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Abstract: Using the monotone form of the L’Hôspital rule, we discuss the (absolute) monotonicity of
the functions U (x) = 1

x4 −
1
x5

3 sin x
cos x+2 , G(x) = 1

x2

[
ln sin x−ln x

ln(2+cos x)−ln 3 − 1
]

and J(x) =
1−(sin x)/x

1−(2+cos x)/3 to improve the
Cusa-Huygens inequality in several directions on wider ranges. Our results are much better than those
existing ones.
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1. Introduction

It is well known inequality plays an irreplaceable role in the development of mathematics. Very
recently, many inequalities such as Hermite-Hadamard type inequality [1–6], Petrović type
inequality [7], Pólya-Szegö and Ćebyšev type inequalities [8], Ostrowski type inequality [9], reverse
Minkowski inequality [10], Jensen type inequality [11–13], Cauchy-Schwarz type inequality [14],
Bessel function inequality [15], trigonometric and hyperbolic functions inequalities [16–19], Grötzsch
ring function inequality [20], Ramanujan transformation inequality [21], fractional integral
inequality [22–27], complete and generalized elliptic integrals inequalities [28–33], generalized
convex function inequality [34–36] and mean values inequality [37–39] have attracted the attention of
many researchers.

The classical and well-known Cusa-Huygens inequality states that

sin x
x

<
2 + cos x

3
(1.1)

for 0 < x < π/2.
Chen and Cheung [40] gave the bounds for sin x/x in term of ((2 + cos x) /3)δ as follows(

2 + cos x
3

)θ0

<
sin x

x
<

(
2 + cos x

3

)ϑ0

(1.2)
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for 0 < x < π/2, where ϑ0 = 1 and θ0 = (ln π − ln 2)/(ln 3 − ln 2) are the best possible constants
such that the double inequality (1.2) holds for all 0 < x < π/2. Inequality (1.2) was proved by
Sun and Zhu in [41]. Recently, the generalizations, improvements and variants for the Cusa-Huygens
inequality (1.1) have been the subject of much research.

Inspired by inequalities (1.1) and (1.2), the first aim of this paper is to improve the Cusa-Huygens
inequality by considering the monotonicity of the functions

U (x) =
1
x4 −

1
x5

3 sin x
cos x + 2

(1.3)

and

G(x) =
1
x2

[
ln sin x − ln x

ln (2 + cos x) − ln 3
− 1

]
(1.4)

on a wider range (0, π) instead of (0, π/2). Our first aim of the article is to prove the following
Theorems 1.1 and 1.2.

Theorem 1.1. Let U (x) be defined by (1.3). Then the following statemsnts are true:
(i) There exists x0 ∈ (π/2, π) such that U (x) is increasing on (0, x0) and decreasing on (x0, π), and

the double inequality (
1 − α1x4

) cos x + 2
3

<
sin x

x
<

(
1 − β1x4

) cos x + 2
3

(1.5)

holds for x ∈ (0, π/2) with the best possible constants α1 = 16 (π − 3) /π5 = 0.007403 · · · and β1 =

1/180 = 0.005555 · · · . Moreover, the right hand side inequality of (1.5) also holds for x ∈ (0, π).
(ii) The function

xU (x) =
1
x3 −

1
x4

3 sin x
cos x + 2

(1.6)

is increasing on (0, π), and the inequality(
1 −

x3

π3

)
2 + cos x

3
<

sin x
x

(1.7)

holds for x ∈ (0, π).

From Theorem 1.1, we get Corollary 1.1 immediately.

Corollary 1.1. The double inequality(
1 −

x3

π3

)
2 + cos x

3
<

sin x
x

<

(
1 −

x4

180

)
cos x + 2

3
(1.8)

holds for all x ∈ (0, π) with the best possible constants π3 and 180.

Theorem 1.2. The function G (x) defined by (1.4) is strictly increasing on (0, π).

Let
ϑ1 = G(0+) =

1
30
, (1.9)

θ1 = G
((
π

2

)−)
=

4
π2

(
ln (2/π)
ln (2/3)

− 1
)

= 0.046097 · · · (1.10)
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and
G(π−) = ∞.

Then Theorem 1.2 leads to Corollary 1.2 immediately.

Corollary 1.2. (i) The double inequality(
2 + cos x

3

)1+θ1 x2

<
sin x

x
<

(
2 + cos x

3

)1+ϑ1 x2

(1.11)

holds for all x ∈ (0, π/2) with the best possible constants ϑ1 and θ1 given in (1.9) and (1.10).
(ii) The inequality

sin x
x

<

(
2 + cos x

3

)1+θ1 x2

(1.12)

holds for all x ∈ (π/2, π) with the best constant θ1 given by (1.9).

A real-valued function f is said to be absolutely monotonic on the interval I if f has derivatives of
all orders on I such that

f (n)(x) > 0

for all x ∈ I and n ≥ 0.
The second aim of the article is to provide an absolute monotonicity result for a special function

and derive a new Cusa-Huygens type inequality.

Theorem 1.3. The function

J(x) =
1 − (sin x)/x

1 − (2 + cos x)/3
(1.13)

is absolutely monotonic on (0, 2π), and

From Theorem 1.3, we can easily obtain the following Corollary 1.3.

Corollary 1.3. Let J(x) be defined by (1.13) Then the function

Hn(x) =
J(x) −

∑n
k=1

6|B2k |

(2k−1)! x2k−2

x2n

is absolutely monotonic on (0, 2π), and the double inequality n∑
k=1

6|B2k|

(2k − 1)!
x2k−2 + µnx2n

 2 + cos x
3

−

 n∑
k=2

6|B2k|

(2k − 1)!
x2k−2 + µnx2n


<

sin x
x

<

 n∑
k=1

6|B2k|

(2k − 1)!
x2k−2 + λnx2n

 2 + cos x
3

−

 n∑
k=2

6|B2k|

(2k − 1)!
x2k−2 + λnx2n


holds for all x ∈ (0, π/2) with the best possible constants

λn =
6|B2n+2|

(2n + 1)!
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and

µn =

3 (
1 −

2
π

)
−

n∑
k=1

6|B2k|

(2k − 1)!

(
π

2

)2k−2
 (2
π

)2n

,

where Bk is the Bernoulli number.

Remark 1.1. Let n = 1 and n = 2. Then Corollary 1.3 leads to the conclusion that[
1 +

8 (π − 3)
π3 x2

]
2 + cos x

3
−

8 (π − 3)
π3 x2

<
sin x

x
<

(
1 +

1
30

x2
)

2 + cos x
3

−
1
30

x2 (1.14)

and (
1 +

1
30

x2 + µ2x4
)

2 + cos x
3

−

(
1

30
x2 + µ2x4

)
<

sin x
x

<

(
1 +

1
30

x2 + λ2x4
)

2 + cos x
3

−

(
1
30

x2 + λ2x4
)

(1.15)

for 0 < x < π/2 with λ2 = 1/840 = 0.001190 · · · and µ2 =
(
16/π4

) (
2 − 6/π − π2/120

)
= 0.001296 · · · .

2. Lemmas

In order to prove our main results, we need the monotone form of the L’Hôspital rule [42–44].

Lemma 2.1. (See [42–44]) Let f , g : [a, b]→ R be continuous on [a, b] and differentiable on (a, b) such
that g′ , 0 on (a, b) and f ′/g′ is (strictly) increasing (decreasing) on (a, b). Then both the functions
( f (x)− f (b))/(g(x)−g(b)) and ( f (x)− f (a))/(g(x)−g(a)) are (strictly) increasing (decreasing) on [a, b].

Lemma 2.2. Let Bn be the Bernoulli number. Then we have the following power series formulas

cot x =
1
x
−

∞∑
n=1

22n

(2n)!
|B2n|x2n−1, (2.1)

1
sin2 x

=
1
x2 +

∞∑
n=1

(2n − 1) 22n

(2n)!
|B2n|x2n−2, (2.2)

1
sin x

=
1
x

+

∞∑
n=1

22n − 2
(2n)!

|B2n|x2n−1 (2.3)

and
cos x
sin2 x

=
1
x2 −

∞∑
n=1

(2n − 1)
(
22n − 2

)
(2n)!

|B2n|x2n−2 (2.4)

for all x ∈ (0, π).
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Proof. The power series formulas (2.1) and (2.3) can be found in the literature [45], and the power
series formulas (2.2) and (2.4) can be obtained from (2.1) and (2.3) together with the facts that

1
sin2 x

= csc2 x = − (cot x)′

and
cos x
sin2 x

= −

(
1

sin x

)′
.

�

3. Proofs of Theorems 1.1–1.3

3.1. Proof of Theorem 1.1

(i) We clearly see that the function U (x) can be rewritten as

U (x) =
x−5 (2x − 3 sin x + x cos x)

cos x + 2
:=

p (x)
q (x)

.

Differentiation yields

p′ (x) =
15
x6 sin x −

1
x4 sin x −

7
x5 cos x −

8
x5 , q′ (x) = − sin x,

p′ (x)
q′ (x)

=
1
x6

(
8

x
sin x

+ 7
x cos x
sin x

+ x2 − 15
)
.

Expanding in power series leads to

p′ (x)
q′ (x)

=
1
x6

8 + 8
∞∑

n=1

22n − 2
(2n)!

|B2n|x2n + 7 − 7
∞∑

n=1

22n

(2n)!
|B2n|x2n + x2 − 15


=

∞∑
n=3

22n − 16
(2n)!

|B2n|x2n−6,

which gives [
p′ (x)
q′ (x)

]′
=

∞∑
n=3

(2n − 6)
(
22n − 16

)
(2n)!

|B2n|x2n−7 > 0.

It follows from the identities (
p
q

)′
=

q′

q2

(
p′

q′
q − p

)
=

q′

q2 Hp,q (3.1)

and

H′p,q =

(
p′

q′

)′
q (3.2)

given in [44] that H′p,q > 0 due to (p′/q′)′ > 0 and q > 0.
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From the formula
Hp,q (x) =

p′ (x)
q′ (x)

q (x) − p (x)

=
1
x6

(
8

x
sin x

+ 7
x cos x
sin x

+ x2 − 15
)

(cos x + 2) −
1
x5

(2x − 3 sin x + x cos x) .

we get

Hp,q
(
0+) = −

1
84
, Hp,q

(
π

2

)
= −

1920 − 608π
π6 = −0.01031 · · · , Hp,q (π) = ∞,

which implies that Hp,q (x) < 0 for x ∈ (0, π/2), and there exists x0 ∈ (π/2, π) such that Hp,q (x) < 0 for
x ∈ (0, x0) and Hp,q (x) > 0 for x ∈ (x0, π). It follows from q′ = − sin x < 0 and (3.1) that (p/q)′ > 0 on
(0, π/2), and (p/q)′ > 0 on (0, x0) and (p/q)′ < 0 on (x0, π).

Therefore, the double inequality (1.3) follows from the monotonicity of U (x) on (0, π/2).
Using the piecewise monotonicity of U (x) on (0, π), we arrive at

U (x) > min {U (0) ,U (π)} = min
{

1
180

,
1
π4

}
=

1
180

,

which prove that the right hand side inequality of (1.3) also holds for x ∈ (0, π).
(ii) Differentiation yields

(xU)′ =
3 (cos x + 5) (cos x + 1)

x5 (cos x + 2)2 V (x) ,

where
V (x) = 4

(cos x + 2) sin x
(cos x + 5) (cos x + 1)

− x.

It follows from

V ′ (x) =
(3 − cos x) (1 − cos x)2

(1 + cos x) (5 + cos x)2 > 0

for x ∈ (0, π) and V (0) = 0 that V (x) > 0 for x ∈ (0, π), and so is (xU)′. Therefore, the inequality

xU (x) < πU (π) =
1
π3

holds for x ∈ (0, π).

3.2. Proof of Theorem 1.2

Let
G(x) =

ln x − ln 3 + ln(2 + cos x) − ln sin x
x2[ln 3 − ln(2 + cos x)]

:=
a(x)
b(x)

, 0 < x < π.

Then from Lemma 2.1 we clearly see that it suffices to prove that b′(x)/a′(x) is strictly decreasing on
(0, π) due to a(0+) = b(0+) = 0.

Elaborated computations lead to

b′(x)
a′(x)

=
2x[ln 3 − ln(2 + cos x)] + x2 (sin x) /(2 + cos x)

1/x − cot x − (sin x) /(2 + cos x)
:= h1(x) · h2(x) + h3(x),
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where
h1(x) =

ln 3 − ln(2 + cos x)
x2 ,

h2(x) =
2x3

1/x − cot x − (sin x) /(2 + cos x)
and

h3(x) =
x2 (sin x) /(2 + cos x)

1/x − cot x − (sin x) /(2 + cos x)
.

Next, we prove that hi(x) is decreasing on (0, π) for i = 1, 2, 3 and hi(x) is positive for i = 1, 2.
(i) Let

h1(x) =
ln 3 − ln(2 + cos x)

x2 =:
u(x)
v(x)

=
u(x) − u(0+)
v(x) − v(0+)

, 0 < x < π.

Then
u′(x) =

sin x
cos x + 2

, v′(x) = 2x

and
v′(x)
u′(x)

= 2
x (cos x + 2)

sin x
= 4

x
sin x

+ 2x
cos x
sin x

= 6 +

∞∑
n=1

22n+1 − 8
(2n)!

|B2n|x2n

is clearly increasing on (0, π). It follows from Lemma 2.1 that h1(x) is decreasing on (0, π).
(ii) To prove that h2(x) is positive and decreasing on (0, π), it suffices to prove that 1/h2 (x) is positive

and increasing on (0, π). Note that

2
h2(x)

=
(2 sin x + cos x sin x − x − 2x cos x)

x4 (sin x) (cos x + 2)

=

(
1
x4 −

1
x3

cos x
sin x

−
1

3x2

)
+

(
1

3x2 −
1
x3

sin x
cos x + 2

)
= K(x) +

1
3

x [xU (x)] , (3.3)

where
K(x) =

1
x4 −

1
x3

cos x
sin x

−
1

3x2

and xU(x) is defined as (1.6), which is strictly increasing on (0, π) by Theorem 1.1. We clearly see that
it suffices to prove that K(x) is strictly increasing on (0, π). Indeed, by Lemma 2.2 we have

K(x) =
1
x4 −

1
x3

1
x
−

∞∑
n=1

22n

(2n)!
|B2n|x2n−1

 − 1
3x2 =

∞∑
n=2

22n

(2n)!
|B2n|x2n−4,

which is obviously increasing on (0, π).
(iii) To prove that h3(x) is decreasing on (0, π), it suffices to prove that 1/h3 (x) is positive and

increasing on (0, π). Note that

1
h3 (x)

=
1
x3

(
cos x
sin x

−
x

sin2 x
+

2
sin x

− 2x
cos x
sin2 x

)
.
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It follows from Lemma 2.2 that

x3

h3 (x)
=

1
x
−

∞∑
n=1

22n

(2n)!
|B2n|x2n−1 −

1
x
−

∞∑
n=1

(2n − 1) 22n

(2n)!
|B2n|x2n−1

+
2
x

+ 2
∞∑

n=1

22n − 2
(2n)!

|B2n|x2n−1 −
2
x

+ 2
∞∑

n=1

(2n − 1)
(
22n − 2

)
(2n)!

|B2n|x2n−1

=

∞∑
n=2

(
22n − 4

)
|B2n|

(2n − 1)!
x2n−1

and
1

h3 (x)
=

∞∑
n=2

(
22n − 4

)
|B2n|

(2n − 1)!
x2n−4,

which is evidently positive and increasing on (0, π). The proof of Theorem 1.2 is completed.

3.3. Proof of Theorem 1.3

It is obviously that J(x) can be rewritten as

J(x) =
3

2 sin2(x/2)
−

3
x

cos(x/2)
sin(x/2)

=
3
2

 4
x2 +

∞∑
n=1

(2n − 1) 22n

(2n)!
|B2n|

( x
2

)2n−2


−
3
x

1
x
−

∞∑
n=1

22n

(2n)!
|B2n|

( x
2

)2n−1
 =

∞∑
n=1

6|B2n|

(2n − 1)!
x2n−2,

which is clearly absolutely monotonic on (0, 2π).

4. Remarks

Remark 4.1. One of the referees asserted that the Cusa-Huygens inequality (1.1) holds for all x , 0.
In fact, inequality (1.1) is equivalent to

D (x) =
3 sin x

2 + cos x
− x < 0.

Differentiation yields

D′ (x) = −
(cos x − 1)2

(cos x + 2)2 ≤ 0

for all x ∈ R. If x > 0, then D (x) < D (0) = 0 and inequality (1.1) holds for x > 0. If x < 0, then
D (x) > D (0) = 0 and inequality (1.1) also holds for x < 0.

Remark 4.2. We clearly see that the right hand side inequality of (1.5) is stronger than the Cusa-
Huygens inequality (1.1).
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Remark 4.3. Our double inequality (1.11) is clearly better than the inequality (1.2). Moreover, by
Theorem 1.2 we deduce that the function

x2G(x) =
ln sin x − ln x

ln (2 + cos x) − ln 3

is also strictly increasing on (0, π). This conclusion immediately leads to the inequality (1.2) and the
following new result: the inequality

sin x
x

<

(
2 + cos x

3

)θ0

(4.1)

holds for all x ∈ (π/2, π) with the best constant θ0 = (ln π − ln 2)/(ln 3 − ln 2).

Remark 4.4. The right-hand side inequality of (1.14) is stronger than the Cusa-Huygens
inequality (1.1) due to[(

1 +
1

30
x2

)
2 + cos x

3
−

1
30

x2
]
−

2 + cos x
3

=
1

90
x2 (cos x − 1) < 0

for all x ∈ (0, π/2).

Remark 4.5. Numerical calculations and computer simulation experiments show that the double
inequality (1.15) is stronger than the inequalities (1.5) and (1.11) on (0, π/2).

Final, the following power series formula

G∗ (x) =
ln [(sin x) /x]

ln [(cos x + 2) /3]
= 1 +

1
30

x2 +
1

252
x4 +

1
2592

x6 +
5

149688
x8 + O

(
x10

)
inspires us to propose the Conjecture 4.1.

Conjecture 4.1. The function G∗ (x) above mentioned is absolutely monotonic on (0, π/2).

5. Conclusions

In the article, we have discussed the monotonicity of the functions U (x), xU (x) and G(x) defined
by (1.3) and (1.4) on the interval (0, π), and the absolute monotonicity of the function J (x) given
in (1.13) on the interval (0, 2π). Consequences, we have discovered several new Cusa-Huygens type
inequalities, which are the improvements and refinements of some earlier known results.
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