Research article

Majorization problem for two subclasses of meromorphic functions associated with a convolution operator

  • Received: 03 December 2019 Accepted: 25 May 2020 Published: 15 June 2020
  • MSC : 30C45, 30C50

  • In the present paper, we investigate a majorization problem for the class $% M_{\alpha, \beta }^{\nu, j}(\eta, \varkappa; A, B)$ of meromorphic functions and the class $N_{\alpha, \beta }^{\nu, j}(\theta, b;A, B)$ of meromorphic spirllike functions related with a convolution operator. We extend the results existing in literature for higher order derivative. Several consequences of the main results in the form of corollaries are also pointed out.

    Citation: Akhter Rasheed, Saqib Hussain, Syed Ghoos Ali Shah, Maslina Darus, Saeed Lodhi. Majorization problem for two subclasses of meromorphic functions associated with a convolution operator[J]. AIMS Mathematics, 2020, 5(5): 5157-5170. doi: 10.3934/math.2020331

    Related Papers:

  • In the present paper, we investigate a majorization problem for the class $% M_{\alpha, \beta }^{\nu, j}(\eta, \varkappa; A, B)$ of meromorphic functions and the class $N_{\alpha, \beta }^{\nu, j}(\theta, b;A, B)$ of meromorphic spirllike functions related with a convolution operator. We extend the results existing in literature for higher order derivative. Several consequences of the main results in the form of corollaries are also pointed out.


    加载中


    [1] A. A. A. Abubaker, M. Darus, D. Breaz, Majorization for a subclass of β-spiral functions of order α involving a generalized linear operator, Adv. Decis. Sci., 2011 (2011), 1-9.
    [2] M. K. Aouf, A. O. Mostafa, H. M. Zayed, Convolution properties for some subclasses of meromorphic functions of complex order, Abstr. Appl. Anal., 2015 (2015), 1-6.
    [3] O. Altintas, H. M. Srivastava, Some majorization problems associated with p-valently starlike and convex functions of complex order, East Asian Math. J., 17 (2001), 175-183.
    [4] O. Altintas, O. Ozkan, H. M. Srivastava, Majorization by starlike functions of complex order, Complex Var., 46 (2001), 207-218.
    [5] A. Baricz, E. Deniz, M. Caglar, et al. Differential subordinations involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 38 (2015), 1255-1280. doi: 10.1007/s40840-014-0079-8
    [6] A. Baricz, Generalized Bessel Functions of the First Kind, Springer-Verlag, Berlin, 2010.
    [7] E. Deniz, Differential subordination and superordination results for an operator associated with the generalized Bessel function, Preprint, 2012.
    [8] E. A. Eljamal, M. Darus, Majorization for certain classes of analytic functions defined by a new operator, CUBO, 14 (2012), 119-125. doi: 10.4067/S0719-06462012000100010
    [9] S. P. Goyal, P. Goswami, Majorization for certain classes of meromorphic functions defined by integral operator, Ann. Univ. Mariae Curie Sklodowska Lublin-Polonia., 66 (2016), 57-62.
    [10] P. Goswami, M. K. Aouf, Majorization properties for certain classes of analytic functions using the Salagean operator, Appl. Math. Lett., 23 (2010), 1351-1354. doi: 10.1016/j.aml.2010.06.030
    [11] P. Goswami, Z. G. Wang, Majorization for certain classes of analytic functions, Acta Univ. Apulensis Math. Inform., 21 (2009), 97-104.
    [12] S. P. Goyal, S. K. Bansal, P. Goswami, Majorization for certain classes of analytic functions defined by linear operator using differential subordination, J. Appl. Math. Stat. Inform., 6 (2010), 45-50.
    [13] S. P. Goyal, P. Goswami, Majorization for certain classes of analytic functions defined by fractional derivatives, Appl. Math. Lett., 22 (2009), 1855-1858. doi: 10.1016/j.aml.2009.07.009
    [14] S. H. Li, H. Tang, E. Ao, Majorization properties for certain new classes of analytic functions using the Salagean operator, J. Inequal. Appl., 2013 (2013), 1-8. doi: 10.1186/1029-242X-2013-1
    [15] A. O. Mostafa, M. K. Aouf, H. M. Zayed, Convolution properties for some subclasses of meromorphic bounded functions of complex order, Int. J. Open Probl. Complex Anal., 236 (2016), 1-8.
    [16] S. S. Miller, P. T. Mocanu, Differential Subordinations Theory and Applications, Marcel Dekker, New York, 2000.
    [17] T. H. MacGregor, Majorization by univalent functions, Duke Math. J., 34 (1967), 95-102. doi: 10.1215/S0012-7094-67-03411-4
    [18] J. K. Prajapat, M. K. Aouf, Majorization problem for certain class of p-valently analytic function defined by generalized fractional differintegral operator, Comput. Math. Appl., 63 (2012), 42-47. doi: 10.1016/j.camwa.2011.10.065
    [19] M. S. Robertson, Quasi-subordination and coefficient conjectures, Bull. Am. Math. Soc., 76 (1970), 1-9. doi: 10.1090/S0002-9904-1970-12356-4
    [20] H. M. Srivastava, S. Owa, Current Topics in Analytic Function Theory, World Scientific, Singapore, 1992.
    [21] H. Tang, G. T. Deng, S. H. Li, Majorization properties for certain classes of analytic functions involving a generalized differential operator, J. Math. Res. Appl., 33 (2013), 578-586.
    [22] H. Tang, S. H. Li, G. T. Deng, Majorization properties for a new subclass of θ- spiral functions of order γ, Math. Slovaca, 64 (2014), 1-12. doi: 10.2478/s12175-013-0181-7
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3592) PDF downloads(294) Cited by(10)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog