Research article

On generalized inverse sum indeg index and energy of graphs

  • Received: 13 October 2019 Accepted: 20 January 2020 Published: 04 March 2020
  • MSC : 05C07, 05C35, 05C50

  • Topological indices are used to predict certain phsio-chemical properties of the chemical compounds. Among all indices, degree based indices are of vital importance. In this paper, we introduce generalized inverse sum indeg index and generalized inverse sum indeg energy of graphs. We study the generalized inverse sum indeg index and energy from an algebraic point of view. Extremal values of this index for some graph classes are determined. Some spectral properties of generalized inverse sum indeg matrix are studied. We also find Nordhaus-Gaddum-type results for generalized inverse sum indeg index spectral radius and energy.

    Citation: Sumaira Hafeez, Rashid Farooq. On generalized inverse sum indeg index and energy of graphs[J]. AIMS Mathematics, 2020, 5(3): 2388-2411. doi: 10.3934/math.2020158

    Related Papers:

  • Topological indices are used to predict certain phsio-chemical properties of the chemical compounds. Among all indices, degree based indices are of vital importance. In this paper, we introduce generalized inverse sum indeg index and generalized inverse sum indeg energy of graphs. We study the generalized inverse sum indeg index and energy from an algebraic point of view. Extremal values of this index for some graph classes are determined. Some spectral properties of generalized inverse sum indeg matrix are studied. We also find Nordhaus-Gaddum-type results for generalized inverse sum indeg index spectral radius and energy.


    加载中


    [1] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin 1986.
    [2] I. Gutman, B. Rušči$\grave{c}$, N. Trinajsti$\grave{c}$, et al., Graph theory and molecular orbitals. XII Acyclic polyenes, J. Chem. Phys., 62 (1975), 3399-3405. doi: 10.1063/1.430994
    [3] I. Gutman, N. Trinajsti$\grave{c}$, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535-538. doi: 10.1016/0009-2614(72)85099-1
    [4] S. Hafeez, R. Farooq, Inverse sum indeg energy of graphs, IEEE Access, 7 (2019), 100860-100866. doi: 10.1109/ACCESS.2019.2929528
    [5] R. A. Horn, C. R. Johnson, Matrix Analysis, New York, Cambridge Univ. Press, 1990.
    [6] Y. Hong, Bounds of eigenvalues of graphs, Discret. Math., 123 (1993), 65-74. doi: 10.1016/0012-365X(93)90007-G
    [7] S. M. Hosamani, B. B. Kulkarni, R. G. Boli, et al., QSPR analysis of certain graph theoretical matrices and their corresponding energy, Appl. Math. Nonlinear Sci., 2 (2017), 131-150. doi: 10.21042/AMNS.2017.1.00011
    [8] K. C. Das, I. Gutman, B. Furtula, On spectral radius and energy of extended adjacency matrix of graphs, Appl. Math. Comput., 296 (2017), 116-123.
    [9] S. Fajtlowicz, On conjectures of Graffiti II, Congr. Numer., 60 (1987), 187-197.
    [10] L. Mirsky, The spread of a matrix, Mathematika., 3 (1956), 127-130. doi: 10.1112/S0025579300001790
    [11] B. Zhou, N. Trinajsti$\grave{c}$, On general sum-connectivity index, J. Math. Chem., 47 (2010), 210-218. doi: 10.1007/s10910-009-9542-4
    [12] N. J. Rad, A. Jahanbani, I. Gutman, Zagreb energy and Zagreb Estrada index of graphs, MATCH Commun. Math. Comput. Chem., 79 (2018), 371-386.
    [13] M. Randi$\grave{c}$, Characterization of molecular branching, J. Amer. Chem. Soc., 97 (1975), 6609-6615. doi: 10.1021/ja00856a001
    [14] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (2000), 1369-1376.
    [15] J. M. Rodriguez, J. M. Sigarreta, Spectral properties of geometricarithmetic index, Appl. Math. Comput., 277 (2016), 142-153.
    [16] J. Sedlar, D. Stevanović, A. Vasilyev, On the inverse sum indeg index, Discrete Appl. Math., 184 (2015), 202-212. doi: 10.1016/j.dam.2014.11.013
    [17] V. S. Shegehall, R. Kanabur, Arithmeticgeometric indices of path graph, J. Math. Comput. Sci., 16 (2015), 19-24.
    [18] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
    [19] D. Vukičevi$\grave{c}$, M. Gašperov, Bond additive modelling 1. Adriatic indices, Croat. Chem. Acta., 83 (2010), 261-273.
    [20] I. Gutman, The energy of a graph, Ber. Math. statist. Sekt. Forschungszentrum. Graz., 103 (1978), 1-22.
    [21] S. Zangi, M. Ghorbani, M. Eslampour, On the eigenvalues of some matrices based on vertex Degree, Iranian J. Math. Chem., 9 (2018), 149-156.
    [22] B. Zhou, N. Trinajsti$\grave{c}$, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252-1270. doi: 10.1007/s10910-008-9515-z
    [23] B. Zhou, N. Trinajsti, On the sum-connectivity matrix and sum-connectivity energy of (molecular) graphs, Acta Chim. Slov., 57 (2010), 518-523.
    [24] H. Deng, H. Huang, J. Zhang, On the eigenvalues of general sum-connectivity laplacian matrix, J. Oper. Res. Soc. Chi., 1 (2013), 347-358. doi: 10.1007/s40305-013-0022-y
    [25] Å. B. Bozkurt, A. D. Güngör, I. Gutman, Randi$\grave{c}$ spectral radius and Randi$\grave{c}$ energy MATCH Commun. Math. Comput. Chem., 64 (2010), 321-334.
    [26] Å. B. Bozkurt, A. D. Güngör, I. Gutman, et al., Randi$\grave{c}$ matrix and Randi$\grave{c}$ energy, MATCH Commun. Math. Comput. Chem., 64 (2010), 239-250.
    [27] B. Bollobás, P. Erdös, Graphs of extremal weights, Ars. Combin., 50 (1998), 225-233.
    [28] R. Gu, F. Huang, X. Li, General Randi$\grave{c}$ matrix and general Randi$\grave{c}$ energy, Trans. Comb., 3 (2014), 21-33.
    [29] I. Gutman, Degree-based topological indices, Croat. Chem. Acta., 86 (2013), 351-361. doi: 10.5562/cca2294
    [30] M. An, L. Xiong, Some results on the inverse sum indeg index of a graph, Inf. Proc. Lett., 134 (2018), 42-46. doi: 10.1016/j.ipl.2018.02.006
    [31] D. Cao, Bounds on eigenvalues and chromatic numbers. Linear Algebra Appl., 270 (1998), 1-13.
    [32] F. Zhang, Matrix Theory: Basic Results and Techniques, New York, Springer, 1999.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3661) PDF downloads(529) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog