Research article

Approximation properties of modified (p, q)-Szász-Mirakyan-Kantorovich operators

  • Received: 21 March 2020 Accepted: 09 May 2020 Published: 05 June 2020
  • MSC : 41A10, 41A25, 41A36

  • In this paper, we introduce a new kind of modified (p, q)-Szász-Mirakyan-Kantorovich operators based on (p, q)-calculus. Next, the moments computation formulas, the second and fourth order central moments computation formulas and other quantitative properties are investigated. Then, the approximation properties including local approximation, weighted approximation, rate of convergence and Voronovskaja type theorem are obtained. Finally, we generalize the operators by adding a parameter λ.

    Citation: Zhongbin Zheng, Jinwu Fang, Wentao Cheng, Zhidong Guo, Xiaoling Zhou. Approximation properties of modified (p, q)-Szász-Mirakyan-Kantorovich operators[J]. AIMS Mathematics, 2020, 5(5): 4959-4973. doi: 10.3934/math.2020317

    Related Papers:

  • In this paper, we introduce a new kind of modified (p, q)-Szász-Mirakyan-Kantorovich operators based on (p, q)-calculus. Next, the moments computation formulas, the second and fourth order central moments computation formulas and other quantitative properties are investigated. Then, the approximation properties including local approximation, weighted approximation, rate of convergence and Voronovskaja type theorem are obtained. Finally, we generalize the operators by adding a parameter λ.


    加载中


    [1] T. Acar, A. Aral, H. Gonska, On Szász-Mirakyan operators preserving e2ax, a > 0, Mediterr. J. Math., 14 (2017), 16.
    [2] T. Acar, A. Aral, S. A. Mohiuddine, Approximation by bivariate (p, q)-Bernstein-Kantorovich Operators, Iran. J. Sci. Technol. Trans. Sci., 42 (2018), 655-662. doi: 10.1007/s40995-016-0045-4
    [3] T. Acar, A. Aral, S. A. Mohiuddine, On Kantorovich modification of (p, q)-Bernstein operators, Iran. J. Sci. Technol. Trans. Sci., 42 (2018), 1459-1464. doi: 10.1007/s40995-017-0154-8
    [4] A. Aral, V. Gupta, R. P. Agarwal, Application of q-calculus in operator theory, Berlin, Germany, Springer Press, 2013.
    [5] A. Aral, G. Ulusoy, E. Deniz, A new construction of Szász-Mirakyan operators, Numer. Algor., 77 (2018), 313-326. doi: 10.1007/s11075-017-0317-x
    [6] N. Deo, M. Dhamija, Charlier-Szász-Durrmeyer type positive operators, Afr. Math., 29 (2018), 223-232. doi: 10.1007/s13370-017-0537-1
    [7] D. Dubey, V. K. Jain, Rate of approximation for integrated Szász-Mirakyan operators, Demonstratio Math., 41 (2018), 879-866.
    [8] Z. Finta, N. K. Govil, V. Gupta, Some results on modified Szász-Mirakyan operators, J. Math. Anal. Appl., 327 (2007), 1284-1296. doi: 10.1016/j.jmaa.2006.04.070
    [9] V. Gupta, R. P. Agarwal, Convergence estimates in approximation theory, New York, USA, Springer Press, 2014.
    [10] V. Gupta, D. Agrawal, T. M. Rassias, Quantitative estimates for differences of Baskakov-type operators, Comp. Anal. Oper. Theory., 13 (2019), 4045-4064. doi: 10.1007/s11785-019-00950-x
    [11] V. Gupta, N. Malik, Approximation with certain Szász-Mirakyan operators, Khayyam J. Mah., 3 (2017), 90-97.
    [12] V. Gupta, T. M. Rassias, Moments of linear positive operators and approximation, New York, USA, Springer Press, 2019.
    [13] H. G. I. Ilarslan, T. Acar, Approximation by bivariate (p, q)-Baskakov-Kantorovich operators, Georgian Math. J., 25 (2018), 397-407.
    [14] N. I. Mahmudov, H. Kaffaoǧlu, On q-Szász-Durrmeyer operators, Cent. Eur. J. Math., 8 (2010), 399-409. doi: 10.2478/s11533-010-0016-5
    [15] M. Mursaleen, A. Naaz, A. Khan, Improved approximation and error estimations by King type (p, q)-Szász-Mirakjan Kantorovich operators, Appl. Math. Comput., 348 (2019), 175-185.
    [16] M. Örkcü, O. Doǧru, q-Szász-Mirakyan-Kantorovich type operators preserving some test functions, Appl. Math. Lett., 24 (2011), 1588-1593. doi: 10.1016/j.aml.2011.04.001
    [17] N. Malik, V. Gupta, Approximation by (p, q)-Baskakov-Beta operators, Appl. Math. Comput., 293 (2017), 49-53.
    [18] S. A. Mohiuddine, T. Acar, A. Alotaibi, Durrmeyer type (p, q)-Baskakov operators preserving linear functions, J. Math. Inequalities, 12 (2018), 961-973.
    [19] M. C. Montano, V. Leonessa, A sequence of Kantorovich-Type operators on mobile intervals, Constr. Math. Anal., 2 (2019), 130-143.
    [20] M. Mursaleen, A. A. H. AI-Abied, A. Alotaibi, On (p, q)-Szász-Mirakyan operators and their approximation properties, J. Inequal. Appl., 2017 (2017), 196.
    [21] M. Mursaleen, A. Alotaibi, K. J. Ansari, On a Kantorovich of (p, q)-Szász-Mirakjan operators, J. Funct. Space., 2016.
    [22] H. Sharma, R. Maurya, C. Gupta, Approximation properties of Kantorovich type modifications of (p, q)-Meyer-König-Zeller operators, Constr. Math. Anal., 1 (2018), 58-72.
    [23] T. Acar, (p, q)-Generalization of Szász-Mirakjan operators, Math. Methods Appl. Sci., 39 (2016), 2685-2695. doi: 10.1002/mma.3721
    [24] T. Acar, P. N. Agrawal, S. Kumar, On a modification of (p, q)-Szász-Mirakyan operators, Comp. Anal. Oper. Theory., 12 (2018), 155-167.
    [25] T. Acar, A. Aral, S. A. Mohiuddine, On Kantorovich modification of (p, q)-Baskakov operators, J. Inequal. Appl., 2016 (2016), 98.
    [26] T. Acar, A. Aral, I. Raşa, Positive linear operators preserving τ and τ2, Constr. Math. Anal., 2 (2019), 98-102.
    [27] A. Aral, V. Gupta, Application of (p, q)-gamma function to Szász Durrmeyer operators, Publ. Inst. Math., 102 (2017), 211-220.
    [28] D. Costarelli, G. Vinti, A Quantitative estimate for the sampling Kantorovich series in terms of the modulus of continuity in Orlicz spaces, Constr. Math. Anal., 2 (2019), 8-14.
    [29] N. Deo, M. Dhamija, Generalized positive linear operators based on PED and IPED, Iran. J. Sci. Technol. Trans. Sci., 43 (2019), 507-513. doi: 10.1007/s40995-017-0477-5
    [30] M. Dhamija, R. Pratap, N. Deo, Approximation by Kantorovich form of modified Szász-Mirakyan operators, Appl. Math. Comput., 317 (2018), 109-120.
    [31] V. Gupta, (p, q)-Szász-Mirakyan-Baskakov operators, Comp. Anal. Oper. Theory., 12 (2018), 17-25. doi: 10.1007/s11785-015-0521-4
    [32] A. J. López-Moreno, Expressions, Localization Results, and Voronovskaja Formulas for Generalized Durrmeyer Type Operators, in Mathematical Analysis I: Approximation Theory. ICRAPAM 2018, New Delhi, India, October 23-25, New York, USA, Springer Press, 2020, 1-16.
    [33] A. Kajla, T. Acar, Blending type approximation by generalized Bernstein-Durrmeyer type operators, Miskolc. Math. Notes., 19 (2018), 319-326. doi: 10.18514/MMN.2018.2216
    [34] A. Kajla, T. Acar, Modified α-Bernstein operators with better approximation properties, Ann. Funct. Anal., 4 (2019), 570-582.
    [35] V. Gupta, T. M. Rassias, P. N. Agrawal, et al. Recent advances in constructive approximation, New York, USA, Springer Press, 2018.
    [36] P. N. Sadiang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, Results Math, 73 (2018), 39. Available from: https://doi.org/10.1007/s00025-018-0783-z.
    [37] R. A. De Vore, G. G. Lorentz, Constructive Approximation, Berlin, Germany, Springer Press, 1993.
    [38] B. Lenze, On Lipschitz type maximal functions and their smoothness spaces, Nederl. Akad. Indag. Math., 50 (1988), 53-63.
    [39] N. Ispir, On modified Baskakov operators on weighted spaces, Turk. J. Math., 25 (2001), 355-365.
    [40] A. D. Gadzhiev, Theorems of the type of P. P. Korovkin type theorems, Math. Zametki, 20 (1976), 781-786.
    [41] M. Mursaleen, F. Khan, A. Khan, Approximation properties for modified q-Bernstein-Kantorovich operators, Numer. Func. Anal. Opt., 36 (2015), 1178-1197. doi: 10.1080/01630563.2015.1056914
    [42] M. A. Özarslan, O. Duman, Smoothness properties of modified Bernstein-Kantorovich operators, Numer. Func. Anal. Opt., 37 (2016), 92-105. doi: 10.1080/01630563.2015.1079219
    [43] A. M. Acu, P. Agrawal, D. Kumar, Approximation properties of modified q-Bernstein-Kantorovich operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68 (2019), 2170-2197.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3741) PDF downloads(285) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog