Research article

The existence of upper and lower solutions to second order random impulsive differential equation with boundary value problem

  • Received: 06 May 2020 Accepted: 06 July 2020 Published: 31 July 2020
  • MSC : 34A37, 34B, 34F05

  • In this article, we consider the existence of upper and lower solutions to a second-order random impulsive differential equation. We first study the solution form of the corresponding linear impulsive system of the second-order random impulsive differential equation. Based on the form of the solution, we define the resolvent operator. Then, we prove that the fixed point of this operator is the solution to the equation. Finally, we construct the sum of two monotonic iterative sequences and prove that they are convergent. Thus, we conclude that the system has upper and lower solutions.

    Citation: Zihan Li, Xiao-Bao Shu, Fei Xu. The existence of upper and lower solutions to second order random impulsive differential equation with boundary value problem[J]. AIMS Mathematics, 2020, 5(6): 6189-6210. doi: 10.3934/math.2020398

    Related Papers:

    [1] Moh. Alakhrass . A note on positive partial transpose blocks. AIMS Mathematics, 2023, 8(10): 23747-23755. doi: 10.3934/math.20231208
    [2] Mohammad Al-Khlyleh, Mohammad Abdel Aal, Mohammad F. M. Naser . Interpolation unitarily invariant norms inequalities for matrices with applications. AIMS Mathematics, 2024, 9(7): 19812-19821. doi: 10.3934/math.2024967
    [3] Sourav Shil, Hemant Kumar Nashine . Positive definite solution of non-linear matrix equations through fixed point technique. AIMS Mathematics, 2022, 7(4): 6259-6281. doi: 10.3934/math.2022348
    [4] Kanjanaporn Tansri, Sarawanee Choomklang, Pattrawut Chansangiam . Conjugate gradient algorithm for consistent generalized Sylvester-transpose matrix equations. AIMS Mathematics, 2022, 7(4): 5386-5407. doi: 10.3934/math.2022299
    [5] Junyuan Huang, Xueqing Chen, Zhiqi Chen, Ming Ding . On a conjecture on transposed Poisson n-Lie algebras. AIMS Mathematics, 2024, 9(3): 6709-6733. doi: 10.3934/math.2024327
    [6] Arnon Ploymukda, Kanjanaporn Tansri, Pattrawut Chansangiam . Weighted spectral geometric means and matrix equations of positive definite matrices involving semi-tensor products. AIMS Mathematics, 2024, 9(5): 11452-11467. doi: 10.3934/math.2024562
    [7] Pattrawut Chansangiam, Arnon Ploymukda . Riccati equation and metric geometric means of positive semidefinite matrices involving semi-tensor products. AIMS Mathematics, 2023, 8(10): 23519-23533. doi: 10.3934/math.20231195
    [8] Nunthakarn Boonruangkan, Pattrawut Chansangiam . Convergence analysis of a gradient iterative algorithm with optimal convergence factor for a generalized Sylvester-transpose matrix equation. AIMS Mathematics, 2021, 6(8): 8477-8496. doi: 10.3934/math.2021492
    [9] Arnon Ploymukda, Pattrawut Chansangiam . Metric geometric means with arbitrary weights of positive definite matrices involving semi-tensor products. AIMS Mathematics, 2023, 8(11): 26153-26167. doi: 10.3934/math.20231333
    [10] Ahmad Y. Al-Dweik, Ryad Ghanam, Gerard Thompson, M. T. Mustafa . Algorithms for simultaneous block triangularization and block diagonalization of sets of matrices. AIMS Mathematics, 2023, 8(8): 19757-19772. doi: 10.3934/math.20231007
  • In this article, we consider the existence of upper and lower solutions to a second-order random impulsive differential equation. We first study the solution form of the corresponding linear impulsive system of the second-order random impulsive differential equation. Based on the form of the solution, we define the resolvent operator. Then, we prove that the fixed point of this operator is the solution to the equation. Finally, we construct the sum of two monotonic iterative sequences and prove that they are convergent. Thus, we conclude that the system has upper and lower solutions.


    Let Mn be the set of n×n complex matrices. Mn(Mk) is the set of n×n block matrices with each block in Mk. For AMn, the conjugate transpose of A is denoted by A. When A is Hermitian, we denote the eigenvalues of A in nonincreasing order λ1(A)λ2(A)...λn(A); see [2,7,8,9]. The singular values of A, denoted by s1(A),s2(A),...,sn(A), are the eigenvalues of the positive semi-definite matrix |A|=(AA)1/2, arranged in nonincreasing order and repeated according to multiplicity as s1(A)s2(A)...sn(A). If AMn is positive semi-definite (definite), then we write A0(A>0). Every AMn admits what is called the cartesian decomposition A=ReA+iImA, where ReA=A+A2, ImA=AA2. A matrix AMn is called accretive if ReA is positive definite. Recall that a norm |||| on Mn is unitarily invariant if ||UAV||=||A|| for any AMn and unitary matrices U,VMn. The Hilbert-Schmidt norm is defined as ||A||22=tr(AA).

    For A,B>0 and t[0,1], the weighted geometric mean of A and B is defined as follows

    AtB =A1/2(A1/2BA1/2)tA1/2.

    When t=12, A12B is called the geometric mean of A and B, which is often denoted by AB. It is known that the notion of the (weighted) geometric mean could be extended to cover all positive semi-definite matrices; see [3, Chapter 4].

    Let A,B,XMn. For 2×2 block matrix M in the form

    M=(AXXB)M2n

    with each block in Mn, its partial transpose of M is defined by

    Mτ=(AXXB).

    If M and Mτ0, then we say it is positive partial transpose (PPT). We extend the notion to accretive matrices. If

    M=(AXYB)M2n,

    and

    Mτ=(AYXC)M2n

    are both accretive, then we say that M is APT (i.e., accretive partial transpose). It is easy to see that the class of APT matrices includes the class of PPT matrices; see [6,10,13].

    Recently, many results involving the off-diagonal block of a PPT matrix and its diagonal blocks were presented; see [5,11,12]. In 2023, Alakhrass [1] presented the following two results on 2×2 block PPT matrices.

    Theorem 1.1 ([1], Theorem 3.1). Let (AXXB) be PPT and let X=U|X| be the polar decomposition of X, then

    |X|(AtB)(U(A1tB)U),t[0,1].

    Theorem 1.2 ([1], Theorem 3.2). Let (AXXB) be PPT, then for t[0,1],

    ReX(AtB)(A1tB)(AtB)+(A1tB)2,

    and

    ImX(AtB)(A1tB)(AtB)+(A1tB)2.

    By Theorem 1.1 and the fact si+j1(XY)si(X)sj(Y)(i+jn+1), the author obtained the following corollary.

    Corollary 1.3 ([1], Corollary 3.5). Let (AXXB) be PPT, then for t[0,1],

    si+j1(X)si(AtB)sj(A1tB).

    Consequently,

    s2j1(X)sj(AtB)sj(A1tB).

    A careful examination of Alakhrass' proof in Corollary 1.3 actually revealed an error. The right results are si+j1(X)si(AtB)12sj((A1tB)12) and s2j1(X)sj((AtB)12)sj((A1tB)12). Thus, in this note, we will give a correct proof of Corollary 1.3 and extend the above inequalities to the class of 2×2 block APT matrices. At the same time, some relevant results will be obtained.

    Before presenting and proving our results, we need the following several lemmas of the weighted geometric mean of two positive matrices.

    Lemma 2.1. [3, Chapter 4] Let X,YMn be positive definite, then

    1) XY=max{Z:Z=Z,(XZZY)0}.

    2) XY=X12UY12 for some unitary matrix U.

    Lemma 2.2. [4, Theorem 3] Let X,YMn be positive definite, then for every unitarily invariant norm,

    ||XtY||||X1tYt||||(1t)X+tY||.

    Now, we give a lemma that will play an important role in the later proofs.

    Lemma 2.3. Let M=(AXYB)M2n be APT, then for t[0,1],

    (ReAtReBX+Y2X+Y2ReA1tReB)

    is PPT.

    Proof: Since M is APT, we have that

    ReM=(ReAX+Y2X+Y2ReB)

    is PPT.

    Therefore, ReM0 and ReMτ0.

    By the Schur complement theorem, we have

    ReBX+Y2(ReA)1X+Y20,

    and

    ReAX+Y2(ReB)1X+Y20.

    Compute

    X+Y2(ReAtReB)1X+Y2=X+Y2((ReA)1t(ReB)1)X+Y2=(X+Y2(ReA)1X+Y2)t(X+Y2(ReB)1X+Y2)ReBtReA.

    Thus,

    (ReBtReA)X+Y2(ReAtReB)1X+Y20.

    By utilizing (ReBtReA)=ReA1tReB, we have

    (ReAtReBX+Y2X+Y2ReA1tReB)0.

    Similarly, we have

    (ReAtReBX+Y2X+Y2ReA1tReB)0.

    This completes the proof.

    First, we give the correct proof of Corollary 1.3.

    Proof: By Theorem 1.1, there exists a unitary matrix UMn such that |X|(AtB)(U(A1tB)U). Moreover, by Lemma 2.1, we have (AtB)(U(A1tB)U)=(AtB)12V(U(A1tB)12U). Now, by si+j1(AB)si(A)sj(B), we have

    si+j1(X)si+j1((AtB)(U(A1tB)U))=si+j1((AtB)12VU(A1tB)12U)si((AtB)12)sj((A1tB)12),

    which completes the proof.

    Next, we generalize Theorem 1.1 to the class of APT matrices.

    Theorem 2.4. Let M=(AXYB) be APT, then

    |X+Y2|(ReAtReB)(U(ReA1tReB)U),

    where UMn is any unitary matrix such that X+Y2=U|X+Y2|.

    Proof: Since M is an APT matrix, we know that

    (ReAtReBX+Y2X+Y2ReB1tReA)

    is PPT.

    Let W be a unitary matrix defined as W=(I00U). Thus,

    W(ReAtReBX+Y2X+Y2ReA1tReB)W=(ReAtReB|X+Y2||X+Y2|U(ReA1tReB)U)0.

    By Lemma 2.1, we have

    |X+Y2|(ReAtReB)(U(ReA1tReB)U).

    Remark 1. When M=(AXYB) is PPT in Theorem 2.4, our result is Theorem 1.1. Thus, our result is a generalization of Theorem 1.1.

    Using Theorem 2.4 and Lemma 2.2, we have the following.

    Corollary 2.5. Let M=(AXYB) be APT and let t[0,1], then for every unitarily invariant norm |||| and some unitary matrix UMn,

    ||X+Y2||||(ReAtReB)(U(ReA1tReB)U)||||(ReAtReB)+U(ReA1tReB)U2||||ReAtReB||+||ReA1tReB||2||(ReA)1t(ReB)t||+||(ReA)t(ReB)1t||2||(1t)ReA+tReB||+||tReA+(1t)ReB||2.

    Proof: The first inequality follows from Theorem 2.4. The third one is by the triangle inequality. The other conclusions hold by Lemma 2.2.

    In particular, when t=12, we have the following result.

    Corollary 2.6. Let M=(AXYB) be APT, then for every unitarily invariant norm |||| and some unitary matrix UMn,

    ||X+Y2||||(ReAReB)(U(ReAReB)U)||||(ReAReB)+U(ReAReB)U2||||ReAReB||||(ReA)12(ReB)12||||ReA+ReB2||.

    Squaring the inequalities in Corollary 2.6, we get a quick consequence.

    Corollary 2.7. If M=(AXYB) is APT, then

    tr((X+Y2)(X+Y2))tr((ReAReB)2)tr(ReAReB)tr((ReA+ReB2)2).

    Proof: Compute

    tr((X+Y2)(X+Y2))tr((ReAReB)(ReAReB))=tr((ReAReB)2)tr((ReA)(ReB))tr((ReA+ReB2)2).

    It is known that for any X,YMn and any indices i,j such that i+jn+1, we have si+j1(XY)si(X)sj(Y) (see [2, Page 75]). By utilizing this fact and Theorem 2.4, we can obtain the following result.

    Corollary 2.8. Let M=(AXYB) be APT, then for any t[0,1], we have

    si+j1(X+Y2)si((ReAtReB)12)sj((ReA1tReB)12).

    Consequently,

    s2j1(X+Y2)sj((ReAtReB)12)sj((ReA1tReB)12).

    Proof: By Lemma 2.1 and Theorem 2.4, observe that

    si+j1(X+Y2)=si+j1(|X+Y2|)si+j1((ReAtReB)(U(ReA1tReB)U))=si+j1((ReAtReB)12V(U(ReA1tReB)U)12)si((ReAtReB)12V)sj((U(ReA1tReB)U)12)=si((ReAtReB)12)sj((ReA1tReB)12).

    Finally, we study the relationship between the diagonal blocks and the real part of the off-diagonal blocks of the APT matrix M.

    Theorem 2.9. Let M=(AXYB) be APT, then for all t[0,1],

    Re(X+Y2)(ReAtReB)(ReA1tReB)(ReAtReB)+(ReA1tReB)2,

    and

    Im(X+Y2)(ReAtReB)(ReA1tReB)(ReAtReB)+(ReA1tReB)2.

    Proof: Since M is APT, we have that

    ReM=(ReAX+Y2X+Y2ReB)

    is PPT.

    Therefore,

    (ReAtReBRe(X+Y2)Re(X+Y2)ReA1tReB)=12(ReAtReBX+Y2X+Y2ReA1tReB)+12(ReAtReBX+Y2X+Y2ReA1tReB)0.

    So, by Lemma 2.1, we have

    Re(X+Y2)(ReAtReB)(ReA1tReB).

    This implies the first inequality.

    Since ReM is PPT, we have

    (ReAiX+Y2iX+Y2ReB)=(I00iI)(ReM)(I00iI)0,(ReAiX+Y2iX+Y2ReB)=(I00iI)((ReM)τ)(I00iI)0.

    Thus,

    (ReAiX+Y2iX+Y2ReB)

    is PPT.

    By Lemma 2.3,

    (ReAtReBiX+Y2iX+Y2ReA1tReB)

    is also PPT.

    So,

    12(ReAtReBiX+Y2iX+Y2ReA1tReB)+12(ReAtReBiX+Y2iX+Y2ReA1tReB)0,

    which means that

    (ReAtReBIm(X+Y2)Im(X+Y2)ReA1tReB)0.

    By Lemma 2.1, we have

    Im(X+Y2)(ReAtReB)(ReA1tReB).

    This completes the proof.

    Corollary 2.10. Let (ReAX+Y2X+Y2ReB)0. If X+Y2 is Hermitian and t[0,1], then,

    X+Y2(ReAtReB)(ReA1tReB)(ReAtReB)+(ReA1tReB)2.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The work is supported by National Natural Science Foundation (grant No. 12261030), Hainan Provincial Natural Science Foundation for High-level Talents (grant No. 123RC474), Hainan Provincial Natural Science Foundation of China (grant No. 124RC503), the Hainan Provincial Graduate Innovation Research Program (grant No. Qhys2023-383 and Qhys2023-385), and the Key Laboratory of Computational Science and Application of Hainan Province.

    The authors declare that they have no conflict of interest.



    [1] X. Yan, D. Peng, X. Lv, et al. Recent progess in impulsive contral systems, Spinger., 155 (2007), 244-268.
    [2] I. M. Stamova, G. T. Stamov, Lyapunov-Razumikhin method for impulsive functional differential equations and applications to the population dynamics, J. Comput. Appl. Math., 130 (2001), 163-171. doi: 10.1016/S0377-0427(99)00385-4
    [3] C. Li, J. Sun, R. Sun, Stability analysis of a class of stochastic differential delay equations with nonlinear impulsive effects, J. Franklin. I., 347 (2010), 1186-1198. doi: 10.1016/j.jfranklin.2010.04.017
    [4] C. Li, J. Shi, J. Sun, Stability of impulsive stochastic differential delay systems and its application to impulsive stochastic neural networks, Nonlinear Anal. Theor., 74 (2011), 3099-3111. doi: 10.1016/j.na.2011.01.026
    [5] L. Shen, J. Sun, Q. Wu, Controllability of linear impulsive stochastic systems in Hilbert spaces, Automatica., 49 (2013), 1026-1030. doi: 10.1016/j.automatica.2013.01.036
    [6] Y. Tang, X. Xing, H. R. Karimi, et al. Tracking control of networked multiagent systems under new characterizations of impulses and its Applications in robotic systems, IEEE Trans. Ind. Electron., 63 (2016), 1299-1307.
    [7] D. Guo, X. Liu, Multiple positive solutions of boundary-value problems for impulsive differential equations, Nonlinear Anal., 25 (1995), 327-337. doi: 10.1016/0362-546X(94)00175-H
    [8] T. Jankowski, Positive solutions of three-point boundary value problems for second order impulsive differential equations with advanced arguments, Appl. Math. Comput., 197 (2008), 179-189.
    [9] Y. H. Lee, X. Liu, Study of singular boundary value problems for second order impulsive differential equations, J. Math. Anal. Appl., 331 (2007), 159-176. doi: 10.1016/j.jmaa.2006.07.106
    [10] M. Yao, A. Zhao, J. Yan, Anti-Periodic boundary value problems of second-order impulsive differential equations, Comput. Math. Appl., 59 (2010), 3617-3629. doi: 10.1016/j.camwa.2010.01.033
    [11] Y. Zhao, H. Chen, Multiplicity of solutions to two-point boundary value problems for second-order impulsive differential equations, Appl. Math. Comput., 206 (2008), 925-931.
    [12] S. Wu, X. Guo, S. Lin, Existence and uniqueness of solutions to random impulsive differential systems, Acta Math. Appl. Sin., 22 (2006), 627-632. doi: 10.1007/s10255-006-0336-1
    [13] S. Wu, X. Meng, Boundedness of nonlinear differantial systems with impulsive effect on random moments, Acta Math. Appl. Sin., 20 (2004), 147-154.
    [14] A. Anguraj, S. Wu, A. Vinodkumar, The existence and exponential stability of semilinear functional differential equations with random impulses under nonuniqueness, Nonlinear Anal. Theory Methods Appl., 74 (2011), 331-342. doi: 10.1016/j.na.2010.07.007
    [15] K. Z. Wang, A new existence result for nonlinear first-order anti-periodic boundary value problems, Appl. Math. Lett., 21 (2008), 1149-1154. doi: 10.1016/j.aml.2007.12.013
    [16] Z. G. Luo, J. H. Shen, J. J. Nieto, Antiperiodic boundary value problem for first-order impulsive ordinary differential equations, Comput. Math. Appl., 49 (2005), 253-261. doi: 10.1016/j.camwa.2004.08.010
    [17] W. Ding, Y. P. Xing, M. A. Han, Anti-periodic boundary value problems for first order impulsive functional differential equations, Appl. Math. Comput., 186 (2007), 45-53.
    [18] B. Ahmad, J. J. Nieto, Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions, Nonlinear Anal., 69 (2008), 3291-3298. doi: 10.1016/j.na.2007.09.018
    [19] S. Li, L. Shu, X. B. Shu, et al. Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays, Stochastic., 27 (2018), 857-872.
    [20] S. Zhang, J. Sun, Stability analysis of second-order differential systems with Erlang distribution random impulses, Adv. Difference Equ., 4 (2013), 10.
    [21] A. Vinodkumar, K. Malar, M. Gowrisankar, et al. Existence, uniqueness and stability of random impulsive fractional differential equations, J. Acta Math. Sci., 36 (2016), 428-442.
    [22] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore., 1989.
    [23] Y. K. Chang, Controllability of impulsive functional differential systems with infinite delay in Banach spaces, Chaos. Soliton Fract., 33 (2007), 1601-1609. doi: 10.1016/j.chaos.2006.03.006
    [24] E. K. Lee, Y. H. Lee, Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equations, Appl. Math. Comput., 158 (2004), 745-759.
    [25] S. Zhang, W. Jiang, The existence and exponential stability of random impulsive fractional differential equations, Adv. Difference Equ., 404 (2018), 17.
    [26] A. Anguraj, A. Vinodkumar, Existence, uniqueness and stability results of random impulsive semilinear differential systems, Nonlinear Anal. Hybrid Syst., 4 (2010), 475-483.
    [27] P. Niu, X. B. Shu, Y. Li, The existence and hyers-ulam stability for second order random impulsive differential equations, Dyn. Syst. Appl., 28 (2019), 673-690.
    [28] Y. Guo, X. B. Shu, Y. Li, et al. The existence and Hyers-Ulam stability of solution for impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1 < β < 2, Bound. Value Probl., 18 (2018).
    [29] R. A. Admas, Sbolev Spaces, Academic Press., 1975.
    [30] J. Sun, D. Guo, Functional methods for nonlinear ordinary differential equations, Shandong science and technology press., 4, (2005).
    [31] X. B. Shu, Y. J. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465-476.
    [32] X. B. Shu, Y. Z. Lai, Y. M. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal., 74 (2011), 2003-2011. doi: 10.1016/j.na.2010.11.007
    [33] X. B. Shu, F. Xu, Upper and lower solution method for fractional evolution equations with order 1 < α < 2, J. Korean Math. Soc., 51 (2014), 1123-1139.
    [34] R. P. Agarwal, M. Benchohra, S. Hamani, et al. Upper and lower solutions method for impulsive differential equations involving the Caputo fractional derivative, Mem. Differ. Equ. Math. Phys., 53 (2011), 1-12.
    [35] P. Cheng, F. Q. Deng, F. Q. Yao, Almost sure exponential stability and stochastic stabilization of stochastic differential systems with impulsive effects, Nonlinear Anal.: Hybrid Syst., 27 (2018), 13-28. doi: 10.1016/j.nahs.2017.07.002
    [36] L. G. Xu, Z. L. Dai, D. H. He, Exponential ultimate boundedness of impulsive stochastic delay differential equations, Appl. Math. Lett., 85 (2018), 70-76. doi: 10.1016/j.aml.2018.05.019
    [37] L. G. Xu, The pth moment exponential ultimate boundedness of impulsive stochastic differential systems, Appl. Math. Lett., 42 (2015), 22-29. doi: 10.1016/j.aml.2014.10.018
    [38] D. H. He, L. G. Xu, Ultimate boundedness of nonautonomous dynamical complex networks under impulsive control, IEEE Trans. Circuits Syst. II., 62 (2015), 997-1001. doi: 10.1109/TCSII.2015.2436191
    [39] L. X. Shu, X. B. Shu, Q. X. Zhu, et al. Existence and exponential stability of mild solutions for second-order neutral stochastic functional differential equation with random impulses, J. Appl. Anal. Comput., 2020.
    [40] X. B. Shu, L. X. Shu, F. Xu, A new study on the mild solution for impulsive fractional evolution equations, Dynam. Systems Appl., 2020.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4266) PDF downloads(337) Cited by(19)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog