Research article Special Issues

Blow up at well defined time for a coupled system of one spatial variable Emden-Fowler type in viscoelasticities with strong nonlinear sources

  • Received: 20 August 2020 Accepted: 08 October 2020 Published: 16 October 2020
  • MSC : 35B44, 35D30, 35L05

  • For one spatial variable, a new kind of coupled system for nonlinear wave equations of Emden-Fowler type is considered with boundary value and initial values. Under certain conditions on the initial data and the exponent $\rho$, we show that the viscoelastic terms lead our problem to be dissipative and that the global solutions cannot exist in $L^2$ beyond the given finite time i.e., $ \int_{r_1}^{r_2} \Big(\vert u_1 \vert^2 + \vert u_2 \vert^2 \Big) \, dx \to +\infty \quad \hbox{ as } t\to T^{\ast}, $ where $ \ln {T^ * } = \frac{2}{{\rho + 1}}(\sum\limits_{i = 1}^2 {\int_{{r_1}}^{{r_2}} {|{u_{i0}}{|^2}} } {\mkern 1mu} dx){(\sum\limits_{i = 1}^2 {\int_{{r_1}}^{{r_2}} {\left( {2{u_{i0}}{u_{i1}} - |{u_{i0}}{|^2}} \right)} } {\mkern 1mu} dx)^{ - 1}}. $

    Citation: Fahima Hebhoub, Khaled Zennir, Tosiya Miyasita, Mohamed Biomy. Blow up at well defined time for a coupled system of one spatial variable Emden-Fowler type in viscoelasticities with strong nonlinear sources[J]. AIMS Mathematics, 2021, 6(1): 442-455. doi: 10.3934/math.2021027

    Related Papers:

  • For one spatial variable, a new kind of coupled system for nonlinear wave equations of Emden-Fowler type is considered with boundary value and initial values. Under certain conditions on the initial data and the exponent $\rho$, we show that the viscoelastic terms lead our problem to be dissipative and that the global solutions cannot exist in $L^2$ beyond the given finite time i.e., $ \int_{r_1}^{r_2} \Big(\vert u_1 \vert^2 + \vert u_2 \vert^2 \Big) \, dx \to +\infty \quad \hbox{ as } t\to T^{\ast}, $ where $ \ln {T^ * } = \frac{2}{{\rho + 1}}(\sum\limits_{i = 1}^2 {\int_{{r_1}}^{{r_2}} {|{u_{i0}}{|^2}} } {\mkern 1mu} dx){(\sum\limits_{i = 1}^2 {\int_{{r_1}}^{{r_2}} {\left( {2{u_{i0}}{u_{i1}} - |{u_{i0}}{|^2}} \right)} } {\mkern 1mu} dx)^{ - 1}}. $


    加载中


    [1] A. Benaissa, D. Ouchenane, Kh. Zennir, Blow up of positive initial-energy solutions to systems of nonlinear wave equations with degenerate damping and source terms, Nonl. Stud., 19 (2012), 523-535.
    [2] S. Chandrasekhar, An introduction to the study of stellar structure, New York: Dover Publications, Inc., 1957.
    [3] R. Emden, Gaskugeln: Anwendungen der mechanischen wärmetheorie auf kosmologie und meteorologische probleme, Berlin: B. G. Teubner, 1907.
    [4] R. H. Fowler, The form near infinity of real, continuous solutions of a certain differential equation of the second order, Quart. J. Math., 45 (1914), 289-350.
    [5] R. H. Fowler, The solution of Emden's and similar differential equations, Mon. Not. Roy. Astron. Soc., 91 (1930), 63-91. doi: 10.1093/mnras/91.1.63
    [6] R. H. Fowler, Some results on the form near infinity of real continuous solutions of a certain type of second order differential equation, P. London Math. Soc., 13 (1914), 341-371.
    [7] R. H. Fowler, Further studies of Emden's and similar differential equations, Quart. J. Math., 2 (1931), 259-288.
    [8] M. R. Li, Nonexistence of global solutions of Emden-Fowler type semilinear wave equations with non-positive energy, Electron. J. Diff. Equ., 93 (2016), 1-10.
    [9] M. R. Li, Existence and uniqueness of local weak solutions for the Emden-Fowler wave equation in one dimension, Electron. J. Diff. Equ., 145 (2015), 1-10.
    [10] S. A. Messaoudi, B. Said-Houari, Global nonexistence of positive initial-energy solutions of a systemof nonlinear viscoelastic wave equations with damping and source terms, J. Math. Anal. Appl., 365 (2010), 277-287.
    [11] D. Ouchenane, Kh. Zennir, M. Bayoud, Global nonexistence of solutions for a system of nonlinear viscoelastic wave equations with degenerate damping and source terms, Ukrainian Math. J., 65 (2013), 723-739. doi: 10.1007/s11253-013-0809-3
    [12] M. A. Rammaha, S. Sakuntasathien, Global existence and blow up of solutions to systems of nonlinear wave equations with degenerate damping and source terms, Nonlinear Anal. Theor., 72 (2010), 2658-2683. doi: 10.1016/j.na.2009.11.013
    [13] M. Reed, Abstract non-linear wave equations, Berlin-New York: Springer-Verlag, 1976.
    [14] A. Ritter, Untersuchungen über die Höhe der Atmosphäre und die Constitution gasformiger Weltkörper, Wiedemann Annalen der Physik, 249 (1881), 360-377. doi: 10.1002/andp.18812490616
    [15] W. Thomson, On the convective equilibrium of temperature in the atmosphere, In: Memoirs of the literary and philosophical society of Manchester, Vol. 2, Manchester: The Society, 1865,125-131.
    [16] Kh. Zennir, A. Guesmia, Existence of solutions to nonlinear κth-order coupled Klein-Gordon equations with nonlinear sources and memory terms, Appl. Math. E-Notes, 15 (2015), 121-136.
    [17] Kh. Zennir, Growth of solutions with positive initial energy to system of degeneratly damped wave equations with memory, Lobachevskii J. Math., 35 (2014), 147-156.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3161) PDF downloads(117) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog