Citation: Ling Zhu. New Cusa-Huygens type inequalities[J]. AIMS Mathematics, 2020, 5(5): 5320-5331. doi: 10.3934/math.2020341
[1] | S. Rashid, M. A. Noor, K. I. Noor, et al. Hermite-Hadamrad type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 1-20. |
[2] | M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4 |
[3] | M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6 |
[4] | M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0 |
[5] | A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18. |
[6] | M. U. Awan, S. Talib, Y. M. Chu, et al. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 1-10. |
[7] | I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7. |
[8] | S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0 |
[9] | S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized $\mathcal{K}$-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629- 2645. |
[10] | S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12. |
[11] | M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4 |
[12] | S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 43 (2020), 2577- 2587. |
[13] | M. Adil Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931-4945. doi: 10.3934/math.2020315 |
[14] | X. M. Hu, J. F. Tian, Y. M. Chu, et al. On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 1-15. doi: 10.1186/s13660-019-2265-6 |
[15] | T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2 |
[16] | M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21. |
[17] | Z. H. Yang, Refinements of a two-sided inequality for trigonometric functions, J. Math. Inequal., 7 (2013), 601-615. |
[18] | Z. H. Yang, Three families of two-parameter means constructed by trigonometric functions, J. Inequal. Appl., 2013 (2013), 541. |
[19] | Y. J. Bagul, Remark on the paper of Zheng Jie Sun and Ling Zhu, J. Math. Inequal., 13 (2019), 801-803. |
[20] | G. D. Wang, X. H. Zhang, Y. M. Chu, A power mean inequality for the Grötzsch ring function, Math. Inequal. Appl., 14 (2011), 833-837. |
[21] | M. K. Wang, Y. M. Chu, Y. P. Jiang, Ramanujan's cubic transformation inequalities for zerobalanced hypergeometric functions, Rocky Mt. J. Math., 46 (2016), 679-691. doi: 10.1216/RMJ-2016-46-2-679 |
[22] | Y. M. Chu, M. Adil Khan, T. Ali, et al. Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1-12. doi: 10.1186/s13660-016-1272-0 |
[23] | S. Rashid, F. Jarad, M. A. Noor, et al. Inequalities by means of generalized proportional fractional integral operators with respect another function, Mathematics, 7 (2019), 1-18. |
[24] | S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0 |
[25] | Y. Khurshid, M. Adil Khan, Y.-M. Chu, Conformable fractional integral inequalities for GG- and GA-convex function, AIMS Math., 5 (2020), 5012-5030. doi: 10.3934/math.2020322 |
[26] | S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Differ. Equ., 2020 (2020), 1-32. doi: 10.1186/s13662-019-2438-0 |
[27] | S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0 |
[28] | M. K. Wang, H. H. Chu, Y. M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019), 1-9. |
[29] | M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w |
[30] | T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Mathematics, 5 (2020), 4512-4528. doi: 10.3934/math.2020290 |
[31] | M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255- 271. |
[32] | W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2 |
[33] | Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93. |
[34] | S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4 |
[35] | M. U. Awan, N. Akhtar, A. Kashuri, et. al. 2D approximately reciprocal ρ-convex functions and associated integral inequalities, AIMS Math., 5 (2020), 4662-4680. doi: 10.3934/math.2020299 |
[36] | S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Math., 5 (2020), 3525-3546. doi: 10.3934/math.2020229 |
[37] | W. M. Qian, Y. Y. Yang, H. W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4 |
[38] | W. M. Qian, Z. Y. He, H. W. Zhang, et al. Sharp bounds for Neuman means in terms of twoparameter contraharmonic and arithmetic mean, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4 |
[39] | B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 1-10. doi: 10.1007/s13398-019-00732-2 |
[40] | C. P. Chen, W. S. Cheung, Sharp Cusa and Becker-Stark inequalities, J. Inequal. Appl., 2011 (2011), 1-6. doi: 10.1186/1029-242X-2011-1 |
[41] | Z. J. Sun, L. Zhu, Simple proofs of the Cusa-Huygens-type and Becker-Stark-type inequalities, J. Math. Inequal., 7 (2011), 563-567. |
[42] | G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Inequalities for quasiconformal mappings in space, Pac. J. Math., 160 (1993), 1-18. doi: 10.2140/pjm.1993.160.1 |
[43] | G. D. Anderson, S. L. Qiu, M. K. Vamanamurthy, et al. Generalized elliptic integrals and modular equations, Pac. J. Math., 192 (2000), 1-37. doi: 10.2140/pjm.2000.192.1 |
[44] | Z. H. Yang, Y. M. Chu, M. K. Wang, Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl., 428 (2015), 587-604. doi: 10.1016/j.jmaa.2015.03.043 |
[45] | M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U.S. Government Printing Office, Washington, 1964. |