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Abstract: In this article, the mathematical modeling of DNA vibration dynamics has been considered
that describes the nonlinear interaction between adjacent displacements along with the Hydrogen
bonds with utilizing five techniques, namely, the improved tan(φ/2)-expansion method (ITEM),
the exp(−Ω(η))-expansion method (EEM), the improved exp(−Ω(η))-expansion method (IEEM), the
generalized (G’/G)-expansion method (GGM), and the exp-function method (EFM) to get the new
exact solutions. This model of the equation is analyzed using the aforementioned schemes. The
different kinds of traveling wave solutions: solitary, topological, periodic and rational, are fall out
as a by-product of these schemes. Finally, the existence of the solutions for the constraint conditions is
also shown.

Keywords: improved tan(φ/2)-expansion method; exp(−Ω(η))-expansion method; improved
exp(−Ω(η))-expansion method; generalized (G’/G)-expansion method; the exp-function method;
solitary, topological, periodic and rational solutions
Mathematics Subject Classification: 65D19, 65H10, 35A20, 35A24, 35C08, 35G50

1. Introduction

Traveling wave and soliton solutions are one of the most interesting and fascinating areas of research
in different fields of engineering and physical sciences. These models are basic ingredients of sciences
in which play important roles in numerous areas such as biology, physics, chemistry, fluid mechanics
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and many engineering and science applications among others [1–5]. Furthermore, the approaches
to solving these types of equations alongside nonlinear PDEs ranging from analytical to numerical
methods are very important in many engineering and sciences applications. Some of these methods
include finding the exact solutions by using the special techniques in which can be manifested to
new works with vigorous references. Consequently, it is imperative to address the dynamics of these
soliton pulses from a mathematical aspect. This will lead to a deeper understanding of the engineering
perspective of these solutions [6–13].

In this paper, we will study the different kinds of traveling wave solutions in mathematical model in
DNA dynamics from a purely mathematical viewpoint. Therefore, the importance of this paper will be
to extract the exact traveling wave solution for the nonlinear model. This model is described for first by
Peyrard-Bishop, that takes into consideration the inclusion of nonlinear interaction between adjacent
displacements along with the Hydrogen bonds [14]. There are several integration tools available to
solve the model. Many such nonlinear equations as DNA dynamics have been examined with regards
to soliton theory, where complete integrability was emphasized by various analytical techniques.

For investigating the appearance of solitonic structures of the oscillator-chain of Peyrard-Bishop
model has been analyzed by [14, 15]. The balance between weak nonlinearity and dispersion in DNA
dynamic model with linear dispersion and nonlinear dispersion arise in works of Dusuel et al. [16]
and Alvarez et al. [17]. Treatment of mathematical and physical modeling of equations of DNA
dynamics show that those can be reduced to a significant nonlinear formations. The nonlinearity of
the DNA dynamic model arises in localized waves in which have a few considerable features, as
example in transporting energy without dissipation. A few methods in which physical properties of
DNA dynamics have been investigated by the numerous authors [18–23]. There are techniques
usually used in biological systems such as the discrete derivative operator (DDO) technique applying
to long-range interactions systems [24, 25], the semi-discrete approximation [26–28], the solitary
perturbation technique [29, 30], the modified extended tanh function method [31–33].

Author of [34] made use of the Hirota bilinear method of the bidirectional Sawada-Kotera equation
to obtain new lump-type solutions and interaction phenomenon. In [35], author found the lump
soliton and novel solitary wave solutions for the (3+1)-dimensional extended Jimbo-Miwa equations.
Manafian and co-author found the interaction phenomenon to the (2+1)-dimensional Breaking Soliton
equation [36]. Moreover, Ilhan et al. determined lump wave solutions and the interactions between
lump solutions for a variable-coefficient Kadomtsev-Petviashvili equation [37]. Authors of [38]
obtained the stationary solutions of various nonlinear Schrödinger equations. Younas and
co-authors [38] studied the nonlinear chirp solitons for the model of Schröodinger-Hirota equation
with concluding the bright, dark and singular solitons. Ali and co-workers [39] utilized the extended
trial equation method and retrieved Jacobi elliptic, periodic, bright and singular solitons for paraxial
nonlinear Schröodinger equation. In [40], the first and second-order rogue wave solutions were
gained for the coupled Schrödinger equations. Arif et al. investigated the solitons and lump wave
solutions to the graphene thermophoretic motion system [41]. Structures of this paper as follows, the
nonlinear DNA dynamics model has been summarized in section 2. In sections 3–7, an overview of
the integration schemes are given along with the analysis of the model including the improved
tan(φ/2)-expansion method, exp(−Ω(η))-expansion method, improved exp(−Ω(η))-expansion method,
generalized (G’/G)-expansion method, and exp-function method, respectively. The next section gives
the discussions about the model. In the last section, the conclusions have been given.
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2. Peyrard-Bishop DNA dynamic model equation

It is popular that DNA molecule is a double helix. This means that it consists of two complementary
polymeric chains twisted around each other [42]. The B-form DNA in theWatsonCrick model is a
double helix, which contains of two strands. The masses of nucleotides do not vary too much which
means that one can assume a homogeneous crystal structure. The strands are coupled to each other
through the hydrogen bonds, so that these bonds are weak while the harmonic longitudinal are strong
the PB model neglects all the displacements beside the transversal [43]. The Hamiltonian model of
Peyrard and Bishop [43], and the equations found in the literature, is modeled by the Morse potential
as

VM(un − vn) = D
[
e−a(un−vn) − 1

]2
, (2.1)

in which un and vn are the displacements of the nucleotides. Also, the Hamiltonian for the DNA chain
was described by Zdravković [43]. Moreover, the improved version of the PB model, introduced by
Dauxois [44]. The Hamiltonian for describing the strand aperture the hydrogen bonds can be stated
as [45]

H(u) =
1

2m
q2

n +
k1

2
∆2un +

k2

4
∆4un + δ

(
e−
√

2aun − 1
)2
, ∆un = un+1 − un, (2.2)

in which k1 and k2 denote the strength for the linear and nonlinear couplings respectively and qn = mu̇n

is the momentum for the displacement un. Searching Starting with the hamiltonian (2.2) the equation
of motion in the continuum limit can be stated by the following form

∂2u
∂t2 −

(
l1 + 3l2

∂2u
∂x2

)
− 2
√

2aD e−au (
e−au − 1

)
, (2.3)

with l1 = k1
m d2, l2 = k2

m d4, D = δ
m , α ≡

√
2a and being d the inter-site nucleotide distance in the DNA

ladder ( [46–48]). In this paper, consider the Peyrard-Bishop DNA dynamic model equation as follows

utt −
(
l1 + 3l2u2

x

)
uxx − 2αΩe−αu (

e−αu − 1
)

= 0, (2.4)

where l1, l2, α and Ω = D are constants. By make the following transformations

u(x, t) = u(ξ), ξ = x − βt, (2.5)

then the Eq. (2.4), can be reduced to the ordinary differential equation as

β2u′′ −
(
l1 + 3l2(u′)2

)
u′′ − 2αΩe−αu (

e−αu − 1
)

= 0. (2.6)

By multiplying the Eq. (2.6) by u′ and integrating once with respect to ξ, we get

(β2 − l1)
2

(u′)2 −
3
4

l2(u′)4 + Ωe−αu (
e−αu − 2

)
+ R = 0. (2.7)

By starting hypothesis is taken to be

v(ξ) = e−αu(ξ). (2.8)

By appending (2.8) into Eq. (2.7), the nonlinear equation is achieved as follows

(β2 − l1)
2α2 v2(v′)2 −

3
4α4 l2(v′)4 + Ωv5 (v − 2) + Rv4 = 0. (2.9)
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3. Description of the ITEM

In this section, the improved tan(φ/2)-expansion method [8, 9] has been summarized to obtain the
solutions of nonlinear partial differential equations (NPDEs). Hence, consider the NPDEs in the
following way:

N(u, ux, ut, uxx, utt, ...) = 0, (3.1)

where N is a polynomial of u and its partial derivatives in which the relationship of higher order
derivatives and nonlinear terms. To find the traveling wave solutions, we outline the following sequence
of steps towards the extended tanh method:
Step 1. Firstly, by using traveling wave transformation

ξ = x − βt, (3.2)

where β is non-zero arbitrary constant, permits to reduce Eq. (6.1) to an ODE of u = u(ξ) in the
following form

Q(u, u′,−βu′, u′′, β2u′′, ...) = 0. (3.3)

Step 2. Assuming that the solution of Eq. (6.1) can be expressed by the following ansatz:

u(ξ) = S (φ) =

m∑
k=0

Ak
[
tan(φ/2)

]k , (3.4)

where Ak(0 ≤ k ≤ m) are the parameters to be determined and Am , 0 and φ = φ(ξ) satisfies in the
ordinary differential equation as follows:

φ′(ξ) = a sin(φ(ξ)) + b cos(φ(ξ)) + c. (3.5)

The particular solutions of Eq. (3.5) will be read as:
Family 1: When ∆ = a2 + b2 − c2 < 0 and b − c , 0, then
φ(ξ) = 2 tan−1

[
a

b−c −
√
−∆

b−c tan
( √
−∆
2 ξ

)]
.

Family 2: When ∆ = a2 + b2 − c2 > 0 and b − c , 0, then
φ(ξ) = 2 tan−1

[
a

b−c +
√

∆
b−c tanh

( √
∆

2 ξ
)]
.

For see the rest seventeen families refer to Ref. [8, 9]. Also, ξ = ξ + C, p, Ak, Bk(k = 1, 2, ...,m), a, b
and c are constants to be determined later.
Step 3. To determine the positive integer m, we usually balance linear terms of the highest order in
the resulting equation with the highest order nonlinear terms appearing in equation (3.3).
Step 4. We collect all the terms with the same order of tan(φ/2)k, (k = 0, 1, 2, ...) together. Equate
each coefficient of the polynomials to zero, yields the set of algebraic equations for
A0, Ak(k = 1, 2, ...,m), a, b and c with the aid of the Maple.
Step 5. Solving the algebraic equations in Step 4, then substituting A0, A1, ..., Bm, a, b, c in (3.4).
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3.1. Application of the ITEM for Eq. (2.4)

Consider the homogeneous balance principle between the highest order derivatives (v′)4 and
nonlinear terms v6, and get

A4m+4 tan4m+4(φ/2) � (v′)4 = v6 � A6m tan6m(φ/2) =⇒ 4m + 4 = 6m =⇒ m = 2.

Therefore, the equation (3.4) takes the form

v(ξ) =

2∑
k=0

Ak tank(φ/2). (3.6)

Substitute equation (3.6) and its derivatives into equation (2.9). Algebraic equations set can be obtained
after equating the coefficients of tanp(φ/2) for p = 0, 1, ..., 12, and setting equal to zero. After solving
the nonlinear algebraic equations, the following values of a, b, c, β, A0, A1, A2 can be obtained:
Set I.

β =

√
2 l1 + 2

√
3 Ω l2 − 3 Rl2, a =

Ξ1

3A2l2
, b =

4
√

108Ω A2
2l2

3α

3l2
, c = c, ∆ =

α2A2

(
β2 − 2 l1

)
− 3 l2 (b − c)2

3A2l2
,

(3.7)

A0 = −
2 Ωα4A2

2 + 3l2(b − c)3

2Ωα4A2
, A1 = −

Ξ1(b − c)3

2Ωα4A2
2 , A2 = A2,

Ξ1 =

√
3A2l2

(
α2β2A2 − 2α2A2l1 − 3 b2A2l2 + 3 c2A2l2 − 3 b2l2 + 6 bcl2 − 3 c2l2

)
.

By utilizing of Family 1, the trigonometric function solution becomes

u1(x, t) = −
1
α

ln
−2 Ωα4A2

2 + 3l2(b − c)3

2Ωα4A2
−

Ξ1(b − c)3

2Ωα4A2
2

 a
b − c

−

√
−∆

b − c
tan

 √−∆

2
ξ

 (3.8)

+A2

 a
b − c

−

√
−∆

b − c
tan

 √−∆

2
ξ

2 , ξ = x −
√

2 l1 + 2
√

3 Ω l2 − 3 Rl2t + C.

The existence of the solution for the constraint condition is as A2(β2−2l1)
3l2

<


4
√

108Ω A2
2l2

3α
3l2

−c

α


2

.

By utilizing of Family 2, the hyperbolic function solution becomes

u1(x, t) = −
1
α

ln
−2 Ωα4A2

2 + 3l2(b − c)3

2Ωα4A2
−

Ξ1(b − c)3

2Ωα4A2
2

 a
b − c

−

√
−∆

b − c
tan

 √−∆

2
ξ

 (3.9)

+A2

 a
b − c

−

√
−∆

b − c
tan

 √−∆

2
ξ

2 , ξ = x −
√

2 l1 + 2
√

3 Ω l2 − 3 Rl2t + C.

The existence of the solution for the constraint condition is as A2(β2−2l1)
3l2

>


4
√

108Ω A2
2l2

3α
3l2

−c

α


2

.
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4. The exp(−Ω(η))-expansion method

This section elucidates a systematic explanation of the exp(−Ω(η))-expansion method to obtain the
solutions of nonlinear partial differential equations (NPDEs). Hence, take the NPDEs in the following
way:

N(u, ux, ut, uxx, utt, ...) = 0, (4.1)

where N is a polynomial of u and its partial derivatives in which the relationship of higher order
derivatives and nonlinear terms. To find the traveling wave solutions, we outline the following sequence
of steps towards the extended tanh method:
Step 1. Firstly, by utilizing the traveling wave transformation

ξ = x − βt, (4.2)

where β is non-zero arbitrary constant, permits to reduce equation (4.1) to an ODE of u = u(ξ) in the
following form

Q(u, u′,−βu′, u′′, β2u′′, ...) = 0, (4.3)

Step 2. Assuming that the solution of equation (4.1) can be expressed by the following ansatz:

U(ξ) =

m∑
j=0

A jF j(ξ), (4.4)

where F(η) = exp(−Φ(ξ)) and A j(0 ≤ j ≤ m), are the parameters to be determined Am , 0, and,
Φ = Φ(ξ) satisfying the ODE given below

Φ′ = µF−1(ξ) + F(ξ) + λ. (4.5)

The particular solutions of equation (4.5) will be read as:

Solution-1: When µ , 0 and λ2 − 4µ > 0, therefore we attain

Φ(η) = ln
(
−

√
λ2−4µ
2µ tanh

( √
λ2−4µ
2 (ξ + E)

)
− λ

2µ

)
.

Solution-2: When µ , 0 and λ2 − 4µ < 0, therefore we attain

Φ(η) = ln
( √

−λ2+4µ
2µ tan

( √
−λ2+4µ

2 (ξ + E)
)
− λ

2µ

)
.

Solution-3: When µ = 0, λ , 0, and λ2 − 4µ > 0, therefore we attain Φ(η) = − ln
(

λ
exp(λ(ξ+E))−1

)
.

Solution-4: When µ , 0, λ , 0, and λ2 − 4µ = 0, therefore we attain Φ(η) = ln
(
−

2λ(ξ+E)+4
λ2(ξ+E)

)
.

Solution-5: When µ = 0, λ = 0, and λ2 − 4µ = 0, therefore we attain Φ(η) = ln (ξ + E), where
A j(0 ≤ j ≤ m), E, λ and µ are also the constants to be explored later.
Step 3. To determine the positive integer m, we usually balance the linear terms of the highest order
in the resulting equation with the highest order nonlinear terms appearing in equation (4.3).
Step 4. We collect all the terms with the same order of F(ξ)k, (k = 0, 1, 2, ...) together. Equate each
coefficient of the polynomials of F(ξ)k to zero, yields the set of algebraic equations for
A0, Ak(k = 1, 2, ...,m), λ and µ with the aid of the Maple.
Step 5. Solving the algebraic equations in Step 4, then substituting A0, A1, ..., Am, λ, µ in (4.4).
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4.1. Application of the EEM for Eq. (2.4)

Consider the homogeneous balance principle between the highest order derivatives (v′)4 and
nonlinear terms v6, we obtain 4m + 4 = 6m, then m = 2. The exact solution can be expressed in the
following form

v(ξ) =

2∑
k=0

AkFk(η), (4.6)

Substitute equation (4.6) and its derivatives into equation (2.9). The algebraic equations set can be
obtained after equating the coefficients of F(ξ) for p = 0,1,...,20, and setting equal to zero. After
solving the nonlinear algebraic equations, the following values of λ, µ, β, A0, A1, A2 can be obtained:
Set I.

Σ1 = −125 Ω5α3de3Ξ3Ξ
3
1

(
λ2 − 4 µ

)
−250 Ω4Rα4de2Ξ1Ξ2Ξ3−1250 Ω5Rα5e3Ξ3Ξ

2
1+5000 Ω6α6d (45 Ω − 4 R) Ξ3

1−

(4.7)
6α2l1l2Ξ

4
2−9 l2

2Ξ3Ξ
3
2

(
λ2 − 4 µ

)
+5000 Ω5α6l1Ξ

4
1−3 Ωα l2Ξ2(50 Ω Rα2eΞ2Ξ3+2α d

(
2025 Ω2 + 65 Ω R + R2

)
Ξ2

2+

5 Ω eΞ1Ξ3

(
225 Ω2α e + 5 Ω Rα e + 2025 Ω2d + 115 Ω Rd + R2d

) (
λ2 − 4 µ

)
),

Σ2 = 25000 Ω6Rα6dΞ3
1 + 1250 Ω5Rα5e3Ξ3Ξ

2
1 + 15 Ω2α del2Ξ1Ξ3Ξ

2
2

(
λ2 − 4 µ

)
−18 l2

2Ξ3
2

(
225 Ω2λ2 + 5 Ω Rλ2 + 11250 Ω2µ + 670 Ω Rµ + 6 R2µ

)
+25 Ω2α3eΞ3

(
5 Ω3de2Ξ3

1

(
λ2 − 4 µ

)
+ 6 l2RΞ2

2

)
75 Ω2α2l2Ξ2

(
Ω e2Ξ3Ξ

2
1

) (
λ2 − 4 µ

)
− 4 RdΞ2 + 250 Ω4α4Ξ1

(
30 Ω l2Ξ

3
1

(
λ2 + 8 µ

)
+ Rde2Ξ2Ξ3

)
,

Ξ1 = 45 Ω+R, Ξ2 = 2025 Ω2+115 Ω R+R2, Ξ3 = 1575 Ω2+105 Ω R+R2, β =

√
(2500 Ω5α4Ξ4

1 − 3 l2Ξ
4
2)Σ1

α(2500 Ω5α4Ξ4
1 − 3 l2Ξ

4
2)

,

d =

√
3Ωl2

Ω
, e =

4
√

12Ω3l2

Ω
, A0 =

Σ2

6α2Ωd(2500 Ω5α4Ξ4
1 − 3 l2Ξ

4
2)
, A1 =

2λ d
α2 , A2 =

2d
α2 .

By utilizing of Family 1, the hyperbolic function solution becomes

u1(x, t) = −
1
α

ln

A0 +
2λ d
α2

− √
λ2 − 4µ

2µ
tanh

 √
λ2 − 4µ

2
(η + E)

 − λ

2µ

−1

(4.8)

+
2d
α2

− √
λ2 − 4µ

2µ
tanh

 √
λ2 − 4µ

2
(η + E)

 − λ

2µ

−2 , η = x − βt.

The existence of the solution for the constraint condition is as l2(
√
α4(Ω2α2e2 − 12Rl2) − eα3Ω) > 0.

By utilizing of Family 2, the trigonometric function solution becomes

u2(x, t) = −
1
α

ln

A0 +
2λ d
α2

 √
−λ2 + 4µ

2µ
tan

 √
−λ2 + 4µ

2
(η + E)

 − λ

2µ

−1

(4.9)

+
2d
α2

 √
−λ2 + 4µ

2µ
tan

 √
−λ2 + 4µ

2
(η + E)

 − λ

2µ

−2 , η = x − βt.
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The existence of the solution for the constraint condition is as l2(
√
α4(Ω2α2e2 − 12Rl2) − eα3Ω) < 0.

By utilizing of Family 3, the hyperbolic function solution becomes

u3(x, t) = −
1
α

ln
A0 +

2λ d
α2

(
λ

exp (λ(η + E)) − 1

)
+

2d
α2

(
λ

exp (λ(η + E)) − 1

)2 , η = x − βt. (4.10)

The existence of the solution for the constraint condition is as l2(
√
α4(Ω2α2e2 − 12Rl2) − eα3Ω) > 0,

and

λ =

√
3l2

(
−eα3Ω + 12 µ l2 +

√
Ω2α6e2 − 12 Rα4l2

)
3l2

, λ2 − 4µ =
−eα3Ω +

√
α4 (

Ω2α2e2 − 12 Rl2
)

3l2
.

5. The improved exp(−Ω(η))-expansion method

In this section the improved exp(−Ω(η))-expansion method is utilized to obtain the solutions of
nonlinear partial differential equations (NPDEs). Hence, consider the NPDEs in the following way:

N(u, ux, ut, uxx, utt, ...) = 0, (5.1)

where N is a polynomial of u and its partial derivatives in which the relationship of higher order
derivatives and nonlinear terms. To find the traveling wave solutions, we outline the following sequence
of steps towards the extended tanh method:
Step 1. Firstly, by using the traveling wave transformation

ξ = x − βt, (5.2)

where β is non-zero arbitrary constant, permits to reduce equation (4.1) to an ODE of u = u(ξ) in the
following form

Q(u, u′,−βu′, u′′, β2u′′, ...) = 0, (5.3)

Step 2. Assuming that the solution of equation (5.1) can be expressed by the following ansatz:

U(ξ) =

m∑
j=0

A jF j(ξ) +

m∑
j=1

B jF j(ξ), (5.4)

where F(η) = exp(−Φ(ξ)) and A j(0 ≤ j ≤ m), B j(1 ≤ j ≤ m), are the parameters to be determined
Am , 0, and, Φ = Φ(ξ) satisfying the ODE given below

Φ′ = µF−1(ξ) + F(ξ) + λ. (5.5)

The particular solutions of equation (5.5) will be read like before section.
Step 3. To determine the positive integer m, we usually balance the linear terms of the highest order in
the resulting equation with the highest order nonlinear terms appearing in equation (4.3).
Step 4. We collect all the terms with the same order of F(ξ)k, (k = 0, 1, 2, ...) together. Equate each
coefficient of the polynomials of F(ξ)k to zero, yields the set of algebraic equations for A0, Ak, Bk(k =

1, 2, ...,m), λ and µ with the aid of the Maple.
Step 5. Solving the algebraic equations in Step 4, then substituting A0, A1, B1, ..., Am, Bm, λ, µ in (5.4).
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5.1. Application of the IEEM for Eq. (2.4)

The exact solution will be the same as the previous section as

v(ξ) =

2∑
k=0

AkFk(η) +

2∑
k=1

BkF−k(η), (5.6)

Substitute equation (5.6) and its derivatives into equation (2.9). The algebraic equations set can be
obtained after equating the coefficients of F(ξ) for p = 0, 1, ..., 20, and setting equal to zero. After
solving the nonlinear algebraic equations, the following values of λ, µ, β, A0, A1, B1, A2, B2 can be
obtained:
Set I.

Σ1 = 5000 Ω5α6Ξ3
1

(
45 Ω2d − 4 Ω Rd + 45 Ω l1 + Rl1

)
− 1250 Ω5Rα5e3Ξ3Ξ

2
1 − 250 Ω4Rα4de2Ξ1Ξ2Ξ3

(5.7)
−25 Ω2α3eΞ2

(
5 Ω3de2Ξ3

1

(
λ2 − 4 µ

)
+ 6 Rl2Ξ

2
2

)
− 3α2l2Ξ2

(
25 Ω3e2Ξ3Ξ

2
1

(
λ2 − 4 µ

)
+

2 Ξ2
2

(
2025 Ω3d + 65 Ω2Rd + Ω R2d + 2025 Ω2l1 + 115 Ω Rl1 + R2l1

))
− 15 Ω2α del2Ξ1Ξ3Ξ

2
2

(
λ2 − 4 µ

)
−9 l2

2Ξ3Ξ
3
2

(
λ2 − 4 µ

)
, d =

√
3Ωl2

Ω
, e =

4
√

12Ω3l2

Ω
, β =

√
(2500 Ω5α4Ξ4

1 − 3 l2Ξ
4
2)Σ1

α(2500 Ω5α4Ξ4
1 − 3 l2Ξ

4
2)

,

A0 =
Σ2

6α2Ωd(2500 Ω5α4Ξ4
1 − 3 l2Ξ

4
2)
, A1 =

2λ d
α2 , A2 =

2d
α2 , B1 = 0, B2 =

Σ2

360dl2Σ3
,

Σ2 = 25000 Ω6Rα6dΞ3
1+1250 Ω5Rα5e3Ξ3Ξ

2
1+15 Ω2α del2Ξ1Ξ3Ξ

2
2

(
λ2 − 4 µ

)
+25 Ω2α3eΞ3

(
5 Ω3de2Ξ3

1

(
λ2 − 4 µ

)
+ 6 l2RΞ2

2

)
−18 l2

2Ξ3
2

(
225 Ω2λ2 + 5 Ω Rλ2 + 11250 Ω2µ + 670 Ω Rµ + 6 R2µ

)
+75 Ω2α2l2Ξ2

(
Ω e2Ξ3Ξ

2
1

(
λ2 − 4 µ

)
− 4 RdΞ2

2

)
+250 Ω4α4Ξ1

(
30 Ω l2Ξ

3
1

(
λ2 + 8 µ

)
+ Rde2Ξ2Ξ3

)
,

Σ3 = 6250000 Ω10α8Ξ8
1 − 3 l2

(
Ξ4

2

) (
5000 Ω5α4Ξ4

1 − 3 l2Ξ
4
2

)
,

Ξ1 = 45 Ω + R, Ξ2 = 2025 Ω2 + 115 Ω R + R2, Ξ3 = 1575 Ω2 + 105 Ω R + R2.

By utilizing of Family 1, the hyperbolic function solution becomes

u1(x, t) = −
1
α

ln

A0 +
2λ d
α2

− √
λ2 − 4µ

2µ
tanh

 √
λ2 − 4µ

2
η

 − λ

2µ

−1

(5.8)

+
2d
α2

− √
λ2 − 4µ

2µ
tanh

 √
λ2 − 4µ

2
η

 − λ

2µ

−2

+
Σ2

360dl2Σ3

− √
λ2 − 4µ

2µ
tanh

 √
λ2 − 4µ

2
η

 − λ

2µ

2 .
The existence of the solution for the constraint condition is as l2(

√
α4(Ω2α2e2 − 12Rl2) − eα3Ω) > 0.

By utilizing of Family 2, the trigonometric function solution becomes

u2(x, t) = −
1
α

ln

A0 +
2λ d
α2

 √
−λ2 + 4µ

2µ
tan

 √
−λ2 + 4µ

2
η

 − λ

2µ

−1

(5.9)
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+
2d
α2

 √
−λ2 + 4µ

2µ
tan

 √
−λ2 + 4µ

2
η

 − λ

2µ

−2

+
Σ2

360dl2Σ3

 √
−λ2 + 4µ

2µ
tan

 √
−λ2 + 4µ

2
η

 − λ

2µ

2 .
The existence of the solution for the constraint condition is as l2(

√
α4(Ω2α2e2 − 12Rl2) − eα3Ω) < 0.

By utilizing of Family 3, the kink-soliton solution becomes

u3(x, t) = −
1
α

ln
A0 +

2λ d
α2

(
λ

exp (λη) − 1

)
+

2d
α2

(
λ

exp (λη) − 1

)2

+
Σ2

360dl2Σ3

(
λ

exp (λη) − 1

)−2 .
(5.10)

The existence of the solution for the constraint condition is as l2(
√
α4(Ω2α2e2 − 12Rl2) − eα3Ω) > 0

and

η = x−βt+E, λ =

√
3l2

(
−eα3Ω + 12 µ l2 +

√
Ω2α6e2 − 12 Rα4l2

)
3l2

, λ2−4µ =
−eα3Ω +

√
α4 (

Ω2α2e2 − 12 Rl2
)

3l2
.

Set II.

Σ1 = 5000 Ω5α6Ξ3
1

(
45 Ω2d − 4 Ω Rd + 45 Ω l1 + Rl1

)
−1250µΩ5Rα5e3Ξ3Ξ

2
1−250µ2 Ω4Rα4de2Ξ1Ξ2Ξ3

(5.11)
−25 Ω2α3eµΞ3

(
5 Ω3de2Ξ3

1

(
λ2 − 4 µ

)
+ 6 Rl2µ

2Ξ2
2

)
− 3α2l2µ

2Ξ2

(
25 Ω3e2Ξ3Ξ

2
1

(
λ2 − 4 µ

)
+

2µ2 Ξ2
2

(
2025 Ω3d + 65 Ω2Rd + Ω R2d + 2025 Ω2l1 + 115 Ω Rl1 + R2l1

))
−15µ3 Ω2α del2Ξ1Ξ3Ξ

2
2

(
λ2 − 4 µ

)
−9µ4 l2

2Ξ3Ξ
3
2

(
λ2 − 4 µ

)
, d =

√
3Ωl2

Ω
, e =

4
√

12Ω3l2

Ω
, β =

√
(2500 Ω5α4Ξ4

1 − 3µ4 l2Ξ
4
2)Σ1

α(2500 Ω5α4Ξ4
1 − 3µ4 l2Ξ

4
2)

,

Σ2 = 1250µΩ5Rα5e3Ξ3Ξ
2
1+15µ3Ω2αdel2Ξ1Ξ3Ξ

2
2

(
λ2 − 4µ

)
+250Ω4α4Ξ1

(
30Ωl2Ξ

3
1

(
λ2 + 8µ

)
+ Rde2µ2Ξ2Ξ3

)
−18µ4 l2

2Ξ3
2

(
225 Ω2λ2 + 5 Ω Rλ2 + 11250 Ω2µ + 670 Ω Rµ + 6 R2µ

)
+25µΩ2α3eΞ3

(
5 Ω3de2Ξ3

1

(
λ2 − 4 µ

)
+ 6µ2 l2RΞ2

2

)
+

75µ2 Ω2α2l2Ξ2(Ω e2
(
1575 Ω2 + 105 Ω R + R2

)
Ξ2

1

(
λ2 − 4 µ

)
− 4µ2 RdΞ2) + 25000Ω6Rα6dΞ3

1,

A0 =
Σ2

6α2Ωd(2500 Ω5α4Ξ4
1 − 3µ4 l2Ξ

4
2)
, A1 = 0, A2 = 0, B1 =

2dλµ
α2 , B2 =

2dµ2

α2 ,

Ξ1 = 45 Ω + R, Ξ2 = 2025 Ω2 + 115 Ω R + R2, Ξ3 = 1575 Ω2 + 105 Ω R + R2.

By utilizing of Family 1, the hyperbolic function solution becomes

u1(x, t) = −
1
α

ln

A0 +
2dλµ
α2

− √
λ2 − 4µ

2µ
tanh

 √
λ2 − 4µ

2
η

 − λ

2µ

 + (5.12)

2µ2d
α2

− √
λ2 − 4µ

2µ
tanh

 √
λ2 − 4µ

2
η

 − λ

2µ

2 , η = x − βt + E.
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The existence of the solution for the constraint condition is as l2µ(
√
α4(Ω2α2e2 − 12µ2Rl2)−eα3Ω) > 0.

By utilizing of Family 2, the trigonometric function solution becomes

u2(x, t) = −
1
α

ln

A0 +
2dλµ
α2

 √
−λ2 + 4µ

2µ
tan

 √
−λ2 + 4µ

2
η

 − λ

2µ

 + (5.13)

2µ2d
α2

 √
−λ2 + 4µ

2µ
tan

 √
−λ2 + 4µ

2
η

 − λ

2µ

2 , η = x − βt + E.

The existence of the solution for the constraint condition is as l2µ(
√
α4(Ω2α2e2 − 12µ2Rl2)−eα3Ω) < 0.

By utilizing of Family 3, the exponential function solution becomes

u3(x, t) = −
1
α

ln
A0 +

2µλ d
α2

(
exp(λη)

λ

)
+

2dµ
α2

(
exp(λη)

λ

)2 , η = x − βt + E. (5.14)

λ =

√
3l2

(
−eα3Ω + 12 µ l2 +

√
Ω2α6e2 − 12 Rα4l2

)
3l2

, λ2 − 4µ =
−eα3Ω +

√
α4 (

Ω2α2e2 − 12 Rl2
)

3l2
.

The existence of the solution for the constraint condition is as l2µ(
√
α4(Ω2α2e2 − 12µRl2)−eα3Ω) > 0.

6. Description of the GGM

As the fourth method, the generalized (G’/G)-expansion method has been summarized to obtain
the solutions of NPDEs. Hence, consider the NPDEs of in the following way:

N(u, ux, ut, uxx, utt, ...) = 0, (6.1)

where N is a polynomial of u and its partial derivatives in which the relationship of higher order
derivatives and nonlinear terms. To find the traveling wave solutions, we outline the following sequence
of steps towards the GGM:
Step 1. Firstly, by using traveling wave transformation

ξ = x − βt, (6.2)

where β is non-zero arbitrary constant, permits to reduce equation (6.1) to an ODE of u = u(ξ) in the
following form

Q(u, u′,−βu′, u′′, β2u′′, ...) = 0, (6.3)

Step 2. Assuming that the solution of equation (6.1) can be expressed by the following ansatz:

u(ξ) = S (Φ(ξ)) =

m∑
k=0

AkΦ(ξ)k, (6.4)

where, Ak(0 ≤ k ≤ m) are constants to be determined, such that Am , 0, and Φ(ξ) = G′(ξ)/G(ξ)
satisfies the following ODE:

k1GG′′ − k2GG′ − k3(G′)2 − k4G2 = 0. (6.5)
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The particular solutions of equation (6.5) will be read as:
Family 1: When k2 , 0, f = k1 − k3 and s = k2

2 + 4k4(k1 − k3) > 0, then

Φ(ξ) = k2
2 f +

√
s

2 f

C1 sinh
( √

s
2k1

ξ
)
+C2 cosh

( √
s

2k1
ξ
)

C1 cosh
( √

s
2k1

ξ
)
+C2 sinh

( √
s

2k1
ξ
) .

Family 2: When k2 , 0, f = k1 − k3 and s = k2
2 + 4k4(k1 − k3) < 0, then

Φ(ξ) = k2
2 f +

√
−s

2 f

−C1 sin
( √
−s

2k1
ξ
)
+C2 cos

( √
−s

2k1
ξ
)

C1 cos
( √
−s

2k1
ξ
)
+C2 sin

( √
−s

2k1
ξ
) .

Family 3: When k2 , 0, f = k1 − k3 and s = k2
2 + 4k4(k1 − k3) = 0, then Φ(ξ) = k2

2 f + C2
C1+C2ξ

.

Family 4: When k2 = 0, f = k1 − k3 and g = f k4 > 0, then Φ(ξ) =
√

g
f

C1 sinh
( √

g
k1
ξ
)
+C2 cosh

( √
g

k1
ξ
)

C1 cosh
( √

g
k1
ξ
)
+C2 sinh

( √
g

k1
ξ
) .

Family 5: When k2 = 0, f = k1 − k3 and g = f k4 < 0, then Φ(ξ) =
√
−g
f

−C1 sin
( √
−g

k1
ξ
)
+C2 cos

( √
−g

k1
ξ
)

C1 cos
( √
−g

k1
ξ
)
+C2 sin

( √
−g

k1
ξ
) .

Family 6: When k4 = 0 and f = k1 − k3, then Φ(ξ) =
C1k2

2 exp
(
−k2
k1
ξ
)

f k1+C1k1k2 exp
(
−k2
k1
ξ
) .

Family 7: When k2 , 0 and f = k1 − k3 = 0, then Φ(ξ) = − k4
k2

+ C1 exp
(

k2
k1
ξ
)
,

Family 8: When k1 = k3, k2 = 0 and f = k1 − k3 = 0, then Φ(ξ) = C1 + k4
k1
ξ,

Family 9: When k3 = 2k1, k2 = 0 and k4 = 0, then Φ(ξ) = − 1

C1+

(
k3
k1
−1

)
ξ
, where

d0, d j, e j( j = 1, ...,m), k1, k2, k3 and k4 are constants to be determined later.
Step 3. To determine the positive integer m, we usually balance linear terms of the highest order in
the resulting equation with the highest order nonlinear terms appearing in equation (3.3).
Step 4. We collect all the terms with the same order of Φ(ξ)k, (k = 0, 1, 2, ...) together. Equate each
coefficient of the polynomials of i to zero, yields the set of algebraic equations for
A0, Ak(k = 1, 2, ...,m), k1, k2, k3, and k4 with the aid of the Maple.
Step 5. Solving the algebraic equations in Step 4, then substituting A0, A1, ..., Bm, k1, k2, k3, k4 in (6.4).

6.1. Application of GGM

By processing the generalized G′/G-expansion method and considering the homogeneous balance
principle, we get the exact solution in the following form

u(ξ) = A0 + A1Φ(ξ) + A1Φ(ξ)2. (6.6)

Solving the nonlinear algebraic equations, we have the following sets of coefficients for the solutions
of (6.6) as given below:
Subset I.

β =

√
A2(2α2A2k1

2l1 − 12 k1
2l2ε1 (ε1 − 2) (A0 − 1) − 3 l2

(
4 A0k1

2
− A2ε3

2 − 4 k1
2
)
)

k1αA2
, (6.7)

ε1 =
123/4 4

√
Ω A2

2l2
3α

12l2
, ε2 =

√
3
√

l2k1

(
4
√

Ω A2
2l2

3123/4α + 12 l2

)
6l2

,
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ε3 =
1

3A2l2

√
6A2l2((A0 − 1)

(
6 ε2l2 (ε2 − 2 k1) + 6 k1

2l2

)
+
√
ε4,

ε4 = 36 ε2l2
2 (ε2 − 2 k1)

(
ε2

2 − 2 ε2k1 + 2 k1
2
)

(A0 − 1)2
−3α4A2

2k1
4l2

(
Ω A0

2 − 2 Ω A0 + R
)
+36 k1

4l2
2 (A0 − 1)2 ,

A1 =
12ε3l2(ε1 − 1)3

k1Ωα4A2
, A2 = A2, k1 = k1, k2 = ε3, k3 = ε1, k4 =

Ωα4A0A2k1

12l2
(
ε1

3 − 3 ε1
2 + 3 ε1 − 1

) ,
s = k2

2 + 4k4(k1 − k3) = ε3
2 −

Ωα4A0A2k1
2

3 (ε1 − 1)2 l2
.

Based on the Family 1, the exact soliton solution can be written as

u1(x, t) = −
1
α

ln

A0 +
12ε3l2(ε1 − 1)3

k1Ωα4A2

 k2

2 f
+

√
s

2 f

C1 sinh
( √

s
2k1
ξ
)

+ C2 cosh
( √

s
2k1
ξ
)

C1 cosh
( √

s
2k1
ξ
)

+ C2 sinh
( √

s
2k1
ξ
)
 + (6.8)

A2

 k2

2 f
+

√
s

2 f

C1 sinh
( √

s
2k1
ξ
)

+ C2 cosh
( √

s
2k1
ξ
)

C1 cosh
( √

s
2k1
ξ
)

+ C2 sinh
( √

s
2k1
ξ
)


2 ,
in which ξ = x −

√
A2(2α2A2k1

2l1−12 k1
2l2ε1(ε1−2)(A0−1)−3 l2(4 A0k1

2−A2ε32−4 k1
2))

k1αA2
t. The existence of the solution for

the constraint condition is as |ε3| >
α2 |k1 |

|ε1−1|

√
A0A2Ω

3l2
.

Based on the Family 2, the exact periodic solution can be written as

u2(x, t) = −
1
α

ln

A0 +
12ε3l2(ε1 − 1)3

k1Ωα4A2

 k2

2 f
+

√
−s

2 f

−C1 sin
( √
−s

2k1
ξ
)

+ C2 cos
( √
−s

2k1
ξ
)

C1 cos
( √
−s

2k1
ξ
)

+ C2 sin
( √
−s

2k1
ξ
)

 + (6.9)

A2

 k2

2 f
+

√
−s

2 f

−C1 sin
( √
−s

2k1
ξ
)

+ C2 cos
( √
−s

2k1
ξ
)

C1 cos
( √
−s

2k1
ξ
)

+ C2 sin
( √
−s

2k1
ξ
)


2 ,

in which ξ = x −
√

A2(2α2A2k1
2l1−12 k1

2l2ε1(ε1−2)(A0−1)−3 l2(4 A0k1
2−A2ε32−4 k1

2))
k1αA2

t. The existence of the solution for

the constraint condition is as |ε3| <
α2 |k1 |

|ε1−1|

√
A0A2Ω

3l2
.

Based on the Family 3, the exact singular solution can be written as

u3(x, t) = −
1
α

ln
[
A0 +

(2 Ω2α4A0
4k1

4 + 3 Ω A0
2l2 − 6 Ω A0l2 + 3 Rl2)ε3(ε1 − 1)3

2Ω2 A0
2k1α4 (ε2 − k1)2 (A0 − 1)

{
k2

2 f
+

C2

C1 + C2ξ

}
+

(6.10)
24Ω A0

2l2 (ε2 − k1)2 (A0 − 1)
4 Ω2α4A0

4k1
4 + 3 Ω A0

2l2 − 6 Ω A0l2 + 3 Rl2

{
k2

2 f
+

C2

C1 + C2ξ

}2 ,
in which ξ = x −

√
A2(2α2A2k1

2l1−12 k1
2l2ε1(ε1−2)(A0−1)−3 l2(4 A0k1

2−A2ε32−4 k1
2))

k1αA2
t and

A2 =
24Ω A0

2l2(ε2−k1)2(A0−1)
4 Ω2α4A0

4k1
4+3 Ω A0

2l2−6 Ω A0l2+3 Rl2
.
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Based on the Family 6, the exact kink solution can be written as

u4(x, t) = −
1
α

ln

12ε3l2(ε1 − 1)3

k1Ωα4A2

 C1k2
2 exp

(
−k2
k1
ξ
)

f k1 + C1k1k2 exp
(
−k2
k1
ξ
)
 + A2

 C1k2
2 exp

(
−k2
k1
ξ
)

f k1 + C1k1k2 exp
(
−k2
k1
ξ
)


2 ,
(6.11)

in which ξ = x −
√

A2(2α2A2k1
2l1+12 k1

2l2ε1(ε1−2)−3 l2(−A2ε32−4 k1
2))

k1αA2
t.

7. Basic idea of the Exp–function method

We first consider the nonlinear equation of form

N(u, ut, ux, uxx, utt, utx, ...) = 0, (7.1)

and introduce a transformation as

u(x, t) = u(η), ξ = x − βt, (7.2)

where β is constant to be determined later. Therefore the Eq. (7.1) is reduced to an ODE as follows

M(u,−βu′, u′, u′′, ...) = 0. (7.3)

The EFM is based on the assumption that the travelling wave solutions can be expressed in the form

u(ξ) =

∑d
n=−c an exp(nξ)∑q

m=−p bm exp(mξ)
, (7.4)

where c, d, p and q are positive integers which could be freely chosen, an’s and bm’s are unknown
constants to be determined.

7.1. Application of EFM for Eq. (2.4)

We apply the Exp-function method to Eq. (2.9). In order to determine values of c and p, we balance
the terms (v′)4 and v6 in Eq. (2.9) along with Eq. (7.4), then we get

(v′)4 =
c1 exp(4(c + p)ξ) + ...

c2 exp(8pξ) + ...
, v6 =

c3 exp((6c + 2p)ξ) + ...

c4 exp(8pξ) + ...
,

(7.5)
respectively. Balancing highest order of the Exp–function in (7.5) and get 4c + 4p = 6c + 2p, which
leads to the result c = p. Similarly, to find values of d and q, for the terms (v′)4 and v6 in Eq. (2.9) by
simple calculation, we attain

(v′)4 =
d1 exp(−4(d + q)ξ) + ...

d2 exp(−8qξ) + ...
, v6 =

d3 exp(−(6d + 2q)ξ) + ...

d4 exp(−8qξ) + ...
, (7.6)

respectively. Balancing lowest order of the Exp–function in (7.6), we achieve d = q.
Case I: p = c = 1 and q = d = 1.
For simplicity, we set a−1 = 0, b1 = 1, p = c = 1 and d = q = 1. Then Eq. (7.4) reduces to

v(ξ) =
a1 exp(ξ) + a0

exp(ξ) + b0 + b−1 exp(−ξ)
. (7.7)
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Substituting (7.7) into Eq. (2.9), we get an equation in the following form

(
[b−1 exp(−ξ) + b0 + exp(ξ)]4

)−1
4∑

n=−4

Cn exp(nξ) = 0, (7.8)

where Cn(−4 ≤ n ≤ 4) are polynomial expressions in terms of a1, a0, a−1, b0, b−1 and β. Thus, solving
the resulting system Cn = 0(−4 ≤ n ≤ 4) simultaneously, we acquire the following set as
(I) The first set is:

a1 = 0, a0 =
b0(4α2R + β2 − l1)

2α2Ω
, b0 = b0, b−1 =

1
4

b2
0, R =

3l2 + 2α2(l1 − β2)
4α4 , β = ±

1
α

√
3l2 + α2(l1 ± 2

√
3l2Ω), (7.9)

v(ξ) =

2b0(4α2R+β2−l1)
α2Ω

(2eξ/2 + b0e−ξ/2)2 , ξ = x ∓
1
α

√
3l2 + α2(l1 ± 2

√
3l2Ω)t, (7.10)

then the solution equation (2.4) will be as

u1(x, t) = −
1
α

ln


2b0(4α2R+β2−l1)

α2Ω(
2e

1
2

[
x∓ 1

α

√
3l2+α2(l1±2

√
3l2Ω)t

]
+ b0e

− 1
2

[
x∓ 1

α

√
3l2+α2(l1±2

√
3l2Ω)t

])2

. (7.11)

If we choose b0 = 2 and b0 = −2, then the solution equation (7.11), respectively, give:

u2(x, t) = −
1
α

ln
[
b0(4α2R + β2 − l1)

8α2Ω
sech2

(
x
2
∓

1
2α

√
3l2 + α2(l1 ± 2

√
3l2Ω)t

)]
, (7.12)

u3(x, t) = −
1
α

ln
[
b0(4α2R + β2 − l1)

8α2Ω
csch2

(
x
2
∓

1
2α

√
3l2 + α2(l1 ± 2

√
3l2Ω)t

)]
, (7.13)

(II) The second set is:

a1 =
Ω ±

√
Ω2 −ΩR
Ω

, a0 =
b0(a1(R − 2Ω) + R)

R − a1Ω
, b0 = b0, b−1 = 0, R = R, β = β, (7.14)

v(ξ) =
a0 + a1eξ

b0 + eξ
, ξ = x − βt, (7.15)

then the solution equation (2.4) will be as

u4(x, t) = −
1
α

ln


b0(a1(R−2Ω)+R)

R−a1Ω
+ Ω±

√
Ω2−ΩR
Ω

ex−βt

b0 + ex−βt

. (7.16)

Case II: p = c = 2 and q = d = 2.
Since the values of c and d can be freely chosen, we set p = c = 2 and d = q = 2 and then the trial
function (7.4) becomes

u(ξ) =
a2 exp(2ξ) + a1 exp(ξ) + a0 + a−1 exp(−ξ) + a−2 exp(−2ξ)
b2 exp(2ξ) + b1 exp(ξ) + b0 + b−1 exp(−ξ) + b−2 exp(−2ξ)

. (7.17)

There are some free parameters in (7.17), we set b2 = 1 and a1 = a−1 = a−2 = b1 = b−1 = 0 for
simplicity, the trial function, (7.17) is simplified as follows

u(ξ) =
a0 + a2 exp(2ξ)

exp(2ξ) + b0 + b−2 exp(−2ξ)
. (7.18)
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Substituting (7.18) into Eq. (2.9), we get an equation in the following form

(
[b−2 exp(−2ξ) + b0 + exp(2ξ)]8

)−1
8∑

n
2 =−4

Cn exp(nξ) = 0, (7.19)

where Cn(−8 ≤ n ≤ 16) are polynomial expressions in terms of a2, a0, a−1, b0, b−2 and β. Thus, solving
the resulting system Cn = 0(−8 ≤ n ≤ 16) simultaneously, we obtain the following set of algebraic
equations
(I) The first set is:

a2 = 0, a0 =
2b0(α2R + β2 − l1)

α2Ω
, b0 = b0, b−1 =

1
4

b2
0, R =

6l2 + α2(l1 − β2)
α4 , β = ±

1
α3Ω

√
Ω(36l22 + α4Ω(α2l1 − 6l2)),

(7.20)

v(ξ) =

8b0(α2R+β2−l1)
α2Ω

(2eξ + b0e−ξ)2 , ξ = x ∓
1

α3Ω

√
Ω(36l22 + α4Ω(α2l1 − 6l2))t, (7.21)

then the solution equation (2.4) will be as

u5(x, t) = −
1
α

ln


8b0(α2R+β2−l1)

α2Ω(
2e

[
x∓ 1

α3Ω

√
Ω(36l22+α4Ω(α2l1−6l2))t

]
+ b0e

−

[
x∓ 1

α3Ω

√
Ω(36l22+α4Ω(α2l1−6l2))t

])2

. (7.22)

If we choose b0 = 2 and b0 = −2, then the solution equation (7.22), respectively, give:

u6(x, t) = −
1
α

ln
[
b0(α2R + β2 − l1)

2α2Ω
sech2

(
x ∓

1
α3Ω

√
Ω(36l22 + α4Ω(α2l1 − 6l2))t

)]
, (7.23)

u7(x, t) = −
1
α

ln
[
b0(α2R + β2 − l1)

2α2Ω
csch2

(
x ∓

1
α3Ω

√
Ω(36l22 + α4Ω(α2l1 − 6l2))t

)]
, (7.24)

(II) The second set is:

a2 =
Ω ±

√
Ω2 −ΩR
Ω

, a0 =
b0(a1(R − 2Ω) + R)

R − a1Ω
, b0 = b0, b−2 = 0, R = R, β = β, (7.25)

v(ξ) =
a0 + a2e2ξ

b0 + e2ξ , ξ = x − βt, (7.26)

then the solution equation (2.4) will be as

u8(x, t) = −
1
α

ln


b0(a2(R−2Ω)+R)

R−a2Ω
+ Ω±

√
Ω2−ΩR
Ω

e2x−2βt

b0 + e2x−2βt

. (7.27)

8. Discussion and remark

This paper finds many novel hyperbolic, trigonometric, kink, and kink-singular soliton solutions to
governing model. With the help of some calculations, surfaces of results reported have been observed
in Figures 1–5. These figures are depended on the family conditions which are of important
physically. It has been investigated that all figures plotted have symbolized the nonlinear DNA
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Figure 1. Plot of DNA dynamics (5.8) by taking l1 = 1, l2 = −1, α = 3,Ω = 1,R = −1, µ = 1.5 and (a) 3D
plot, (b) density plot, (c) contour plot and (d) 2D plot with at space (a) red x = −1, blue x = 0, and green
x = 1.

Figure 2. Plot of DNA dynamics (5.9) by taking l1 = 1, l2 = 2, α = 3,Ω = 10,R = 5, µ = 1.5 and (a) 3D
plot, (b) density plot, (c) contour plot and (d) 2D plot with at space (a) red x = −1, blue x = 0, and green
x = 1.
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Figure 3. Plot of DNA dynamics (6.9) by taking A0 = 1, A2 = 2, k1 = 2, l1 = 3, l2 = 2, α = 2,Ω = 5,C1 =

2,C2 = 3,R = 5 and (a) 3D plot, (b) density plot, (c) contour plot and (d) 2D plot with at space (a) red
x = −1, blue x = 0, and green x = 1.

Figure 4. Plot of DNA dynamics (6.10) by taking A0 = 1, A2 = 1, k1 = 2, l1 = 3, l2 = 2, α = 2,Ω = 5,C1 =

2,C2 = 3,R = 5, and (a) 3D plot, (b) density plot, (c) contour plot and (d) 2D plot with at space (a) red
x = −1, blue x = 0, and green x = 1.
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Figure 5. Plot of DNA dynamics (6.11) by taking A0 = 0, A2 = 1, k1 = 2, l1 = 3, l2 = 2, α = 2,Ω = 5,R = 5,
and (a) 3D plot, (b) density plot, (c) contour plot and (d) 2D plot with at space (a) red x = −1, blue x = 0,
and green x = 1.

dynamics. These mathematical properties come from trigonometric and hyperbolic function
properties. In this sense, from the mathematical and physical points of views, these results take play
an important role in explaining waves propagation in nonlinear dispersion. Hence, we consider
surfaces plotted in this paper have proved such physical meaning of the solutions. In Figure 1 and
Figure 2, we have depicted the 3D, 2D, contour, and density schematic representation of the analytical
and numerical solutions at few space positions for three different waves at x = −1, x = 0, and x = 1
by taking l1 = 1, l2 = −1, α = 3,Ω = 1,R = −1, µ = 1.5 for (5.8) and
l1 = 1, l2 = 2, α = 3,Ω = 10,R = 5, µ = 1.5 for (5.9). We observe that the breathe soliton wave move
in direction (x, t) and increases with move of negative (x, t) to positive (x, t). Also, the periodic wave
solution for (6.9) by taking A0 = 1, A2 = 2, k1 = 2, l1 = 3, l2 = 2, α = 2,Ω = 5,C1 = 2,C2 = 3,R = 5 is
presented in Figure 3. Moreover, the rational kink wave solution for the DNA dynamics (6.10) by
taking A0 = 1, A2 = 1, k1 = 2, l1 = 3, l2 = 2, α = 2,Ω = 5,C1 = 2,C2 = 3,R = 5, is offered in Figure 4.
Likewise, the DNA dynamics for (6.11) by taking
A0 = 0, A2 = 1, k1 = 2, l1 = 3, l2 = 2, α = 2,Ω = 5,R = 5, along with 3D plot, density plot, contour
plot, and 2D plot with at spaces at x = −1, x = 0, and x = 1 are plotted in Figure 5.
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9. Conclusion

The article obtains, the traveling wave solutions of different kinds, which are solitary, topological,
singular, periodic and rational solutions to the model for DNA dynamics. The integration mechanisms
that are adopted, are improved tan(φ/2)-expansion scheme, exp(−Ω(η))-expansion scheme, improved
exp(−Ω(η))-expansion scheme, generalized (G’/G)-expansion scheme, and exp-function scheme. It
is quite visible that these integration schemes has its limitations. Thus, this paper are provides a lot
of encouragement for future research in DNA dynamics. Afterwards extra solution methods will be
applied to obtain lump and singular soliton solutions to the nonlinear model. In addition to, this model
will be considered with other forms of nonlinear media. The constructed results may be helpful in
explaining the physical meaning of the studied models and other related nonlinear phenomena models.
Results are beneficial to the study of the nonlinear DNA dynamics. All calculations in this paper have
been made quickly with the aid of the Maple.
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