Research article

A new generalized family of distributions: Properties and applications

  • Received: 12 August 2020 Accepted: 09 October 2020 Published: 19 October 2020
  • MSC : 60E05, 62F10

  • We come up with a new class called log-logistic tan generalized family which provides sub-models with left skewed, symmetrical, right skewed, unimodal, bimodal and reversed-J densities, and increasing, decreasing, modified bathtub, bathtub, unimodal, reversed-J shaped, and J-shaped hazard rates. Some of its sub-models are provided along with some general structural properties. The parameter estimation has been conducted via maximum likelihood. Moreover, the estimators behavior are assessed using various simulation results. The capability of the log-logistic tan-Weibull model is proved using two real-life data sets. It provides higher quality fit than competing Weibull extensions, among others.

    Citation: Sajid Mehboob Zaidi, Mashail M. AL Sobhi, M. El-Morshedy, Ahmed Z. Afify. A new generalized family of distributions: Properties and applications[J]. AIMS Mathematics, 2021, 6(1): 456-476. doi: 10.3934/math.2021028

    Related Papers:

  • We come up with a new class called log-logistic tan generalized family which provides sub-models with left skewed, symmetrical, right skewed, unimodal, bimodal and reversed-J densities, and increasing, decreasing, modified bathtub, bathtub, unimodal, reversed-J shaped, and J-shaped hazard rates. Some of its sub-models are provided along with some general structural properties. The parameter estimation has been conducted via maximum likelihood. Moreover, the estimators behavior are assessed using various simulation results. The capability of the log-logistic tan-Weibull model is proved using two real-life data sets. It provides higher quality fit than competing Weibull extensions, among others.


    加载中


    [1] A. Z. Afify, M. Alizadeh, The odd Dagum family of distributions: Properties and applications, J. Appl. Probab. Stat., 15 (2020), 45-72.
    [2] A. Z. Afify, M. Alizadeh, M. Zayed, T. G. Ramires, F. Louzada, The odd log-logistic exponentiated Weibull distribution: Regression modeling, properties, and applications, Iran. J. Sci. Technol. A, 42 (2018), 2273-2288.
    [3] A. Z. Afify, G. M. Cordeiro, M. E. Mead, M. Alizadeh, H. Al-Mofleh, Z. M. Nofal, The generalized odd Lindley-G family: Properties and applications, An. Acad. Bras. Ciênc., 91 (2019), 1-22.
    [4] A. Z. Afify, A. Emrah, M. Alizadeh, G. Ozel, G. G. Hamedani, The odd exponentiated half-logisticG family: Properties, characterizations and applications, Chilean Journal of Statistics, 8 (2017), 65-91.
    [5] M. Alizadeh, M. Emadi, M. Doostparast, G. M. Cordeiro, E. M. Ortega, R. R. Pescim, A new family of distributions: The Kumaraswamy odd log-logistic, properties and applications, Hacet. J. Math. Stat., 44 (2015), 1491-1512.
    [6] M. Alizadeh, S. M. T. K. MirMostafee, E. M. M. Ortega, T. G. Ramires, G. M. Cordeiro, The odd log-logistic logarithmic generated family of distributions with applications in different areas, Journal of Statistical Distributions and Applications, 4 (2017), 1-25. doi: 10.1186/s40488-017-0055-6
    [7] M. Alizadeh, S. Tahmasebi, H. Haghbin, The exponentiated odd log-logistic family of distributions: Properties and applications, Journal of Statistical Modelling: Theory and Applications, 1 (2018), 29-54.
    [8] E. Altun, M. Alizadeh, A. Z. Afify, G. Ozel, The generalized odd half-logistic family of distributions with regression models, International Journal of Statistics & Economics, 20 (2019), 88-110.
    [9] A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of continuous distributions, Metron, 71 (2013), 63-79. doi: 10.1007/s40300-013-0007-y
    [10] A. M. Amini, S. M. T. K. MirMostafaee, J. C. Ahmadi, Log-gamma-generated families of distributions, Statistics, 48 (2014), 913-932. doi: 10.1080/02331888.2012.748775
    [11] M. Bourguignon, R. B. Silva, G. M. Cordeiro, The Weibull-G family of probability distributions, Journal of Data Science, 12 (2014), 53-68.
    [12] V. Choulakian, M. A Stephens, Goodness-of-fit tests for the generalized pareto distribution, Technometrics, 43 (2001), 478-484.
    [13] G. M. Cordeiro, A. Z. Afify, H. M. Yousof, R. R. Pescim, G. Aryal, The exponentiated Weibull-H family of distributions: Theory and applications, Mediterr. J. Math., 14 (2017), 1-22. doi: 10.1007/s00009-016-0833-2
    [14] G. M. Cordeiro, M. Alizadeh, P. R. D. Marinho, The type I half-logistic family of distributions, J. Stat. Comput. Sim., 86 (2015), 707-728.
    [15] G. M. Cordeiro, M. Alizadeh, G. Ozel, B. Hosseini, E. M. M. Ortega, E. Altun, The generalized odd log-logistic family of distributions: Properties, regression models and applications, J. Stat. Comput. Sim., 87 (2017), 908-932.
    [16] G. M. Cordeiro, M. Alizadeh, M. H. Tahir, M. Mansoor, M. Bourguignon, G. G. Hamedani, The beta odd log-logistic family of distributions, Hacet. J. Math. Stat., 45 (2015), 1175-1202.
    [17] G. M. Cordeiro, M. de Castro, A new family of generalized distributions, J. Stat. Comput. Sim., 81 (2011), 883-898.
    [18] G. M. Cordeiro, E. M. M. Ortega, S. Nadarajah, The Kumaraswamy Weibull distribution with application to failure data, Journal of the Franklin Institute, 347 (2010), 1399-1429. doi: 10.1016/j.jfranklin.2010.06.010
    [19] N. Eugene, C. Lee, F. Famoye, Beta-normal distribution and its applications, Commun. Stat. Theor. M., 31 (2002), 497-512. doi: 10.1081/STA-120003130
    [20] J. U. Gleaton, J. D. Lynch, Properties of generalized log logistic families of lifetime distributions, Journal of Probability and Statistical Science, 4 (2006), 51-64.
    [21] M. Gouloust, S. Rezaei, M. Alizadeh, Mujtaba, S. Nadaraja, The odd log-logistic power series family of distributions: Properties and applications, Statistica, 79 (2019), 77-107.
    [22] J. A. Greenwood, J. M. Landwehr, N. C. Matalas, J. R. Wallis, Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form, Water Resour. Res., 15 (1979), 1049-1054. doi: 10.1029/WR015i005p01049
    [23] R. C. Gupta, P. I. Gupta, R. D. Gupta, Modeling failure time data by Lehmann alternatives, Communications in Statistics-Theory and methods, 27 (1998), 887-904. doi: 10.1080/03610929808832134
    [24] R. D. Gupta, D. Kundu, Exponentiated exponential family: an alternative to gamma and Weibull distributions, Biometrical J., 43 (2001), 117-130. doi: 10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R
    [25] R. D. Gupta, D. Kundu, Theory & Methods: Generalized exponential distribution, Aust. N. Z. J. Stat., 41 (1999), 173-188. doi: 10.1111/1467-842X.00072
    [26] A. H. Soliman, M. A. E. Agarhy, M. Shakil, Type II half logistic family of distributions with applications, Pakistan Journal of Statistics and Operation Research, 13 (2017), 245-264. doi: 10.18187/pjsor.v13i2.1560
    [27] H. Haghbin, G. Ozel, M. Alizadeh, G. G. Hamedani, A new generalized odd log-logistic family of distributions, J. Commun. Stat. Theor. M., 46 (2017), 9897-9920. doi: 10.1080/03610926.2016.1222428
    [28] M. C. Korkmaz, H. M. Yousof, G. G. Hamedani, The exponential Lindley odd log-logisticG family: Properties, characterizations and applications, Journal of Statistical Theory and Applications, 17 (2018), 554-571.
    [29] M. Akbarinasab, A. R. Arabpour, A. Mahdavi, Truncated log-logistic family of distributions, Journal of Biostatistics and Epidemiology, 5 (2019), 137-147.
    [30] M. E. Mead, A. Z. Afify, On five-parameter burr xii distribution: Properties and applications, South African Statistical Journal, 51 (2017), 67-80.
    [31] G. S. Mudholkar, D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure data, IEEE T. Reliab., 42 (1993), 299-302. doi: 10.1109/24.229504
    [32] G. S. Mudholkar, A. D. Hutson, The exponentiated Weibull family: Some properties and a flood data application, Commun. Stat. Theor. M., 25 (1996), 3059-3083. doi: 10.1080/03610929608831886
    [33] S. Nadarajah, S. Kotz, The exponentiated type distributions, Acta Appl. Math., 92 (2006), 97-111. doi: 10.1007/s10440-006-9055-0
    [34] S. Nadarajah, A. K. Gupta, The exponentiated gamma distribution with application to drought data, Calcutta Statistical Association Bulletin, 59 (2007), 29-54. doi: 10.1177/0008068320070103
    [35] S. Nadarajah, The exponentiated exponential distribution: A survey, AStA Adv. Stat. Anal., 95 (2011), 219-251. doi: 10.1007/s10182-011-0154-5
    [36] P. F. Paranaiba, E. M. M. Ortega, G. M. Cordeiro, R. R. Pescima, The beta Burr XII distribution with application to lifetime data, Comput. Stat. Data An., 55 (2011), 1118-1136. doi: 10.1016/j.csda.2010.09.009
    [37] A. Sabor, M. Alizadeh, M. N. Khan, I. Gosh, G. M. Cordeiro, Odd log-logistic modified Weibull distribution, MeditERR. J. Math., 14 (2017), 1-19. doi: 10.1007/s00009-016-0833-2
    [38] R. L. Smith, J. C. Naylor, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, J. R. Appl. Soc. C. Appl., 36 (1987), 358-369.
    [39] M. H. Tahir, G. M. Cordeiro, A. Alzaatreh, M. Zubair, M. Mansoor, The logistic-X family of distributions and its applications, Commun. Stat. Theor. M., 45 (2016), 7326-7349. doi: 10.1080/03610926.2014.980516
    [40] H. Torabi, N. H. Montazari, The logistic-uniform distribution and its application, Commun. Stat. Simul. C., 43 (2014), 2551-2569. doi: 10.1080/03610918.2012.737491
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(14735) PDF downloads(446) Cited by(14)

Article outline

Figures and Tables

Figures(12)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog