Research article

Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model

  • Received: 28 October 2019 Accepted: 24 February 2020 Published: 09 March 2020
  • MSC : 65D19, 65H10, 35A20, 35A24, 35C08, 35G50

  • In this article, the mathematical modeling of DNA vibration dynamics has been considered that describes the nonlinear interaction between adjacent displacements along with the Hydrogen bonds with utilizing five techniques, namely, the improved tan(φ/2)-expansion method (ITEM), the exp(-Ω(η))-expansion method (EEM), the improved exp(-Ω(η))-expansion method (IEEM), the generalized (G'/G)-expansion method (GGM), and the exp-function method (EFM) to get the new exact solutions. This model of the equation is analyzed using the aforementioned schemes. The different kinds of traveling wave solutions: solitary, topological, periodic and rational, are fall out as a by-product of these schemes. Finally, the existence of the solutions for the constraint conditions is also shown.

    Citation: Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed. Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model[J]. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163

    Related Papers:

  • In this article, the mathematical modeling of DNA vibration dynamics has been considered that describes the nonlinear interaction between adjacent displacements along with the Hydrogen bonds with utilizing five techniques, namely, the improved tan(φ/2)-expansion method (ITEM), the exp(-Ω(η))-expansion method (EEM), the improved exp(-Ω(η))-expansion method (IEEM), the generalized (G'/G)-expansion method (GGM), and the exp-function method (EFM) to get the new exact solutions. This model of the equation is analyzed using the aforementioned schemes. The different kinds of traveling wave solutions: solitary, topological, periodic and rational, are fall out as a by-product of these schemes. Finally, the existence of the solutions for the constraint conditions is also shown.


    加载中


    [1] M. Dehghan, J. Manafian, A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Num. Meth. Partial Diff. Eq. J., 26 (2010), 448-479.
    [2] M. Dehghan, J. Manafian, A. Saadatmandi, Application of semi-analytic methods for the Fitzhugh-Nagumo equation, which models the transmission of nerve impulses, Math. Meth. Appl. Sci., 33 (2010), 1384-1398.
    [3] M. Dehghan, J. Manafian, A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, Int. J. Num. Meth. Heat Fluid Flow, 21 (2011), 736-753. doi: 10.1108/09615531111148482
    [4] X. G. Geng, Y. L. Ma, N-soliton solution and its wronskian form of a (3+1)-dimensional nonlinear evolution equation, Phys. Lett. A, 369 (2007), 285-289. doi: 10.1016/j.physleta.2007.04.099
    [5] J. Manafian, M. Lakestani, Optical solitons with Biswas-Milovic equation for Kerr law nonlinearity, Eur. Phys. J. Plus, 130 (2015), 1-12. doi: 10.1140/epjp/i2015-15001-1
    [6] J. Manafian, On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities, Eur. Phys. J. Plus, 130 (2015), 1-20. doi: 10.1140/epjp/i2015-15001-1
    [7] J. Manafian, M. Lakestani, Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the (G'/G)-expansion method, Pramana, 130 (2015), 31-52.
    [8] J. Manafian, M. Lakestani, New improvement of the expansion methods for solving the generalized Fitzhugh-Nagumo equation with time-dependent coefficients, Int. J. Eng. Math., 2015 (2015), Article ID 107978.
    [9] J. Manafian, M. Lakestani, Application of tan(φ/2)-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity, Optik, 127 (2016), 2040-2054. doi: 10.1016/j.ijleo.2015.11.078
    [10] J. Manafian, M. Lakestani, Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics, Opt. Quan. Elec., 48 (2016), 16.
    [11] J. Manafian, M. Lakestani, Optical soliton solutions for Schrödinger type nonlinear evolution equations by the tan(φ/2)-expansion method, Optik, 127 (2016), 4222-4245. doi: 10.1016/j.ijleo.2016.01.078
    [12] H. M. Baskonus, H. Bulut, Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics, Waves in Random and Complex Media, 26 (2016), 201-208.
    [13] H. M. Baskonus, D. A. Koç, H. Bulut, New travelling wave prototypes to the nonlinear Zakharov-Kuznetsov equation with power law nonlinearity, Nonlinear Sci. Lett. A, 7 (2016), 67-76.
    [14] M. Peyrard, A. R. Bishop, Statistical mechanics of a nonlinear model for DNA denaturation, Phys. Rev. Lett., 62 (1989), 2755-2758. doi: 10.1103/PhysRevLett.62.2755
    [15] R. Abazari, S. Jamshidzadeh, G. Wang, Mathematical modeling of DNA vibrational dynamics and its solitary wave solutions, Revista Mexicana de Fisica, 64 (2018), 590-597. doi: 10.31349/RevMexFis.64.590
    [16] S. Dusuel, P. Michaux, M. Remoissenet, From Kinks to compactonlike Kinks, Phys. Rev. E, 57 (1998), 2320-2326. doi: 10.1103/PhysRevE.57.2320
    [17] A. Alvarez, S. R. Romero, J. F. R. Archilla, et al. Breather trapping and breather transmission in a DNA model with an interface, Eur. Phys. J. B, 51 (2006), 119-130. doi: 10.1140/epjb/e2006-00191-0
    [18] L. Yakushevich, Nonlinear Physics of DNA, Wiley and Sons, 1998.
    [19] Mika Gustafsson, Coherent waves in DNA within the Peyrard Bishop model, Master thesis, Linopings Universitet, 2003.
    [20] E. Villagran, Estructuras solitonicas y su influencia en la dinamica vibraional del ADN, PhD Thesis, Universidad Autonoma del Estado de Mexico, Mexico, 2007.
    [21] Z. Wang, B. Zineddin, J. Liang, et al. A novel neural network approach to cDNA microarray image segmentation, Comput Methods Programs Biomed., 111 (2013), 189-198. doi: 10.1016/j.cmpb.2013.03.013
    [22] M. Aguero, M. Najera, M. Carrillo, Nonclassic solitonic structures in DNA's vibrational dynamics, Int. J. Mod. Phys. B, 22 (2008), 2571-2582. doi: 10.1142/S021797920803968X
    [23] G. Gaeta, Results and limitations of the soliton theory of DNA transcription, J. Biol. Phys., 24 (1999), 81-96. doi: 10.1023/A:1005158503806
    [24] J. B. Okaly, A. Mvogo, R. L. Woulaché, et al. Nonlinear dynamics of damped DNA systems with long-rangeinteractions, Commun. Nonlinear Sci. Numer. Simulat., 55 (2018), 183-193. doi: 10.1016/j.cnsns.2017.06.017
    [25] G. Miloshevich, J. P. Nguenang, T. Dauxois, et al. Traveling solitons in long-range oscillator chains, J. Phys. A: Math. Theor., 50 (2017), 12LT02.
    [26] J. B. Okaly, A. Mvogo, R. L. Woulaché, et al. Semi-discrete breather in a helicoidal DNA double chain-model, Wave Motion, 82 (2018), 1-15. doi: 10.1016/j.wavemoti.2018.06.005
    [27] J. B. Okaly, F. L. Ndzana, R. L. Woulaché, et al. Base pairs opening and bubble transport in damped DNA dynamics with transport memory effects, Chaos, 29 (2019), 093103.
    [28] M. Peyrard, Nonlinear dynamics and statistical physics of DNA, Nonlinearity, 17 (2004), R1-R40.
    [29] J. B. Okaly, A. Mvogo, R. L. Woulaché, et al. Nonlinear dynamics of DNA systems with inhomogeneity effects, Chin. J. of Phys., 56 (2018), 2613-2626. doi: 10.1016/j.cjph.2018.07.006
    [30] A. Mvogo, G. H. Ben-Bolie, T. C. Kofané, Solitary waves in an inhomogeneous chain of α-helical proteins, Int. J. Mod. Phys B., 28 (2014), 1-14.
    [31] S. Zdravković, D. Chevizovich, A. N. Bugay, et al. Stationary solitary and kink solutions in the helicoidal Peyrard-Bishop model of DNA molecule, Chaos, 29 (2019), 053118.
    [32] S. Zdravković, S. Zeković, Nonlinear dynamics of microtubules and series expansion unknown function method, Chin. J. Phys., 55 (2017), 2400-2406. doi: 10.1016/j.cjph.2017.10.009
    [33] E. Tala-Tebue, Z. I. Djoufack, D. C. Tsobgni-Fozap, et al. Traveling wave solutions along microtubules and in theZhiber-Shabat equation, Chin. J. Phys., 55 (2017), 939-946. doi: 10.1016/j.cjph.2017.03.004
    [34] J. Manafian, M. Lakestani, Lump-type solutions and interaction phenomenon to the bidirectional Sawada-Kotera equation, Pramana, 92 (2019), 41.
    [35] J. Manafian, Novel solitary wave solutions for the (3+1)-dimensional extended Jimbo-Miwa equations, Comput. Math. Appl., 76 (2018), 1246-1260. doi: 10.1016/j.camwa.2018.06.018
    [36] J. Manafian, B. Mohammadi-Ivatlo, M. Abapour, Lump-type solutions and interaction phenomenon to the (2+1)-dimensional Breaking Soliton equation, Appl. Math. Comput., 13 (2019), 13-41.
    [37] O. A. Ilhan, J. Manafian, M. Shahriari, Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev-Petviashvili equation, Comput. Math. Appl., 78 (2019), 2429-2448. doi: 10.1016/j.camwa.2019.03.048
    [38] S. T. R. Rizvi, I. Afzal, K. Ali, et al. Stationary Solutions for Nonlinear Schrödinger Equations by Lie Group Analysis, Acta Physica Polonica A., 136 (2019), 187-189. doi: 10.12693/APhysPolA.136.187
    [39] K. Ali, S. T. R. Rizvi, B. Nawaz, et al. Optical solitons for paraxial wave equation in Kerr media, Modern Phys. Let. B, 33 (2019), 1950020.
    [40] S. Ali, M. Younis, M. O. Ahmad, et al. Rogue wave solutions in nonlinear optics with coupled Schrodinger equations, Opt. Quan. Elec., 50 (2018), 266.
    [41] A. Arif, M. Younis, M. Imran, et al. Solitons and lump wave solutions to the graphene thermophoretic motion system with a variable heat transmission, Eur. Phys. J. Plus, 134 (2019), 303.
    [42] S. Zdravković, Helicoidal PeyrardBishop Model of DNA Dynamics, J. Nonlinear Math. Phys., 18 (2011), 463-484. doi: 10.1142/S1402925111001635
    [43] M. Peyrard, A. R. Bishop, Statistical mechanics of a nonlinear model for DNA denaturation, Phys. Rev. Lett., 62 (1989), 2755-2758. doi: 10.1103/PhysRevLett.62.2755
    [44] T. Dauxois, Dynamics of breather modes in a nonlinear helicoidal model of DNA, Phys. Lett. A, 159 (1991), 390-395. doi: 10.1016/0375-9601(91)90367-H
    [45] M. A. Aguero, M. D. L. Najera, M. Carrillo, Nonclassic solitonic structures in DNA's vibrational dynamics, Int. J. Modern Physics B, 22 (2008), 2571-2582. doi: 10.1142/S021797920803968X
    [46] L. Najera, M. Carrillo, M. A. Agüero, Non-classical solitons and the broken hydrogen bonds in DNA vibrational dynamics, Adv. Studies Theor. Phys., 4 (2010), 495-510.
    [47] S. Zdravković, J. A. Tuszyński, M. V. Satarić, Peyrard-Bishop-Dauxois model of DNA dynamics and impact of viscosity, J. Comput. Theor. Nanosci., 2 (2005), 1-9.
    [48] S. Zdravković, M. V. Satarić, Parameter selection in a PeyrardBishopDauxois model for DNA dynamics, Phys. Let. A, 373 (2009), 2739-2745. doi: 10.1016/j.physleta.2009.05.032
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3411) PDF downloads(364) Cited by(23)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog