Research article

Dynamic behaviors for reaction-diffusion neural networks with mixed delays

  • Received: 16 July 2020 Accepted: 31 August 2020 Published: 04 September 2020
  • MSC : 35C07, 35K57, 92D30

  • A class of reaction-diffusion neural networks with mixed delays is studied. We will discuss some important properties of the periodic mild solutions including existence and globally exponential stability by using exponential dissipation property of semigroup of operators and some analysis techniques. Finally, an example for the above neural networks is given to show the effectiveness of the results in this paper.

    Citation: Mei Xu, Bo Du. Dynamic behaviors for reaction-diffusion neural networks with mixed delays[J]. AIMS Mathematics, 2020, 5(6): 6841-6855. doi: 10.3934/math.2020439

    Related Papers:

  • A class of reaction-diffusion neural networks with mixed delays is studied. We will discuss some important properties of the periodic mild solutions including existence and globally exponential stability by using exponential dissipation property of semigroup of operators and some analysis techniques. Finally, an example for the above neural networks is given to show the effectiveness of the results in this paper.


    加载中


    [1] S. Mohamad, Exponential stability in Hopfield-type neural networks with impulses, Chaos Soliton. Fract., 32 (2007), 456-467. doi: 10.1016/j.chaos.2006.06.035
    [2] J. Lu, D. W. C. Ho, J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica, 46 (2010), 1215-1221. doi: 10.1016/j.automatica.2010.04.005
    [3] P. B. Watta, K. Wang, M. H. Hassoun, Recurrent neural nets as dynamical boolean systems with application to associative memory, IEEE T. Neural Networ., 8 (1997), 1268-1280. doi: 10.1109/72.641450
    [4] H. Yin, B. Du, X. Cheng, Stochastic patch structure Nicholson's blowfies system with mixed delays, Adv. Differ. Equ., 386 (2020), 1-11.
    [5] S. Mou, H. Gao, J. Lam, et al. A new criterion of delay dependent asymptotic stability for Hopfield neural networks with time delay, IEEE T. Neural Networ., 19 (2008), 532-535. doi: 10.1109/TNN.2007.912593
    [6] C. Liu, W. Liu, Z. Yang, et al. Stability of neural networks with delay and variable-time impulses, Neurocomputing, 171 (2016), 1644-1654. doi: 10.1016/j.neucom.2015.07.007
    [7] S. Hu, J. Wang, Global stability of a class of discrete-time recurrent neural networks, IEEE Trans. Circuits Syst. I, 49 (2017), 1104-1117.
    [8] B. Du, Anti-periodic solutions problem for inertial competitive neutral-type neural networks via Wirtinger inequality, J. Inequal. Appl., 2019 (2019), 1-15. doi: 10.1186/s13660-019-1955-4
    [9] Q. Zhu, J. Cao, Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays, IEEE T. Syst. Man Cy. B, 41 (2011), 341-353.
    [10] J. H. Park, O. Kwon, Design of state estimator for neural networks of neutral-type, Appl. Math. Comput., 202 (2008), 360-369.
    [11] T. Zhou, B. Du, H. Du, Positive periodic solution for indefinite singular Lienard equation with p-Laplacian, Adv. Differ. Equ., 2019 (2019), 1-17. doi: 10.1186/s13662-018-1939-6
    [12] Z. Gui, W. Ge, X. Yang, Periodic oscillation for a Hopfield neural networks with neutral delays, Phys. Lett. A, 364 (2007), 267-273. doi: 10.1016/j.physleta.2006.12.013
    [13] K. Wang, Z. Teng, H. Jiang, Adaptive synchronization in an array of linearly coupled neural networks with reaction-diffusion terms and time delays, Commun. Nonlinear Sci., 17 (2012), 3866-3875. doi: 10.1016/j.cnsns.2012.02.020
    [14] Y. Wu, L. Liu, J. Hu, et al. Adaptive Antisynchronization of Multilayer Reaction-Diffusion Neural Networks, IEEE T. Neur. Net. Lear., 29 (2018), 807-818. doi: 10.1109/TNNLS.2017.2647811
    [15] J. Wang, H. Wu, Synchronization and adaptive control of an array of linearly coupled reactiondiffusion neural networks with hybrid coupling, IEEE T. Cybernetics, 44 (2013), 1350-1361.
    [16] L. Duan, L. Huang, Z. Guo, et al. Periodic attractor for reaction-diffusion high-order Hopfield neural networks with time-varying delays, Comput. Math. Appl., 73 (2017), 233-245. doi: 10.1016/j.camwa.2016.11.010
    [17] B. Lisena, Average criteria for periodic neural networks with delay, Discrete Cont. Dyn. B, 19 (2014), 761-773.
    [18] Z. Wang, L. Liu, Q. Shan, et al. Stability criteria for recurrent neural networks with time-varying delay based on secondary delay partitioning method, IEEE T. Neur. Net. Lear., 26 (2015), 2589-2595. doi: 10.1109/TNNLS.2014.2387434
    [19] M. Wang, Semigroup of Operators and Evolutionary Equations, Bei Jing: Science Press, 2006.
    [20] H. Yin, B. Du, Q. Yang, et al. Existence of Homoclinic orbits for a singular differential equation involving p-Laplacian, J. Funct. Space., 2020 (2020), 1-7.
    [21] J. Cao, Global stability conditions for delayed CNNs, IEEE Trans. Circuits Syst. I, 48 (2001), 1330-1333. doi: 10.1109/81.964422
    [22] X. Wang, M. Jiang, S. Fang, Stability analysis in Lagrange sense for a non-autonomous CohenGrossberg neural network with mixed delays, Nonlinear Anal-Theor., 70 (2009), 4294-4306. doi: 10.1016/j.na.2008.09.019
    [23] A. V. Rezounenko, J. Wu, A non-local PDE model for population dynamics with state-selective delay: Local theory and global attrators, J. Comput. Appl. Math., 190 (2006), 99-113. doi: 10.1016/j.cam.2005.01.047
    [24] J. Li, J. H. Huang, Uniform attractors for non-autonomous parabolic equations with delays, Nonlinear Anal-Theor., 71 (2009), 2194-2209. doi: 10.1016/j.na.2009.01.053
    [25] L. Evans, Partial Differential Equations (Graduate Studies in Mathematics, Vol. 19), American Mathematical Society, Providence, Rhode, 1998.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3541) PDF downloads(131) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog