Research article

Rate of convergence of Euler approximation of time-dependent mixed SDEs driven by Brownian motions and fractional Brownian motions

  • Received: 22 October 2019 Accepted: 02 February 2020 Published: 27 February 2020
  • MSC : 41A25, 60G22, 60H10

  • A kind of time-dependent mixed stochastic differential equations driven by Brownian motions and fractional Brownian motions with Hurst parameter $H>\frac{1}{2}$ is considered. We prove that the rate of convergence of Euler approximation of the solutions can be estimated by $O(\delta^{\frac{1}{2}\wedge(2H-1)})$ in probability, where $\delta$ is the diameter of the partition used for discretization.

    Citation: Weiguo Liu, Yan Jiang, Zhi Li. Rate of convergence of Euler approximation of time-dependent mixed SDEs driven by Brownian motions and fractional Brownian motions[J]. AIMS Mathematics, 2020, 5(3): 2163-2195. doi: 10.3934/math.2020144

    Related Papers:

  • A kind of time-dependent mixed stochastic differential equations driven by Brownian motions and fractional Brownian motions with Hurst parameter $H>\frac{1}{2}$ is considered. We prove that the rate of convergence of Euler approximation of the solutions can be estimated by $O(\delta^{\frac{1}{2}\wedge(2H-1)})$ in probability, where $\delta$ is the diameter of the partition used for discretization.


    加载中


    [1] X. Mao, Stochastic Differential Equations and Applications, Chichester, UK: Horwood, 1997.
    [2] P. Guasoni, No arbitrage with transaction costs, with fractional Brownian motion and beyond, Math. Financ., 16 (2006), 569-582. doi: 10.1111/j.1467-9965.2006.00283.x
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science B.V., 2006.
    [4] Zh. Li, W. Zhan, L. Xu, Stochastic differential equations with time-dependent coefficients driven by fractional Brownian motion, Physica A, Volume 530, 15 September 2019, 121565.
    [5] G. Denk, R. Winkler, Modelling and simulation of transient noise in circuit simulation, Math. Comp. Model. Dynm., 13 (2007), 383-394. doi: 10.1080/13873950500064400
    [6] S. C. Kou, Stochastic modeling in nanoscale biophysics: subdiffusion within proteins, Ann. Appl. Stat., 2 (2008), 501-535. doi: 10.1214/07-AOAS149
    [7] F. E. Benth, On arbitrage-free pricing of weather derivatives based on fractional Brownian motion, Appl. Math. Financ., 10 (2003), 303-324. doi: 10.1080/1350486032000174628
    [8] P. Cheridito, Mixed fractional Brownian motion, Bernoulli, 7 (2001), 913-934. doi: 10.2307/3318626
    [9] J. L. da Silva, M. Erraoui, E. H. Essaky, Mixed stochastic differential equations: Existence and uniqueness result, J. Theor. Probab., 31 (2018), 1119-1141. doi: 10.1007/s10959-016-0738-9
    [10] Y. Krvavych, Yu. Mishura, Exponential formula and Girsanov theorem for mixed semilinear stochastic differential equations, Birkhäuser Verlag Basel/Switzerland: Trends in Mathematics, 2001.
    [11] Yu. S. Mishura, S. V. Posashkova, Stochastic differential equations driven by a Wiener process and fractional Brownian motion: Convergence in Besov space with respect to a parameter, Comput. Math. Appl., 62 (2011), 1166-1180. doi: 10.1016/j.camwa.2011.02.032
    [12] G. Shevchenko, T. Shalaiko, Malliavin regularity of solutions to mixed stochastic differential equations, Stat. Probabil. Lett., 83 (2013), 2638-2646. doi: 10.1016/j.spl.2013.08.013
    [13] J. Guerra, D. Nualart, Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion, Stoch. Anal. Appl., 26 (2008), 1053-1075. doi: 10.1080/07362990802286483
    [14] Yu. S. Mishura, G. M. Shevchenko, Mixed stochastic differential equations with long-range dependence: Existence, uniqueness and convergence of solutions, Comput. Math. Appl., 64 (2012), 3217-3227.
    [15] W. G. Liu, J. W. Luo, Modified Euler approximation of stochastic differential equation driven by Brownian motion and fractional Brownian motion, Commun. Stat. Theor. M., 46 (2017), 7427-7443. doi: 10.1080/03610926.2016.1152487
    [16] Yu. S. Mishura, G. M. Shevchenko, Rate of convergence of Euler approximation of solution to mixed stochastic differential equation involving Brownian motion and fractional Brownian motion, Rand. Opera. Stoch. Equ., 19 (2011), 387-406.
    [17] D. Nualart, A. Răşcanu, Differential equation driven by fractional Brownian motion, Collect. Math., 53 (2002), 55-81.
    [18] Yu. S. Mishura, G. M. Shevchenko, The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion, Stochastics, 80 (2008), 489-511. doi: 10.1080/17442500802024892
    [19] G. Shevchenko, Mixed fractional stochastic differential equations with jumps, Stochastics, 86 (2014), 203-217. doi: 10.1080/17442508.2013.774404
    [20] P. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Berlin: Springer, 1992.
    [21] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, In: Theory and Applications, Gordon and Breach Science Publishers, Yvendon, xxxvi+976 pp. ISBN: 2-88124-864-0, 1993.
    [22] L. C. Young, An inequality of Hölder type connected with Stieltjes integration, Acta. Math. Djursholm, 67 (1936), 251-282. doi: 10.1007/BF02401743
    [23] M. Zähle, Integration with respect to fractal functions and stochastic calculus I, Probab. Theory. Rel., 111 (1998), 333-374. doi: 10.1007/s004400050171
    [24] Yu. S. Mishura, G. M. Shevchenko, Existence and uniqueness of the solution of stochastic differential equation involving wiener process and fractional Brownian motion with Hurst Index H > 1/2, Commun. Stat. Theor. M., 40 (2011), 3492-3508.
    [25] Y. Z. Hu, K. Le, A multiparameter Garsia-Rodemich-Rumsey inequality and some applications, Stoch. Proc. Appl., 123 (2013), 3359-3377. doi: 10.1016/j.spa.2013.04.019
    [26] E. Alòs, D. Nualart, Stochastic integration with respect to the fractional Brownian motion, Stoch. Stoch. Rep., 75 (2003), 129-152. doi: 10.1080/1045112031000078917
    [27] D. Nualart, B. Saussereau, Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion, Stoch. Proc. Appl., 119 (2009), 391-409. doi: 10.1016/j.spa.2008.02.016
    [28] A. Neuenkirch, I. Nourdin, Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion, J. Theor. Probab., 20 (2007), 871-899. doi: 10.1007/s10959-007-0083-0
    [29] S. Cambanis, Y. Hu, Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design, Stoch. Stoch. Rep., 59 (1996), 211-240.
    [30] G. M. J. Schoenmakers, P. E. Kloeden, Robust option replication for a Black-Scholes model extended with nondeterministic trends, J. Appl. Math. Stoch. Analy., 12 (1999), 113-120. doi: 10.1155/S104895339900012X
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3779) PDF downloads(382) Cited by(6)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog