Citation: Zonghu Xiu, Shengjun Li, Zhigang Wang. Existence of infinitely many small solutions for fractional Schrödinger-Poisson systems with sign-changing potential and local nonlinearity[J]. AIMS Mathematics, 2020, 5(6): 6902-6912. doi: 10.3934/math.2020442
[1] | B. Cheng, X. H. Tang, High energy solutions of modified quasilinear fourth-order elliptic equations with sign-changing potential, Comput. Math. Appl., 73 (2017), 27-36. doi: 10.1016/j.camwa.2016.10.015 |
[2] | R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370. doi: 10.1016/j.jfa.2005.04.005 |
[3] | N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A., 268 (2000), 298-305. doi: 10.1016/S0375-9601(00)00201-2 |
[4] | N. Laskin, Fractional Schrödinger equation, Phys. Rev. E., 66 (2002), 1-7. |
[5] | H. L. Liu, H. B. Chen, X. X. Yang, Multiple solutions for superlinear Schrödinger-Poisson system with sign-changing potential and nonlinearity, Comput. Math. Appl., 68 (2014), 1982-1990. doi: 10.1016/j.camwa.2014.09.021 |
[6] | X. Y. Lin, X. H. Tang, Existence of infinitely many solutions for p-Laplacian equations in $\mathbb{R}^N$, Nonlinear Anal., 92 (2013), 72-81. |
[7] | H. X. Luo, X. H. Tang, S. J. Li, Multiple solutions of nonlinear Schrodinger equation with the fractional p-Laplacian, Tawanese J. Math., 21 (2017), 1017-1035. doi: 10.11650/tjm/7947 |
[8] | H. X. Luo, S. J. Li, X. H. Tang, Nontrivial solution for the fractional p-Laplacian equations via perturbation methods, Adv. Math. Phys., 2017 (2017). DOI: 10.1155/2017/5317213. |
[9] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004 |
[10] | D. D. Qin, X. H. Tang, J. Zhang, Multiple solutions for semilinear elliptic equations with signchanging potential and nonlinearity, Electron. J. Differ. Equ., 207 (2013), 1-9. |
[11] | X. H. Tang, Infinitely many solutions for semilinear Schrödinger equations with signchanging potential and nonlinearity, J. Math. Anal. Appl., 401 (2013), 407-415. doi: 10.1016/j.jmaa.2012.12.035 |
[12] | X. Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter, J. Differ. Equ., 256 (2014), 2619-2632. doi: 10.1016/j.jde.2014.01.026 |
[13] | Z. H. Xiu, C. S. Chen, Existence of multiple solutions for singular elliptic problems with nonlinear boundary conditions, J. Math. Anal. Appl., 410 (2014), 625-641. doi: 10.1016/j.jmaa.2013.08.048 |
[14] | J. Zhang, M. Squassina, Fractional Schrödinger-Possion equations with a gneral subcritical or critical nonlinearity, Adv. Nonlinear Stud., 16 (2016), 15-30. doi: 10.1515/ans-2015-5024 |
[15] | J. G. Zhang, Existence and multiplicity results for the fractional Schrödinger-Poisson systems, arXiv preprint, 2015. arXiv:1507.01205v1. |
[16] | W. M. Zou, M. Schechter, Critical point theory and its applications, 1 Eds., New York: Springer Press, 2006. |
[17] | F. Zhou, K. Wu, Infinitely many small solutions for a modified nonlinear Schrödinger equations, J. Math. Anal. Appl., 411 (2014), 953-959. doi: 10.1016/j.jmaa.2013.09.058 |
[18] | C. S. Chen, Infinitely many solutions for fractional Schrodinger equations in $\mathbb{R}^N$, Electron. J. Differ. Equ., 88 (2016), 1-15. |
[19] | J. Zhang, X. H. Tang, W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential, J. Math. Anal. Appl., 420 (2014), 1762-1775. doi: 10.1016/j.jmaa.2014.06.055 |
[20] | J. Zhang, X. H. Tang, W. Zhang, Existence of multiple solutions of Kirchhoff type equation with sign-changing potential, Appl. Math. Comput., 242 (2014), 491-499. |
[21] | W. Zhang, X. H. Tang, J. Zhang, Multiple solutions for semilinear Schrödinger equations with electromagnetic potential, Electron. J. Differ. Equ., 26 (2016), 1-9. |
[22] | J. Zhang, X. H. Tang, W. Zhang, Existence of infinitely many solutions for a quasilinear elliptic equation, Appl. Math. Lett., 37 (2014), 131-135. doi: 10.1016/j.aml.2014.06.010 |
[23] | M. Struwer, Variational methods, 3 Eds., New York: Springer Press, 2000. |