Research article

Weighted boundedness for Toeplitz type operator related to singular integral transform with variable Calderón-Zygmund kernel

  • Received: 18 June 2020 Accepted: 08 October 2020 Published: 28 October 2020
  • MSC : 42B20, 42B25

  • In the paper, some weighted maximal inequalities for the Toeplitz operator related to the singular integral transform with variable CalderȮn-Zygmund kernel are proved. As an application, the boundedness of the operator on weighted Lebesgue space are obtained.

    Citation: Dazhao Chen. Weighted boundedness for Toeplitz type operator related to singular integral transform with variable Calderón-Zygmund kernel[J]. AIMS Mathematics, 2021, 6(1): 688-697. doi: 10.3934/math.2021041

    Related Papers:

  • In the paper, some weighted maximal inequalities for the Toeplitz operator related to the singular integral transform with variable CalderȮn-Zygmund kernel are proved. As an application, the boundedness of the operator on weighted Lebesgue space are obtained.



    加载中


    [1] S. Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc., 292 (1985), 103- 122. doi: 10.1090/S0002-9947-1985-0805955-5
    [2] A. P. Calderón, A. Zygmund, On singular integrals with variable kernels, Appl. Anal., 7 (1978), 221-238. doi: 10.1080/00036817808839193
    [3] S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31 (1982), 7-16. doi: 10.1512/iumj.1982.31.31002
    [4] D. Chen, Weighted boundedness for Toeplitz type operator associated to singular integral operator with variable Calderón-Zygmund kernel, Hacettepe J. Math. Stat., 483 (2019), 657-668.
    [5] R. R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611-635. doi: 10.2307/1970954
    [6] J. Garcia-Cuerva, Weighted Hp spaces, Dissert. Math., 162 (1979), 1-65.
    [7] J. Garcia-Cuerva, J. L. Rubio de Francia, Weighted norm inequalities and related topics, NorthHolland Math., Amsterdam: Academic Press, 1985.
    [8] Y. X. He, Y. S. Wang, Commutators of Marcinkiewicz integrals and weighted BMO, Acta Math. Sin. (Chin. Ser.), 54 (2011), 513-520.
    [9] B. Hu, J. Gu, Necessary and sufficient conditions for boundedness of some commutators with weighted Lipschitz spaces, J. Math. Anal. Appl., 340 (2008), 598-605. doi: 10.1016/j.jmaa.2007.08.034
    [10] S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Math., 16 (1978), 263-270. doi: 10.1007/BF02386000
    [11] S. Krantz, S. Li, Boundedness and compactness of integral operators on spaces of homogeneous type and applications, J. Math. Anal. Appl., 258 (2001), 629-641. doi: 10.1006/jmaa.2000.7402
    [12] Y. Lin, S. Z. Lu, Toeplitz operators related to strongly singular Calderon-Zygmund operators, Science in China (Series A), 49 (2006), 1048-1064. doi: 10.1007/s11425-006-1084-7
    [13] L. Z. Liu, The continuity for multilinear singular integral operators with variable Calderón-Zygmund kernel on Hardy and Herz spaces, Sib. Electron. Math. Rep., 2 (2005), 156-166.
    [14] L. Z. Liu, Good λ estimate for multilinear singular integral operators with variable Calderón-Zygmund kernel, Kragujevac J. Math., 27 (2005), 19-30.
    [15] L. Z. Liu, Weighted estimates of multilinear singular integral operators with variable Calderón-Zygmund kernel for the extreme cases, Vietnam J. Math., 34 (2006), 51-61.
    [16] S. Z. Lu, H. X. Mo, Toeplitz type operators on Lebesgue spaces, Acta Math. Sci., 29 (2009), 140- 150. doi: 10.1016/S0252-9602(09)60014-X
    [17] S. Z. Lu, D. C. Yang, Z. S. Zhou, Oscillatory singular integral operators with Calderón-Zygmund kernels, Southeast Asian Bull. Math., 23 (1999), 457-470.
    [18] M. Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J., 44 (1995), 1-18.
    [19] C. Pérez, Endpoint estimate for commutators of singular integral operators, J. Func. Anal., 128 (1995), 163-185. doi: 10.1006/jfan.1995.1027
    [20] C. Pérez, R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc., 65 (2002), 672-692. doi: 10.1112/S0024610702003174
    [21] E. M. Stein, Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals, New York: Princeton Univ. Press, Princeton NJ, 1993.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3162) PDF downloads(118) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog