Research article

Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals

  • Received: 25 April 2020 Accepted: 11 June 2020 Published: 15 June 2020
  • MSC : 26A33, 26A51, 26D07, 26D10, 26D15

  • Integral inequalities involving various fractional integral operators are used to solve many fractional differential equations. In this paper, authors prove some Hermite-Jensen-Mercer type inequalities using Ψ-Riemann-Liouville k-Fractional integrals via convex functions. We established some new Ψ-Riemann-Liouville k-Fractional integral inequalities. We also give Ψ-Riemann-Liouville k-Fractional integrals identities for differentiable mapping, and these will be used to derive estimates for some fractional Hermite-Jensen-Mercer type inequalities. Some known results are recaptured from our results as special cases.

    Citation: Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao. Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals[J]. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334

    Related Papers:

  • Integral inequalities involving various fractional integral operators are used to solve many fractional differential equations. In this paper, authors prove some Hermite-Jensen-Mercer type inequalities using Ψ-Riemann-Liouville k-Fractional integrals via convex functions. We established some new Ψ-Riemann-Liouville k-Fractional integral inequalities. We also give Ψ-Riemann-Liouville k-Fractional integrals identities for differentiable mapping, and these will be used to derive estimates for some fractional Hermite-Jensen-Mercer type inequalities. Some known results are recaptured from our results as special cases.


    加载中


    [1] M. M. Ali, A. R. Khan, Generalized integral Mercer's inequality and integral means, J. Inequal. Spec. Funct., 10 (2019), 60-76.
    [2] E. Anjidani, M. R. Changalvaiy, Reverse Jensen-Mercer type operator inequalities, Electron. J. Linear Algebra, 31 (2016), 87-99. doi: 10.13001/1081-3810.3058
    [3] E. Anjidani, Jensen-Mercer operator inequalities involving superquadratic functions, Mediterr. J. Math., 18 (2018), 1660-5446.
    [4] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 1-12.
    [5] Z. Dahmani, L. Tabharit, On weighted Grüss type inequalities via fractional integration, J. Adv. Res. Pure Math., 2 (2010), 31-38.
    [6] M. Z. Sarikaya, N. Alp, On Hermite-Hadamard-Fejér type integral inequalities for generalized convex functions via local fractional integrals, Open J. Math. Sci., 3 (2019), 273-284. doi: 10.30538/oms2019.0070
    [7] G. Farid, Existence of an integral operator and its consequences in fractional and conformable integrals, Open J. Math. Sci., 3 (2019), 210-216. doi: 10.30538/oms2019.0064
    [8] R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179-192.
    [9] G. Farid, Some new Ostrowski type inequalities via fractional integrals, Int. J. Anal. Appl., 14 (2017), 64-68.
    [10] İ. Işcan, New refinements for integral and sum forms of Hölder inequality, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4
    [11] M. Kadakal, İ. Işcan, H. Kadakal, et al. On improvements of some integral inequalities, Researchgate, DOI: 10.13140/RG.2.2.15052.46724.
    [12] M. Kian, M. S. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron. J. Linear Algebra, 26 (2013), 742-753.
    [13] M. Kian, Operator Jensen inequality for superquadratic functions, Linear Algebra Appl., 456 (2014), 82-87. doi: 10.1016/j.laa.2012.12.011
    [14] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
    [15] V. S. Kiryakova, Generalized Fractional Calculus and Applications, Longman Sci and Technical, Harlow, Co-published with John Wiley, New York, 1994.
    [16] Y. C. Kwun, G. Farid, W. Nazeer, et al. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946-64953. doi: 10.1109/ACCESS.2018.2878266
    [17] K. Liu, J. Wang, D. O'Regan, On the Hermite-Hadamard type inequality for Ψ-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
    [18] A. Matkovic, J. Pečarić, I. Perić, A variant of Jensens inequality of Mercers type for operators with applications, Linear Algebra Appl., 418 (2006), 551-564. doi: 10.1016/j.laa.2006.02.030
    [19] A. McD. Mercer, A variant of Jensens inequality, J. Inequal. Pure Appl. Math., 4 (2003), 73.
    [20] H. R. Moradi, S. Furuichi, Improvement And generalization of some Jensen-Mercer-type inequalities, arXiv:1905.01768.
    [21] S. Mubeen, G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89-94.
    [22] M. Niezgoda, A generalization of Mercers result on convex functions, Nonlinear Anal., 71 (2009), 2771-2779. doi: 10.1016/j.na.2009.01.120
    [23] H. Öğülmüs, M. Z. Sarikaya, Hermite-Hadamard-Mercer type inequalities for fractional integrals, Researchgate, DOI: 10.13140/RG.2.2.30669.79844.
    [24] D. S. Mitrinovic, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Analysis, Springer Science & Business Media, 2013.
    [25] M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2016), 1049-1059.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3881) PDF downloads(315) Cited by(13)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog