Research article

Some (p, q)-Hardy type inequalities for (p, q)-integrable functions

  • Received: 18 August 2020 Accepted: 21 September 2020 Published: 28 September 2020
  • MSC : 26D10, 26D15, 81P68

  • In this paper, we study some $(p, q)$-Hardy type inequalities for $(p, q)$-integrable functions. Moreover, we also study $(p, q)$-H?lder integral inequality and $(p, q)$-Minkowski integral inequality for two variables. By taking $p = 1$ and $q\to 1$, our results reduce to classical results on Hardy type inequalities, H?lder integral inequality and Minkowski integral inequality for two variables.

    Citation: Suriyakamol Thongjob, Kamsing Nonlaopon, Sortiris K. Ntouyas. Some (p, q)-Hardy type inequalities for (p, q)-integrable functions[J]. AIMS Mathematics, 2021, 6(1): 77-89. doi: 10.3934/math.2021006

    Related Papers:

  • In this paper, we study some $(p, q)$-Hardy type inequalities for $(p, q)$-integrable functions. Moreover, we also study $(p, q)$-H?lder integral inequality and $(p, q)$-Minkowski integral inequality for two variables. By taking $p = 1$ and $q\to 1$, our results reduce to classical results on Hardy type inequalities, H?lder integral inequality and Minkowski integral inequality for two variables.


    加载中


    [1] F. H. Jackson, On a q-definite integrals, Q. J. Pure Appl. Math., 41 (1910), 193-203.
    [2] F. H. Jackson, q-Difference equations, Am. J. Math., 32 (1910), 305-314. doi: 10.2307/2370183
    [3] J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 1-19. doi: 10.1186/1687-1847-2013-1
    [4] J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite interval, J. Inequal. Appl., 2014 (2014), 1-13. doi: 10.1186/1029-242X-2014-1
    [5] M. H. Annaby, Z. S. Mansour, q-Fractional calculus and equations, Helidelberg: Springer, 2012.
    [6] G. Bangerezako, Variational calculus on q-nonuniform lattices, J. Math. Anal. Appl., 306 (2005), 161-179. doi: 10.1016/j.jmaa.2004.12.029
    [7] T. Ernst, A comprehensive treatment of q-calculus, Basel: Springer, 2012.
    [8] T. Ernst, The history of q-calculus and a new method, UUDM Report 2000: 16, Department of Mathematics, Uppsala University, 2000.
    [9] H. Exton, q-Hypergeomatric functions and applications, New York: Hastead Press, 1983.
    [10] S. Asawasamrit, C. Sudprasert, S. K. Ntouyas, J. Tariboon, Some results on quantum Hanh integral inequalities, J. Inequal. Appl., 2019 (2019), 1-18. doi: 10.1186/s13660-019-1955-4
    [11] V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002.
    [12] M. Aslam, M. U. Awan, K. I. Noor, Quantum Ostrowski inequalities for q-differentiabble convex functions, J. Math. Inequal., 10 (2016), 1013-1018.
    [13] A. Aral, V. Gupta, R. P. Agarwal, Applications of q-calculus in operator theory, New York: Springer, 2013.
    [14] H. Gauchman, Integral inequalities in q calculus, Comput. Math. Appl., 47 (2004), 281-300. doi: 10.1016/S0898-1221(04)90025-9
    [15] R. Chakrabarti, R. Jagannathan, A (p, q)-oscillator realization of two parameter quantum algebras, J. Phys. A Math. Gen., 24 (1991), L711-L718.
    [16] P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, Results Math., 73 (2013), 1-21.
    [17] M. Tunç, E. Göv, Some integral inequalities via (p, q)-calculus on finite intervals, RGMIA Res. Rep. Coll., 19 (2016), 1-12.
    [18] M. Tunç, E. Göv, (p, q)-Integral inequalities, RGMIA Res. Rep. Coll., 19 (2016), 1-13.
    [19] M. Tunç, E. Göv, (p, q)-Integral inequalities for convex functions, RGMIA Res. Rep. Coll., 19 (2016), 1-12.
    [20] J. Prabseang, K. Nonlaopon, J. Tariboon, (p, q)-Hermite-Handamard inequalities for double integral and (p, q)-differentiable convex function, Axioms, 8 (2019), 1-10.
    [21] M. Kunt, I. Iscan, N. Alp, M. Z. Sarikaya, (p, q)-Hermite-Hadamard inequalities and (p, q)- estimates for midpoint type inequalities via convex and quasi-convex functions, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 112 (2018), 969-992.
    [22] P. N. Sadjang, On the (p, q)-gamma and the (p, q)-beta functions, arXiv: 1506.07394, 2015.
    [23] H. Kalsoom, M. Amer, M. D. Junjua, S. Hassain, G. Shahzadi, Some (p, q)-estimates of HermiteHadamard-type inequalities for coordinated convex and quasi convex functions, Mathematics, 7 (2019), 1-22.
    [24] M. D. Nasiruzzaman, A. Mukheimer, M. Mursaleen, Some Opial-type integral inequalities via (p, q)-calculus, J. Inequal. Appl., 2019 (2019), 1-11.
    [25] M. A. Latif, M. Kunt, S. S. Dragomir, I. Iscan, Post-quantum trapezoid type inequalities, AIMS Mathematics, 5 (2020), 4011-4026. doi: 10.3934/math.2020258
    [26] C. Li, D. Yang, S. C. Bai, Some Opial inequalities in (p, q)-calculus, AIMS Mathematics, 5 (2020), 5893-5902.
    [27] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge: Cambridge University Press, 1967.
    [28] G. H. Hardy, Notes on a theorem of Hilbert, Math. Z., 6 (1920), 314-317. doi: 10.1007/BF01199965
    [29] N. Levinson, Generalization of an inequality of Hardy, Duke Math. J., 31 (1964), 389-394. doi: 10.1215/S0012-7094-64-03137-0
    [30] B. Sroysang, A generalization of some integral inequalities similar to Hardy's inequality, Math. Aeterna., 3 (2013), 593-596.
    [31] B. Sroysang, More on some Hardy type integral inequalities, J. Math. Inequal., 8 (2014), 497-501.
    [32] S. Wu, B. Sroysang, S. Li, A further generalization of certain integral inequalities similar to Hardy's inequality, J. Nonlinear Sci. Appl., 9 (2016), 1093-1102. doi: 10.22436/jnsa.009.03.37
    [33] L. Bougoffa, On Minkowski and Hardy integral inequalities, J. Inequal. Pure Appl. Math., 7 (2006), 1-3.
    [34] W. T. Sulaiman, Some Hardy type integral inequalities, Appl. Math. Lett., 25 (2012), 520-525. doi: 10.1016/j.aml.2011.09.050
    [35] W. T. Sulaiman, Reverses of Minkowski's, H?lder's, and Hardy's integral inequalities, Int. J. Mod. Math. Sci., 1 (2012), 14-24.
    [36] L. Maligranda, R. Oinarov, L. E. Persson, On Hardy q-inequalities, Czech. Math. J., 64 (2014), 659-682. doi: 10.1007/s10587-014-0125-6
    [37] L. E. Persson, S. Shaimardan, Some new Hardy-type inequalities for Riemann-Louville fractional q-integral operator, J. Inequal. Appl., 2015 (2015), 1-17. doi: 10.1186/1029-242X-2015-1
    [38] S. Shaimardan, Hardy-type inequalities for the fractional integral operator in q-analysis, Eurasian Math. J., 7 (2016), 84-99.
    [39] A. O. Baiarystanov, L. E. Persson, S. Shaimardan, A. Termirkhanova, Some new Hardy-type inequalities in q-analysis, J. Math. Inequal., 3 (2016), 761-781.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3584) PDF downloads(235) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog