classifications, Eur. J. Appl. Math., 13 (2002), 545-566. doi: 10.1017/S095679250100465X
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3194) PDF downloads(160) Cited by(4)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog