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1. Introduction

In this paper, we consider the following time-dependent mixed stochastic differential
equations(SDEs) involving independent Brownian motions and fractional Brownian motions(fBms)
with Hurst parameter H € (%, 1), defined on the complete probability space (Q, 7, {F:}ico0.17, P)»

t ! t
X, =X+ f a(s, X,)ds + f b(s, X,)dW, + f c(s, Xs)dB?, te[0,T], (1.1)
0 0 0

where X, is Fp-measurable random variable, the stochastic integral with respect to Brownian motion
W ={W, :t€[0,T]} and fBm BY = {Bfl : t € [0,T]} are interpreted as Itd and pathwise Riemann-
Stieltjes integral respectively. a,b,c : Q X [0,T] Xx R — R are measurable functions such that all
integrals on the right hand side of (1.1) are well defined.

On one hand, SDEs driven only by Brownian motions has long history. We can refer to the
monograph [1]. On the other hand, the increasing interest of SDEs driven only by fBms is motivated
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by their applications in various fields of science such as physics, chemistry, computational
mathematics, financial markets e.t. (see [2—4]). In particular, for H > % the increments of fBm are
positively correlated and moreover the generalized spectral density behaves like A72*!. The two
properties have recently led to applications of them in various fields, which include the noise
simulation in electronic circuits [5], the modelling of the subdiffusion of a protein molecule [6], the
pricing of weather derivatives [7] and so on.

Recently, mixed stochastic models containing both Brownian motions and fBms gained a lot of
attention, e.g. [8—12]. They allow us to model systems driven by a combination of random noises,
one of which is white and another has a long memory. The motivation to consider such equations
comes from some financial applications, where Brownian motion as a model is inappropriate because
of the lack of memory, and fBm with H > % is too smooth. A model driven by both processes is
free of such drawbacks. For example, in financial mathematics, the underlying random noise includes
a fundamental part, describing the economical background for a stock market, and a trading part,
coming from the randomness inherent for the stock market. In this case, the fundamental part of the
noise should have a long memory, while the second part is likely to be a white noise.

The existence and uniqueness for the solutions of mixed SDE:s is discussed by an extensive literature
(see [9, 13, 14]). However, the solution of (1.1) is rarely analytically tractable, so it is important to
consider certain numerical methods to solve it. Euler approximation used in this paper usually is most
popular and probably simplest among all methods of approximation of SDEs. There have been several
works devoted to Euler approximation of mixed SDEs (see [13, 15, 16]). Guerra and Nualart [13]
established the global existence and uniqueness for the solutions of multidimensional time-dependent
mixed SDEs under the assumption that W and B are independent. The proof relied on an estimate
for Euler approximation of them, which was obtained by using fractional calculus and It integration.
Mishura and Shevchenko [16] considered the following mixed SDEs involving both standard Brownian
motions and fBms with Hurst parameter H > 1,

! t !
X, =Xo + f a(s, Xs)ds + f b(s, X,)dW; + f c(X,)dBY, te[0,T]. (1.2)
0 0 0

Under the boundedness of a(t, x), b(t, x), c(x) (c(x) > 0) together with their partial derivatives in
x, and (2H — 1)-Holder continuity of a(¢, x) and b(t, x) in ¢, they showed that the mean-square rate of
convergence for Euler approximation of (1.2) was O(52"#-1) where § is the mesh of the partition of
[0, T]. We can also find that a faster convergent rate O(6 7) can be deduced if we apply the modified
Euler method (see [15]).

However, there is an obstacle to discuss mixed SDEs because of the different machinery behind
It6 integral with respect to W and Riemann-Stieltjes integral with respect to BY, particularly in the
multidimensional and time-dependent cases. Exactly, the former integral is treated usually in a mean-
square sense, while the latter is understood in a pathwise sense and all estimates are pathwise with
random constants. Therefore, it is very hard to analyze with standard tools of stochastic analysis. This
forces us to consider very smooth coefficients and to make delicate estimates on a suitable space. For
example, the measurable space (Wg’“’([O, T]) with the following norm was introduced in [17],

! |Xt - Xsl

X PR X, o = X + -
1Xillo, sup [[Xillo = sup (l il ) (= sy

)<ooa.s.a/€(l—H,l/2). (1.3)
1€[0,T] te[0,T]
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The method of dealing with mixed SDEs in (Wg’“’([O, T']) does solve a lot of questions (see [9, 11,
13,14,18,19])).

The aim of this paper is to prove that the rate of convergence of Euler approximation of (1.1) is
O(62"2H-D) in probability in the space of Wq([0,T]) (see Remark 3.3). Meanwhile, we also get
that, for any fixed £ > 0, there exist a positive constant C, and a subset €, of Q with P(Q,) > 1 — ¢
such that

E[ sup |IX; — X?|121,] < C:6"" "~ and E[ sup ||X, — X?|121a/q,] < Ce'?,
1€[0,T] 1€[0,T]

where C is a general positive constant independent of ¢ and & (see Corollary 3.3). Unsurprisingly, the
rate of convergence appears to be equal to the worst of the rates for corresponding “pure” equations
(see [18,20]). Our approach is different from [18,20] in the sense that we combine pathwise approach
with It integration in order to handle both types of integrals by using the Garsia-Rademich-Rumsey
inequality. The proof of our result combines the techniques of Malliavin calculus with classical
fractional calculus. The main ideas are to estimate the pathwise Riemann-Stieltjes integral by a
random constant with moments of any order (see (2.3) and (2.5) and to express it as the sum of a
Skorohod integral plus a correction term which involves the trace of the Malliavin derivative (see
(2.11) and (2.13).) One can read Remark 3.6 for details. To the best of our knowledge, up to now,
there is no paper which investigates the rate of convergence of Euler approximation of (1.1). We here
make a first attempt to research such problem.

The rest of this paper is organized as follows. Several important functional space and some elements
of fractional calculus and Malliavin calculus on an interval are give in Section 2. Section 3 contains
the results concerning the rate of convergence for Euler scheme associated to (1.1). We first give
our assumptions and some priori estimates, and then prove the rate of convergence is O(6 1MEH-D) i
probability. In Section 4, we give a numerical example and in Section 5, we summarize the work
done in this paper and look forward to the next stage of our work. Finally, in Section 6, we prove the
bounded estimation (3.5) and recall a couple of technical results.

2. Preliminaries

Let (Q,7,{F:}o<i<r» P) be a complete probability space equipped with a filtration {F;}o</<r
satisfying standard assumptions, i.e., it is increasing and right-continuous while %, contains all P-null
sets. Denote by W = {W, : ¢ € [0,T]} Brownian motions and B = {B¥ : t € [0,T]} fractional
Brownian motions (fBms) with Hurst parameter H € (1/2, 1). Both are defined on (Q, 7, {F}o</<7, P),
where 7, = o{Xo, W,, Bf|s € [0,7]}. As we know, they are mean zero centered Gaussian processes
with covariance kernels R(s,7) = min{s, 7} and R, (s,1) = 1 (SZH + 127 | - s|2H) for any s,t € [0, T]
respectively. fBm is different from Brownian motion, it is neither a semimartingale nor a Markov
process. Moreover, it holds (E|B, — B,[*)!/? = |t — s|", s,t € [0, T], and almost all sample paths of B
are Holder continuous of any order u € (0, H). Now, let us briefly recall the Malliavin calculus,
fractional calculus and three important functional spaces.
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2.1. Three important functional spaces

1. The space of 8-Hdlder continuous functions: C#([0, T']).
Letg € (0, 1). For a function f : [0,T] — R, [|fllo,rs denotes the f-Holder norm of f on [0, T'], that s,

| s
I fllo,r,p := sup Ji— Jd

0<s<t<T (f = S)B

If || fllo.rs < oo, then we say f € CA([0,T]).

2. The functional space: W*!([0, T]). (see [11])
Consider the fixed interval [0,T] and & € (1 — H,1/2). We denote by ‘W*!([0, T]) the space of
measurable functions f on [0, T'] such that

] TIfl
o0, := —d + (s — r)aﬂdm’s < 00,

It is useful for us to estimate the pathwise Riemann-Stieltjes integral with respect to fBm. (see (2.3)
and (2.5)

3. The functional space: ‘W, *([0, T1). (see [13])
Definition 2.1. Let « € (0, 1/2). For any measurable function f : [0,T] — R, define

llowe = sup Ifilla = sup {|ﬁ|+ f }
¢ 1€[0.T] ¢ (€[0.T] (t— )1”

If | flla,eo < 00, then we say f € Wy=([0,T]).

Remark 2.1. (\/Vg’m([O, T)) is called Besov space (see [11], [18]). Moreover, given any & such that
0 < & < a, there exists the following inclusions (see [13]):

Co?(10, T € WE=([0,T1) € CA(10, T,

where C% ([0, T]) denotes the space of sup and a-Holder continuous functions f : [0,T] — R, equipped

with the norm ||fl|lc070 = sup |fi| + sup llf’ Jliil. In particular, both the fractional Brownian motion
0<t<T 0<s<t<T

B with H > 1/2, and the standard Brownian motion W, have their trajectories in ‘Wg"x’([O, T).

2.2. Elements of fractional calculus

Due to the fact that fBm is neither a semi-martingale nor a Markov process, Itd’s stochastic calculus
is not fit for it. In this subsection, we show the definitions of the generalized fractional integrals and
derivative operators (see [21]) before introducing the pathwise Riemann-Stieltjes integral with respect
to fBm.

For p > 1 and a,b € R with a < b, we denote by L”(a,b) the space of Lebesgue measurable
functions f : [a, b] — R satisfying

b 1/p
1f 1 £reapy == (f Ifxlpdx) < 0.
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If f € £L'(a,b) and 0 < a < 1, the left-sided and right-sided fractional Riemann-Liouville integrals
with respect to f of order a are defined by, for almost all 7 € (a, b),

@ — L ' a1
I f= s [ =9 s

and

I° f = eiifh(s—t)“‘lfds
b-Jt F(Oz) st9,

where I'(a) = fooo e”"dr is the Gamma function. Let I§, (L") (resp. I, 1=@( £4)) be the image of
L?(a, b) by the operator 1, (resp. I ;_C’). Suppose that hf(l)l f(a+¢€)and llf(r)l g(b £) exist, moreover,

far € 10,(L7(a, b)), gp- € [,="(L(a, b)),

where p > 1, > 1, + }1 <1,0<a<l,f()=f —lilr(r)lf(a +¢&)and g,_(f) = lilr(r)lg(b—s) — g, then

the fractional (Weyl) derivatives are defined by, for almost all s € (a, b),

a _ 1 fs - fa * fs fr
(DL fo)(9) = 75 _Q)((S_a)(, X )H(,dr)l(a,b)(s)
and
exp(—ina) ( gp — &s g —
(D, g-)(9) = — o5 ((bb_ S t-o f o adr)lmb)(s)
Remark 2.2. From [13], we can see IS, (D%, fui) = fus for any fu. € I5,.(LP(a, b)) and I;:”(D}?:“gb_) =

gy for any g,_ € I,L“(Lq(a b)). Moreover from [11], we also see DS, f,. € LF(a,b) and D}):“gb_ €
Li(a, b).

Now we can construct the pathwise Riemann-Stieltjes integral with respect to fBm. If f € C*([a, b])
and g € C*([a, b]) with A + u > 1, then, from the classical paper [22] by Young, the Riemann-Stieltjes

integral fa ’ fdg exists. Furthermore, Zidhle [23] provided an explicit expression for it in terms of
fractional derivatives as follows.

Proposition 2.1. Suppose that f € C*([a, b]) and g € C*([a, b]) with A+u > 1. Let A > aand u > 1—a.
Then the pathwise Riemann-Stieltjes integral fa ’ fsdg, exists and it can be expressed as

b b
ffgdgx:e’mf DY, f..(s)D}, "g,_(s)ds. (2.1

We know that the fBm B is v-Holder continuous for Vv € (0, H). Therefore, for f € C?([a, b])
and 1 — H < @ < B < 1, we can express the pathwise Riemann-Stieltjes integral with respect to fBm
according to (2.1) as

b b
f fdB" = ™ f DY, f..(s)D, "B} (s)ds, (2.2)

where B! (s) = B(b) — B"(s).
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Remark 2.3. (see [24]) For any a € (1 — H, 1), it follows from [21] that D}:’Bf_(x) e L%@a,b).
Therefore, for any f € I%.(L(a, b)), (2.2) still holds.

The stochastic integral (2.2) admits the following estimate (see [11]): for @ € (1 — H,1/2) and
t € [0, T], there exists a random variable y(w, , ) with finite moments of any order such that, for any
determination or random function f € W®!([0, T)),

fﬁdBH < Y(w,a, f)( lfs f f dra’s)
(S _ r)a+l

= Y, DIf ”a,O,t- (2.3)

Moreover, from the classical Garsia-Rodemich-Rumsey inequality (see (1.2) of [25]), we can
choose ¥ (w, a, t) as

Y(w,a,0= sup [(D,2"B)w)

O<u<v<t

< Co npéo, (B™)
0/2

|BH BH|2/6
—Cayg[ff = Y[ dxdy) <00 a.s., 2.4)

where C, 4 1S a constant depending on the underlying arguments, 6 < @ + H — 1. Without loss of
generality we can assume that 0 = (¢ + H — 1)/2 (see, for example, [17]). It is easily obtained from
(2.4) that ¥(w, a, t) is continuous in ¢ and Y(w, a, t) < Y(w,a,T) for all w,a and ¢ € [0, T'].

Also we need the following inequality from Proposition 4.1 in [17]: for any @ € (1 — H,1/2),0 <
s <t <Tand f € W*([0,T]), we have

' H " A
ﬁﬁst St//(a),a,t)( S (r—s)“ ff (r—v)f’“dVdr)' (2.5

Particularly, for any n € (0, H), there exists some constant C,, depending on 7 such that

|B — BY| < C,(w, @, Dt — s|" " holds . (2.6)

Again applying the Garsia-Rademich-Rumsey inequality to W, and ﬁ ' b(u,X,)dW,, for any n €
(0,1/2), one can deduce

W, — W,| < ¢(w,n, DIt — s|'/>7" (2.7)
and )
l f b(u, X,)dW,| < ¢,(w,n, D]t — 5"/ (2.8)
where
t ot W, — Wy|2/n n/2
(w, ,r):C(f —dxd)
e " o Jo lx—yll/n Y
and

¢, (w,1,1) =

] b X)dw, P\
K, ff = - dxdy
0o Jo |x — y|t/

respectively, C,, K;, are both constants depending on 7.
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2.3. Elements of Malliavin calculus

Let J be the set of step functions on [0, 7] and consider the Hilbert space H defined as the closure of
I with respect to the scalar product (1jo4, ljo.)# = R, (s, 1) for s, € [0, T]. The mapping 1y +— B
can be extended to an isometry between H and its associated Gaussian space. This isometry will be
denoted by ¢ — B(¢). Note that

T
Gty = fo Ko K)(s)ds  for d.p e,

where ,
) oK

(K;9)(s) = f O~ (u, )du, s €[0,T]
and t

Ky(t, s) = cyst ™ f (= )" 203 dul g (s),

3
here ¢, = (%) and B denotes the Beta function. Moreover, we have £L'/#([0, T]) c H and in
H=3

particular

T AT
() = H2H — 1)f f (MW w)|r — ul*drdu
0o Jo

for o,y € LVH(0,T)

Forn > 1, let F = f(B,,,--- , B, ) be smooth and cylindrical random variables with ¢; € [0, T] for
i =1,---,nand f being bounded and smooth. Then, the derivative operator D in the Sobolev space
D'? is defined by
DF = Zn: 6—F(Bt < B ) o4 (s), s€[0,T]. (2.9)
' = 0x; B ’

In particular DsBY = 119,4(s). As usual, D' is the closure of the set of smooth random variables
with respect to the norm||F|[} , = EIF|* + E||D.F|3,
If F\, F, € D'? such that F, and ||DF,||¢ are bounded, then F,F, € D" and

D(Fle) = F,DF, + F\DF,.

Moreover, recall also the following chain rule: For F € D' and g € C!'(R) with bounded derivative
we have g(F) € D' and
Dg(F) = ¢'(F)DF. (2.10)

The divergence operator, or Skorohod integral operator 6, is the adjoint of the derivative operator
and we have the duality relationship E[F&(u)] = B(DF, u) for every F € D'? and u € Dom(5). We
should also note that, for 1/2 < H < 1,

D'? ¢ LX(Q,H) € L7(Q,H) S Dom(s),
Here, £7(Q, H) denotes the space of stochastic functions with finite p—order moment.
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If (u,)e0,1) 18 @ stochastic process with Holder continuous sample paths of order 8 > 1 — H, then the
Riemann-Stieltjes integral with respect to BY is well defined. If u moreover satisfies u, € D'? for all
t€[0,7T] and

sup Elu,|* + sup E|D,u,* < oo,
5€[0,T] r,5€[0,T]

T T T T
f udB = f u B + ay f f Dgu|s — t1*#2dsdt (2.11)
0 0 0 0

holds, here @, = H2H - 1). Set p > %, from Remark 5 of [26], for the Skorohod integral of the
process {u, : t € [0, T']}, we have the inequality

Z t t ! ) pH
f u, 6B f [Eu,|’ds + E f ( f IDSurlHds) drl. (2.12)
0 0 0 0

Remark 2.4. Due to Holder inequality, it can be obtained from (2.12) that

¥4 )4 73 ! !
f u 6B ]sc[ f Elu,’ds + E f f |Dsur|pdsdr]. (2.13)
0 0 0 0

then the relation

P
<C

E [ sup
z€[0.,7]

E [ sup
z€[0,¢]

3. Euler approximation

For any n € N, consider the isometric partition of [0,7]: {0 =ty <ty <---<t, =T, 6 = %}, t =

ko, k=0,1,...,n. Define 7, := max{z; : t; < t} and n, := max{k : #, < t}. The Euler approximation of
(1.1) is expressed as

Xf = th + a(tkaxti)(t - tk) + b(t]uXi)(Wt - Wtk) + c(tkan()(BfI - B{Z)a re (tk’ tk+l]9

or, in the integral form,
! ! !
X0 = X + f a(ty, X2 )ds + f b(z,, X2 )W, + f c(ty, X2)dBY, 1€[0,T]. (3.1)
0 0 0

3.1. Assumptions

Throughout this paper, we denote by C the generic positive constants independent of ¢ and w.
Their values are not important for us and maybe different from line to line. The mixture of 1t6 integral
and pathwise Riemann-Stieltjes integral makes things a lot harder, forcing us to consider very smooth
coeficients. Specifically, in this paper, besides the independence of W and BY, we suppose the
coeflicients of (1.1) satisfy the following hypotheses almost surely.

(Hab) : The coefficients a(t, x), b(t, x) together with their partial derivatives in x are bounded. Moreover,
a(t, x) and b(t, x) are B-Holder continuous in ¢. That is, there exist two constants C > 0 and
B € (3 V (2H —1),1] such that

(D). la(t, ) + |b(t, x)| < C;
(2). lax(z, )l + |bx(z, )| < C;
3). la(t, x) — a(s, x)| + |b(t, x) = b(s, x)| < Clt — s
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(He) : The coeflicient c(t, x) is continuously differentiable in x. Moreover, there exist two constants
C>0andB € (3 vV (2H - 1), 1] such that

(D). le@, 0| + lex(, 0)| < C;
(2). le(t, x) = c(s, X)| + |cx(t, x) = c,(s, x)| < Clt — s5;
(3). lex(t, x) — cx(t,9)| < Clx = yl.

Note that the above assumptions (2) of (Hab) and (1) of (Hc) imply the Lipschitz continuity, that
is, there exists some constant C > 0 such that, for any 7 € [0, 7] and x,y € R,

la(t, x) = a(z, )| + b(t, x) = b(t, )| + |c(t, x) = c(t,y)] < Clx = yl.

Remark 3.1.

1. As was stated in [13], under the assumptions (Hab) and (Hc), the main SDEs (1) has a unique
solution {X(1),t € [0, T} in the space of Wy ([0, T]) with a € (1 -~ H,1/2).

2. Even if, instead of the boundedness of a(t, x), we assume that the coefficient a(t, x) is linear growth,
all results in this paper are still true.

3.2. Some lemmas

Now, we are going to formulate some useful properties of the Euler approximation {X?,t € [0, T]}.
For this, we need some additional notations. Denote ¢, := Y(w, @, 1)V 1, ¢, := p(w,n, 1)V ¢, (w,n, 1)V 1
and & := ¢, V ¢,. Obviously, & is non-deceasing in ¢, that is, for any r € [0,T], & < &, =y, V ¢,
holds almost surely. Moreover, & has finite moments of any order. For any R > 1, define a stopping
timex, ;=inf{r: & >R} AT. Let Q, ={w :n, =T}. By Lemma 4.4 in [11], P(r, < T) tends to O as
R — oo if assumptions (Hab) and (Hc) hold.

Our first result is Holder continuity for the processes {X;}jo.r1 and {X?}cqo.r) defined in (1.1) and

(3.1) respectively.

Lemma 3.1. If the coefficients of (1.1) satisfy the conditions (Hab)(1)(2) and (Hc), then, for any

l1-H < a < %, it has a unique solution X such that {X;}eor7 € Wy ™([0,T],R) almost surely.

Moreover, for any 0 < n < % and 0 < s <t < T, there exists some constant C > 0 such that

1
X, — X, < C&eT" i = |7, (32)

Proof. It follows from [13] that, forany 1 - H < a < 1 there exists a unique solution {X}ep0.77 of (1.1)
belonging to ‘W ([0, T']) almost surely. Now, we estimate (3.2). From (2.8) and the condition (1) of

(Hab) we immediately get
t t
f au, X,)du f b(u, X,)dW,

< C (1t = s+ gt — 517 + Q(s.1)).

t
f c(u, X,)dBY

Using the estimation (2.5) and for s,7 € [0, T'], we have

O(s, < ¥, ( f WX 14 f " letu, X,) = e(r, X’)ldrdu)

(u— ) s (u = r)**!
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! U _ X X
< Cy, (|f — s+ f (u=ry +] rldrdu)

(l/t _ r)a/+1

. K= Xd
<C¢t(|t_sll f f ( _},.)a+l )

By exchanging the order of integration and choosing 0 < n < % —a, for s,u € [0, T], we have

! |Xu - Xr|
s (l/l - r)a/+1

u 1 B
_Cfmlu—rl+¢u|u—rlé”

sl [ [ Gt

< CEJu— s + Cwuf (u(s Z))adq

L(s,u):=

Consequently, Lemma 6.3 implies that

1
L(s,u) < CEET" ju— )27,
Therefore,
1
X, = X, < C&2 " |t — 527"
which completes the proof. O

Remark 3.2. A similar proof to Lemma 3.1, we also have

1
X7 - X2 < C&eT " -t — |27,
Then, we prove the boundedness of the processes {X;}icjo.71 and {X°}cj0.71-

Lemma 3.2. Let E|Xy|P < oo for p > 1. If the assumptions (Hab) and (Hc) hold, then, for any

1 - H < « < 3, there exists a constant C > 0 such that E[ sup |X,|[5] < C and E[ sup |IX?|I2] < C,
t€[0,T1] 1€[0,T1]

where {X;}ie0.r) and (X }te[O 1 are the solutions of (1.1) and Euler (3.1) respectively.
Proof. Tt can be directly derived from Theorem 4.2 of [11] that E[ sup ||X;||5] < C. Hence we just need

t€[0,T]

to show E[ sup [|X?|[5] < C. Write
€10,

6
X1, = 1X0] + f = )Mld <|Xo|+ZJk<r>

where

Ji(t) = ds,

ft | [ a(z,, X2 )dr|
LU
0

(f _ S)(x+1

t
f a(ty, st)ds
0
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/
f ' | b(t,, Xf YAW, |
JZ(t) = f b(TS’ X‘Ii s| + f L a/r+1 §
t ' |ft b(T,,X‘Ts )aw,|
< sup f b(Ts,Xf )dVVS + sup f S r 1 S
ref0.711Jo ) €107} (=)™
=: Jo1 + Jaa,
r oo e, X2 )dBY|
J3(t) = f C(T‘V,X‘rs)st + f (f s)a+1 ds = J31(t) + J32(t)'
0 0 N

It follows easily from (1) of (Hab)and 1 - H < a < 5 that Ji(r) < C.
We estimate J3;(¢) by using (2.3). From the deﬁmtlon of 7, and Euler equation (3.1), we have

S’X(s S’X5 - r,X6
(< lﬂt(f le(r )I ff le(r (S_r)z(; )ldrds)

X9 - X2 | |X‘5 X1 X0 - X
1+ f f r Tr + K r drds
(S _ r)a+l (S _ r)a/+l (S _ r)(x+1

= CY (1 + J311(t) + J312(2) + J313(D)).

< Cy,

In order to estimate J31;(¢) and J31,(¢), we need the following difference
X7 = X2) < C[(t =) + @it = )T+ glt = )| < CE (e =) (3.3)

In fact, (3.3) can be easily derived from (2.6) and (2.7).

If one takes 77 € (O, 1- a), it is obviously that J3;,(¢) < C&..

Note that the area of {0 < s < ;0 < r < 7,}is equivalent to the areaof {0 < r < 757, +0 < s < t}.
So, by exchanging the order of integration of J3,, we have

Tt ! 1 1 n—1 ] 1
Ja2l) = f f oy dsIX) = X; dr < — f ———|X) - X? |dr < C¢,
e 0 T,+6 (S - r)CH—l " (01 ; f (tk+1 - }’)a " é:

where we use the difference (3.3) and the following inequality (see (4.15) of [17])

M(r — 1Pt — 1) %dr < B -, 1 + ). (3.4)

!
Evidently, J313(f) < f 1X°l.ds.

0
Now, we estimate J3,(¢) by using (2.5) and the following estimation

f f . q)a(r:’ erdadr < C (see Lemma 6.1) (3.5)

From the definition of 7, and Euler equation (3.1), we have

t et X3, Iy r e X3, - c(rq x,q>|
Jn(O< Y,

0 (Z _ S)(l+l

ds
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< cy |1 ft f fq LX) Xl
+
= C¥ o Jo Jo (t—s)t ’ (r— gyt aar

<ol fff Xy - Xl X - X+ 1 - Xl
< + r
t o Jo r— (- 1

= CYi(1 + J321(0) + J322(8) + J323(0)).

It is obvious that

!
J33(0) < f IX2Nlo(t — 5)~ds.
0

From (3.3) and 0 < 17 < 1 — @, we estimate J3,(¢) and J30(?).

t T, |X6 6 |
J31(8) < Cf f (r— q)_a_ldq#dr Cf
0 Jo (t—r)

Exchanging the order of integration of J3,(#), we have

o X X0 - X2
J3o(t) = f (r—q)* dr f ! dq.
2 0 Jrprs (T +6—q)(t—q)°

Further, noting that 0 < a < % and then using (3.4), we have

J3n(t) < sz‘[o I(Tq +0-q)"(t—q)"(q - Tq)%_”dq

n;—2 1
’ 1 f (g —1y)2 7" L f’ 1
<C SR (bl Oy d
¢ {Z (1= te)* Jyp (1 — @) 1 et (T, = QN1 — @) 1

< C¢ Z(f—lkn) O§ITI 4 57T Mty = ta-1)'” 2”}

<C¢ {Z(I— Tis1)” O§IT | 53 2"}

< C¢, (t —85) s + 1)
< Cé,.

Summing up all the above estimations, we obtain
f
1X0N0 < [Xol + Jo1 + Jop + Cftz + Cw,f 11Xl (2 — 8)™“ds.
0
So, it follows from Lemma 6.3 that
1 1
1X7lo < C (Xl + Jo1 + I +€7) €V < C(1Xol + a1 + T + &7) V1™
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Foreachp > l,w € Q, anda € (1 — H, %), we take into account that the right-hand side of the
above inequality does not depend on ¢ and arrive at

1
5 2p\ Cyl-
sup [IXC117 < C (IXol? + I3, + Iy + £27) eV
t€[0,T]

Therefore,
1
1 2
E[ sup [IXUII2] < C(EIXo/” + EJ3Y + BJS) + BEY): {E[eclp;ﬂ ]} .
te[0,T]

Taking into account that 1 < ﬁ < 2, we apply Fernique theorem (see (24) in [11]) and obtain that

1
B[S "] < C.

Our next step is to estimate E[J;f ] with the help of the Doob martingale inequality.

t t
E[Jy/1 <E[sup | | b(r,, X3 )dW,[] <E[ sup f Ib(ry, X2 ds) < C.
t€[0,T] 0 te[0,T] JO

Applying (2.8) to J;é’ and noting that 0 < n < % — @, one can easily obtain
E[J;7] < CE[l¢,"].
Finally, because ¢, and ¢, have bounded moments of p-order, we get

E[ sup |IX?|I’] < C,
t€[0,T]

where the constant C depends on « and p, but is independent of ¢ and w. O
As aresult of Lemma 3.2, one can easily get the following corollary.

Corollary 3.1. Let E|Xyl? < oo for p > 1. If assumptions (Hab) and (Hc) hold, then there exists a
constant C > 0 such that
E[ sup |X] - X2 "] < C5"*
1€[0.T]

where {X,}e0.r) and {Xf }reto.7) are the solutions of (1.1) and Euler (3.1) respectively.

Thirdly, we are ready to prove that the moments of the Malliavin derivative of Euler approximation
(3.1) is bounded. We refer the reader to Nualart and Saussereau [27] for results on Malliavin regularity
of the solutions of stochastic differential equations.

Lemma 3.3. Let t € (t,tx41], Le., T, = t, Xft be the solution of Euler (3.1) at the point t,, k =
0,1,---,n. If the assumptions (Hab) and (Hc) hold and X, is independent of B with E[|Xo|P] < oo

for p > 1, then, there exist some positive constant C such that E[ sup |DX?|P] < C for any s > 1, and
1€[0,7]
some constant M, , dependent on p and R such that E[ s[lgp] |D, Xft A, I’1 < M,, for any s € [0, 7], here,
t€[0,T
for any fixed R > 1, the stopping time nr, = inf{t : & > R} A T.
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Proof. If s > t then it is clear that D,X?° = 0.

Thanks to (2.9), (2.10) and the independence of W and BY, if 7, < s < t then we have

D, X?= D,[X? + a(t,, X2 )(t — 7)) + b(t,, X2 )W, — W) + (74, X2 )(B}' — BI)]
= C(Tt’ Xf[)

By the boundedness of c(#, x), we have E[ sup IDSX;S |”] < C for any s > T1,.
1€[0,T1]
If 5 € [0, 7] then we have

TN, T AT,
D,X} . = D; (Xo + f a(t,, X3 )du + f b(t,, X2 )dW,
0 0

Tt/\ﬂ'R
+ f (T, X2 )dB! )
0
T AT,

‘r,/\ﬂ'R
= (1, X2) + f a(t,, X2 )D,X? du + f b.(t,, X, )D,X? dW,

46 Ts+0

T,/\7rR
+ f (T4, X2 YD, X2 dBY.

s+0

From Lemma 2.3 of [14] and the boundedness of a.(¢, x), b,(t, x) and c,(t, x), for any s belonging to
the interval [0, T'], we obtain

E[ sup |DSXftMR|”] <M, forany s <7,
1€[0.7]

For any s € [0, 7], note that the equation
Dy(X! = X2) = DX? (ax(ty, X3)(t = 7)) + bulr, X2 )W, = W), +c(t,, X2 )(BY - BI))

is true. Therefore, we have the following corollary by Lemma 3.3 and Cauchy-Schwarz type inequality.

Corollary 3.2. If the conditions of Lemma 3.3 are satisfied, then, for any s € [0, 1,], we have

E[ sup [Dy(X;,, — Xo 0, '] < CSP2.
t€[0,T]

and

E[ sup |DSX;5MR IP1<M,, forany s <t.
€[0,77

3.3. Main result

The aim of this subsection is to estimate the rate of convergence of Euler (3.1) to the solution of

(1.1).
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Theorem 3.1. Suppose that X, is a random variable independent of W and B with E|Xo|* < oco. If
assumptions (Hab) and (Hc) are satisfied then we have

lim P(n” sup |IX, — X/l > &) = 0in Wy=([0, T])

n—eo 1€[0,7]
for any y < min{%, 2H -1}, e>0and a € (1 - H, %) Here, {X,}ej0.1) and {Xf},E[O,T] are the solutions
of (1.1) and Euler (3.1) respectively and n = %.
Remark 3.3. Theorem 3.1 shows that the rate of convergence for Euler (3.1) is equal to y (y <

min{%, 2H — 1}) in probability with the norm sup || - ||,, i.e. in the sense of probability, we can establish

an estimate for the error of |X; — X?| with the norm sup || - ||, in certain Besov space (Wg’“’([O, T)) (see
Definition 2.1), exactly,

for any € > 0 and any sufficiently small p > 0, there exists 69 > 0 and Q,, , such that P(Qs,,) > 1—¢€
and for any w € Q4,0 < 0o,

5 5 "X - X) — (X, - X9
sup |IX; = X?llo = sup §1X, — X} + 1+a ds
1€[0.T) 1€[0.T] 0 (t-s)

< C(w)émin{%,ZH—l}—p

here a € (1 —H, %), C(w) does not depend on 6 and € (but depends on p).

Proof. of Theroem 3.1. Fix an arbitrary € > 0 and any R > 1. As mentioned previously, 7, = inf{z :
& > R} AT. Consider

P(n” sup ||X, — X?|l, > &) < P(x, < T)+ P(n” sup ||X, - X°ll, > &,7, = T). (3.6)
1€[0,T] t€[0,T]

For the second term on the right hand side of (3.6), applying Chebyshev’s inequality, we have

)
P(n” sup |IX, — X]llo > &7, = T)< P(n” sup || Xipn, — Xinnlla > €)
t€[0,T] te[0,T]

nZyE[( SUP ||Xt/\7TR - X?AﬁRlld)z]
t[0,T]

< 5 . (3.7)

Now, we estimate (3.7). According to Definition 2.1, for any ¢ € [0, T'], we have

E[(sup [X.nn, — X2, [1)°]
z€[0,7]

< 2E[sup |Xopr, — X2, 1+ 2E

AT
z€[0,1] K

5 Xinmy = Xope = Xo+ X2 Y
L d
L (l _ S)(Hl §
=: 2(11(t) + L(1)). (3.8)
In turn, /;(¢) can be estimated as
2

1,(t)< 3E sup
z€[0,7]

fz k (a(s, X;) — a(T‘Y,XfS))ds
0
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AT, 2

+3E sup f (b(s, X,) — b(ty, X2))dW,
z€[0,1] |Jo )

z/\7rR 2

+3E sup f (c(s, X,) — (15, X% ))dB"
z€[0,11 [ Jo ’

=: 3(In(1) + In(®) + Ii3(0)). (3.9)

From Corollary 3.1, we have

AT 2
1,,(H)< 3E sup f (a(s, X,) — a(s, X°))ds
z€[0,7] | JO
z/\JTR 2
+3E sup f (a(s,X°) — a(s, X°))ds
z€[0,7] |[JO '
AT, 2
+3E sup f (a(s, X2) — a(t,, X2))ds
zef0.41 | Jo ' '

! !
<C f E sup |Xoar, — X0\, Pds+C f EIX? - X0 Pds + C6*
0 0

AT
z€[0,s] R

!
< cf I (s)ds + C6 + C5%. (3.10)
0

From Doob martingale inequality and Corollary 3.1, we have

AT, 2
I>()< 3E sup f (b(s, X,) — b(s, X°))dW,
z€[0,1] [JO
AT, 2
+3E sup f (b(s,X°) — b(s,X°))dW,
ze[0.11 | Jo ’
AT, 2
+3E sup f (b(s, X2) — b(z,, X2))dW,
z€[0,¢] [JO

! !
<C f E sup |Xoar, — X0y, Pds +C f EIX - X2 Pds + C6™
0 0

ZATT
2€[0,5] R

!
SCfIl(s)a’s+C6. (3.11)
0

Estimate /;53(¢) by dividing it into three parts.

AT, 2
I13(1)< 3E sup f (c(s, Xy) — (s, X2))dBY
z€[0,¢] | JO
AT, 2
+3E sup f (c(s,X%) — c(s, X% ))dB"
zef0.11 [Jo ’
AT, 2
+3E sup f (c(s, X2 ) — c(ty, X° ))dB?
z€[0.11{J0 ’ ’
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= 3(1131(1) + Li3(t) + 1133(0)- (3.12)

Taking into account the estimation (2.3) and the definition of stopping time 7, we have

2

1131(t)S 2R2E sup
z€[0,7]

f M Je(s, Xs) — c(s, XO)| J
S
0

sa

2

+2R’E sup qds

z€[0,]
=: 2R2(11311(f) + 11312(0)-

fWR f le(s, Xy) — c(s, X2) — c(g, X,) + c(q, X,‘j)ld
0 0 (s —g)**!

Noting that 1 - H < a < % and c(¢, x) is Lipschitz continuous, we have
t/\irR !
Ii3n(D< Ef lc(s, X,) — c(s, X°)*ds f s72%ls
0 0
! !
< f E sup [Xonr — X0, [ds - f s72ds
0 z€[0,s] 8 K 0
73
< Cf Li(s)ds. (3.13)
0
Using Lemma 6.2, Lemma 3.1 and 1 - H < a < % we have

e s (X — X0 — X, + XO
f f . - ql 1 dqds
0 0 (s —q)™

2

2

I1312(H)< CE sup
z€[0,1]

MM 51X — XO|(s —
+CE sup f f | il(s q)ﬁdqu
0 0

2€[0.4] (s —q)**!

fZMR f X, — X2I(1X, = X1+ 1x2 - X2))
0 0

(s —q)*!

+CE sup

z€[0,1]
! SATTR |XS/\71' - Xf/\n - Xq + Xgl
<C| E f - s
\fo 0 (s — q@*!

! !
+C f E sup |XzAer —XgAﬂR|2ds . f 2B~ g
0 0

z€[0,s]

dqds

2
ds

dq

t t
+C§f E sup |XZA,TR —XfAﬂR|2ds f s2ds
0 0

z€[0,s]

! !
<C f L(s)ds + C? f Ii(s)ds, (3.14)
0 0

1
where C, = CRe“R"™ , y = % —n—a > 0only if we take n € (0, % - ).
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Estimate /;3,(¢) and I,33(¢) by the relation between the pathwise Riemann-Stieltjes integral and the
Skorohod integral with respect to fBm. Firstly,

AT, 2
I(H)< E sup f (c(5,X0) — c(s,X2))dBY
z€[0,¢] | JO
AT, 2
= 2E sup f (c(5,X2) — c(s5,X2))oBY
z€[0,1] :
2
+20E sup f f D,(c(5,X0) = c(s, X2)Is — ul" 110 g (w)duds
z€[0,7]

= 211321(1’) + 20H11322(l). (315)

From the estimation (2.13), Lemma 3.2 and 3.3, Corollary 3.1 and 3.2, we have
t 9 t/\7rR S 9
L1301 (D)< c( f Elc(s, X0) — c(s, X2, f f |Du(c(s, X2) = (5, X)) duds)
0 0 0
t AT, T s
<C f E|x - f f E|le(s. XD - IDL(X2 - X2)P|duds
0 t/\7rR S 0 0
+C f f E|lex(s, XD - IDu(XS = X2)P|duds
0 Ty
t/\7rR S
+Cf f E[ch(s, Xf) — (s, st)l2 . IDMstlz]duds
0 0
t T 1 1
<C5+C f f [Blex(s, XDI*|" - [BIDUXS,, = X2, )| duds
! Os ° 1
+C f f |Ele.(s, Xf)|4] - [BID.XS,., | ]zduds
0 T

L 1/2 1/2
+C f f |Eleu(s. X2) = eu(s. X217 - [EIDLXS, 1| duds
0o Jo K
< Cé. (3.16)

Similarly to the estimation of 7351 (%),

2
Li300(H)< 4E cx(s X°)D,(x° oar, — X2, M s — ul*2duds
2
+4E cx(s XODUX e, = X2 s — ulduds
2
+2E f |D,X M |(cx(s, X‘S) — ¢, (s, X‘S Dls — ul?2duds

2
(8, XDDu(X e, = X7 00 )| 15 = ulPduds

<cff
[ [
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+C f f |IX0 = X2 P IDX2, ., |- Is — ul'duds

<C f f EIDu(XS0, = X2 )|4] s = uP"2duds

+Cs*H! f f E|D, XWr ~|s — ul*2duds
5 vo 4 172 s 4]V 2H-2
+C f f xS - X2 1 [ElDuXTSMRI | - Is — ul2duds
0o Jo
< C(6 + 6. (3.17)
Secondly,
AT 2
I133(t)< 2E sup f (c(s,X2) — c(ty, X° ))oBY
ze10.11|Jo ' ’
Z/\7rR s/\nR 2
+2a%E sup f f D,(c(s,X°) — (13, XO)|s — ul***duds
zel0.1 [Jo 0 ’ ’
=: 211331(0) + 207 L133:(2). (3.18)

Further we apply (2.13) and Lemma 3.3 to 7;33,(%),

f
I1331(H)< CfE|C(S,Xi)—c(TS,XfX *ds
0

l/\7TR s/\JrR
+CE f f

< C5* + CE f f lex(s, X2) = et X2 - |DMX5NR|2duds

< C6% + c6* f f EID.X ., zduds

< C6*. (3.19)

D, (c(s, st) —c(ty, st))|2duds

Similar to the estimation of I,33;(¢), we have

AT, SAT R 2
I332(< CE f ( D, X2 (cx(5, X7 ) = cx(T5, X2))|s = ul””cht) ds
< Co*P f f EID, X2 e I - 1s — uldu f Is — ul*"2duds
0
< C6*. (3.20)

Summing up all the estimations (3.9)-(3.20), we obtain

! !
L(H) < C(6+ 6" + R Ch f I,(s)ds + CR? f L(s)ds. (3.21)
0 0
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Next step, we consider I,().

ds

(t _ s)a+1

t/\n'R M”R ,X _ ’X6 d
L(n< 3E( f |} " (alg, Xy) - alry, X2 )dg]
0

me | [ (b(q. X,) — b(z4, X2 ))aW,|
+3E
0

(t _ S)a/+1

+3E

ft/\ﬂ'R | fstMR (c(q, Xy) — c(1y, qu))dBfﬂ
0 (t = s)e!

=: 3(I1(0) + In(0) + I3 (0)).

As regards I5;(7), we estimate it in the following way:

s

S

(3.22)

e | [ (alg, X,) — alg, Xo)dg]
L)< SE(f : i - ds]
0

(t _ S)a/+1

a ft/\nR | f;MR (a(q, Xg) —al(q, qu))dQI
o (t _ S)a+1

+3E

me | [ (g, X)) - a(ry. X2 ))dq]
0 (l _ S)a+1

=: 3(1211(0 + Lio(t) + 1213(1))-

2
ds)

2
ds)

(3.23)

Choosing o such that @ < o < 1, by Holder inequality, Lipschitz continuity of a(t, x) and exchanging

the order of integration, we have

M%|fMﬂd%Xﬁ—M%X$Wﬂy

L (D)< CE‘fO (1 — 5)2er22

en mﬁﬂ“m%&»w@xﬂw%
- 0 (l _ s)2¢y+l—2@

(t _ S)2(1+1—2Q §

SCfIl(s)ds.
0

By a similar discussion to I,1;(¢), one can easily get

4 5 12
sqfﬁm&w_&wﬂm
0
!

L (1) < Co,

and
Lis(t) < C6%.

AIMS Mathematics

s

S

(3.24)

(3.25)

(3.26)

Volume 5, Issue 3, 2163-2195.



2183

Similar to the estimation of (), we estimate I5,(¢) by dividing it into three parts as well,

AT 2
AT, R X)) — , XONdW,
In(1)< 3E [f |fs (@ X,) ~ (. %) qlds)
0 (t — syt

+3E

b 2
fmnk |fst/\ *(a(g, X3) - a(g, qu))quId ]
s
0

(l _ S)a+1

g | [V (alg, X)) = alry, XEDAW,| Y
+3E f s ds
0

=: 3(1221(f) + Iy (1) + 1223(f))- (3.27)

From Holder inequality, Burkholder-Davis-Gundy inequality and then exchanging the order of
integration, we get

AT
| f " (alg, Xy) = alg, X)W, ' .
(D)< CEf J; ! 3 1 i de(t - s)‘“‘?ds
0 (t—s)*"2 0

! t
< Cf f E|a(q A 7TR7Xq/\7rR) - a(q A 7TR9X(qS/\7r )|2(t - S)_a_%dqu
0 K R
! 2 4 3
<C f E[Xgnr, = X0 | f (t—5)* 2dsdq
0 o Jo
!
<C f L(s)(t — s)™* 2ds. (3.28)
0
A similar discussion to I55;(), one can easily get
Ly(1) < C6, (3.29)

and
Ins(t) < C6%. (3.30)

Now we go on with the term /»3(¢) including fBm.

tATT 2
AT K ,X,) — c(q, X%)dB"
L3()< 3E [f lfs (€. %)~ g 2B, lds]
0 (t—s)e+!

n 2
- ft/\nR | j:/\ R(C(q, Xg) — C(q, qu))dBﬂd
+
0 (t _ S)(Y+] §

+3E

Vg 2
fz/\nR | fs”\ ®(e(q, qu) - c(rq,qu))quH ld
0 (t _ S)a+1 §

=: 3(L31(1) + Lo (1) + Dss(1)). (3.31)
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With the help of the estimation (2.5) and the definition of stopping time 7,, we have

ds

AT, IAT , X ’ X‘S B ad
L3 ()< 2R°E [f | [} (e Xy) — c(g. X)g — 9)° Cll
0 ([ — S)(x+1

(@ X)) —c(rnX)+c(rXD)|

A X,
ft/\ﬂ f ﬂ f lC(q (q r)(H—I drdq

(l — S)a+1

+2R’E ds

=: 2R2(12311(f) + 12312(f))-

By exchanging the order of the integration we have

2

IAT q
Iz ()< CE (f |c(q, X,) — c(q, X3)|f (q— )t —5)"'dsdgq
0 0
!
C f E|[Xgr, Xgm - (t - ¢)*%dg
0
!
C f L(s)(t — s)2ds,
0

Here we use the following estimation (see (4.15) of [17]):

q

f(q—s) *(t—5) " dsdg < (t — g)” Zaf (1+s5) 's9ds
0
<BQa,1 - a)t - q).

According to Lemma 6.2, I531,(¢) admits the following estimation:

— 0y _ )
AT |ft/\nR fq le(g,.Xg)—c(q.Xy) c(r,X,)+c(r,X,)|drdq|2

()< CE f il s G- .

(t _ S)2+2a/—2g

ds

tAT, Xg— XX, +X7|
AT, |f fq = r)‘”l dl”dq|2
= CE‘[ ( _ )2+2af 20
0

f L LT X = Xjlq =y drdgP

+CE 0 ( )2+2(1 20 ds
(AT, g 1X—XS1(1X, =X 1+IX0-X2)
A R q g r 2
+CE nR | fs j; (q—r)‘”l drdql ds
0 ([ _ s)2+20z—29

=: D3121(1) + Ipz120(t) + 123123(2),

here @ < p < %
By Holder inequality and exchanging the order of the integration, we have

7y Xonng =Xone =X +X0|
f ff//\ r 1 R(qqr)fﬂ * dr)qu
Iz312](f)§ CEf ( s)1+2“ % dS

(3.32)

(3.33)

(3.34)
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qAﬂR

7T |q/\7r
g B[ R T gy
<C f f f (ol dsdq

)1+20f 20
f L(s)ds
0

e | 1701, — X2l(g — sy dgl?
I3122(8)= Ef . d
0

([ _ s)2+20z—29

and

S

S

B X, — Xos Pdg [ (g - 57 zadqd
S CL ( S)2+2a 20

!
C f ElXynm, = Xgrr, f (t — )" dsdg
0

t
<C f t2,3—4a+2911 (C])dq
0

Cf Li(s)ds.
0

According to Remark 3.2, similar to the above estimation, we have

o [ L L = Xl =y drdgP
I3123()< CRLE (f — 5)2+202 ds

0

AT
<ce [ [ X, - X3l - 5 dgf
= R 24202,
0 (t—5) ¢

ds

S

(" S X gm, — Xonr I'dq Jiq- s)Zqud
= CRE (t — S)2+2a—29

! !
< Clzef f Elxq/\nR q/\]'{ | (t - S)Zy 2a= 1+2'9de5
0 s

1
< C12ef Elxq/\nR q/\7r |2f (t S)Zy 207 1+2gdeq
0

!
<C: f I\ (s)ds,
0

where C, CReCR”(see(314))cx<Q<§,y 1—n—a>0onlyif we take p € (0, 1 —

Then we estimate I,3,(f). (2.11) implies

Vg 2
e | 77 (e(q. X3) - e(q. X2 ))SBY]
I3 ()< 2E f ds
0

(t _ S)a+l

(e [ [ Dt X2 - g, X2 g — P Zdrdq\
+2a,E f(; =5

d

).

(3.35)

(3.36)

(3.37)
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=: 2Dy31 (1) + 203 3o (1). (3.38)

According to (2.13), Corollary 3.1 and 3.2 as well as Lemma 3.3, we have

e Bl [ (e(g. X0) — e(q. X2, )6BH|2
Iy (< C f ds

( S)2+2a 20

t B ,X‘S— ,
<Cff |c<q ) — (g, X >dqu

s)2+2a 20

Iy (AT, (G E|D,(c(q, Xg) - c(q, qu))|2
+Cf f f (l _ S)2+2a—29 dl’dqu

¢ B|X? - X
< Cf f (t _ s)2+2& 20 qu

7 Ele.(q, X‘S)[D Xonr, = X3 ax P
+C f f f S)2+2a 20 drdqds

v Elex(q, X;S)[Dr(XgMR )
+Cf ff (s drdqgds

|2

a4 El(cX(q’ X6) - Cx(Qa X6 ))Dr Ty
+Cf f f drdqds

t _ S)2+2a 20

¢ BID,XC,
< Céf(t D I O Cf f - s)2+2dR 2erdqu

Ty ElD( gATT, Tq/\ﬂ )|2
+C (1= 5P drdqds

q(E|X5 X¢ |4)z (EID, X2 . BE
+Cfff ESCTT drdqds

<Co (3.39)

and

e | [ [1Do(e(g, X0) — g, X2 Mg — rPH-2drdgl?
I K s q q

2322()< CE (f — 5)>+2a-2 ds
; —

IATR fsmm | fxq D,(c(q, X(‘;) - c(q, qu))|q — rPH2drPdg
< CE[ (t — s)l+2(x—2g

ds

ds

0
ft S el XDDAXG,, = X2, g — P 2drPdg

( _ S)1+2a 20

ds

S [ (eda. X9 = eg. X DD, X2, g — riPfi2drdg
f ( _ S)1+2(1 20

ds

ST Bleaq, X)DAXG,, = X2, )P - lg — P 2drdg
f (f _ S)1+20z 20
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f’ [ Bleda, XDD,Xg, P -lg = rP"2dr( [ g - F|2H_2dr)dqd
S

( — )1+2a/—29

f ST [T Eleda. X9) - eda. XD, XS, 1P+ lg — P 2drdg
ds

( _ s)1+2(x 20

2H-2 “[T1q - P 2drd
<C5f ff i drdqu+C(52H_l ftfff’q i -
0

(l _ S)]+2(1/ 20 (f _ S)l+2a—2,g ds
fs fs lg — r*"2drdq
+C5f (1= 5)i"2a22 ds
< C(6 + 672 (3.40)

Finally, we estimate I33(¢). (2.11) implies

b 2
A | me “(c(g, X3,) = c(t4, X7 ))OBy|
1233(t)S 2E - ds
0

(t _ S)a+l

(l- — S)(l+]

=: 20331(1) + 207 Lz (D). (3.41)

Vg 2
e [T [ DU, X2) = ey, X )l — P2 drdy]
+2a,E f ds
0

From the estimation (2.13) and Lemma 3.3, we have

iy Bl [ (c(q, X2 ) = (T, X2 ))SBH P
12331(t)<Cf ﬂ : TN g

([ _ s)2+20z—2g

ds

fz fsl Ele(q, qu) - c(ty, qu)|2dq
<C

(l' _ S)2+2(1/—29

AT J:/\”R [*EID(c(q. X2 ) = c(ry, X2 ))Pdrdg
+C ds

(t — s)2+2c172g

" Blenq. X2) — ex(ry X2 )DXE . [Pdrdg

2B
<C6¥+C fo = ds

< C6¥# (3.42)

and

ds

' »fst Ifq KC}C(q’ ) - Cx(Tq, X6 ))D )((S /\an |q — r|2H Zdrdq
()< E f i
0 _

ds

D, X2 el - lg = P -2dryd
< OB ANk arel 10 )Ydq
(t _ S)l+2(t—29

[ [TEID,XE P (g - r2drdg

28 :
<Co (= 52 ds
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< C5*. (3.43)
Summing up all estimations (3.22)-(3.43), we have

! I !
L) < C6+8 ) +R-C3 f L‘Y)lds + CR? f L(s)ds. (3.44)
0 0

(t—s)2*
Then, taking into account (3.21) and (3.44), we obtain

1;(s)

!
L)+ L) <CGE+8" ) +R*-C; f
o (t—s)2*e

!
ds + CR? f L(s)ds.
0
Evidently, the above estimation can be written as

L)+ b() < CE + 57 + R C2 f wd&
0 t— s §+oz

Therefore, Lemma 6.3 yields

2 2
E [ sup (X nr, — XfMRlla] < 2(1 () + L(1) < C(6 + §*H2)e®D T (3.45)
z€[0,7]

Plugging (3.45)) into (3.7), we arrive at

2 4H-2

P(rﬂ sup |IX; — X?||l, > &,7, = T) < > (3.46)
1€[0,T] 2
Passing to the limit as n — oo, we prove that the right hand side of (3.6) approaches 0.
Then (3.6) gives
lim P(n” sup ||IX, — X°ll, > &) < P(n, < T) (3.47)
n—co 1€[0,T]
Letting R — oo, by Lemma 4.4 of [11], we obtain
lim P(n” sup ||IX, - X°|l, > &) = 0.
n—eo 1€[0,7]
O

Corollary 3.3. If the conditions of Theorem 3.1 are satisfied, then, for any fixed € > 0, there exist a
positive constant C, and a subset Q, of Q with P(Q,) > 1 — & such that

E[ sup [IX, — X°|I21o,] < Co(6 + 6*172) (3.48)
t€[0,T]
and
E[ sup [IX, — X°|2Iq/0,] < Ce'? (3.49)
t€[0,T]

where C. = C exp {Cs%—l - exp (CSZO%I)} and C is a general positive constant independent of 6 and &.
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2EE,
& 9

25,

&

Proof. For any fixed € > 0, let R =
P(Q,) > 1 —¢. In fact,

ng:inf{t:f,z }/\Tand Q. ={w :m, =T}. We have

2E¢,
PQ.) =P, =T)=1-Pr.<T)>=1-P[¢, > >1-—e.
>
(3.48) can be derived from (3.45) immediately, and (3.49) can be from Lemma 3.2 and P(Q2/Q,) <
E. O
Remark 3.4. In [28], it is proved that, for some equation with b(t, x) = 0 and c(t, x) = c(x), the error

n?f-1(X, - Xf) almost surely converges to some stochastic process, i.e., as n — oo,

1
(X, - Xf) - =3 ,  a.s.

A
f ¢ (X,)DX,ds
0

In [29], it is shown that, for the Ito-SDEs with b(t, x) = b(x) and c(t,x) = 0, the error nE|X, — Xfl2
converges to some stochastic process, i.e., as n — oo,

2
1
nE|X, - X°f — SE

f
Y, f bb' (X°)Y;'dB,
0

with another Brownian motion B, which is independent of the Brownian motion W, and

N 1 A)
Y, = exp ( f b(X0) - Ebb’(X,f)du + f b’(X;f)qu).
0

0
The above facts mean that the estimation of the rate of convergence in Theorem 3.1 is sharp.

Remark 3.5. In this paper we have restricted ourselves to the case of a scalar SDEs. This is only to
keep our notations and computations relatively simple but the theory developed above can certainly
be generalized to the multidimensional case without any difficulty. Moreover, instead of fractional
Brownian motion one can take any process, which is almost surely Holder continuous with Holder
exponent 1 > %

Remark 3.6. The proof of our main result combines the techniques of Malliavin calculus with

classical fractional calculus. The main idea is to estimate the path-wise Riemann Stieltjes
t

c(s, X,)dB" flexibly by (2.3) or (2.11). Specifically,

’ (1) We estimate 1,3,(t) (and I,3,(t)) by the properties of fractional calculus instead of Malliavin
calculus, i.e., by (2.3) (and (2.5)) instead of (2.11) (and (2.13)). It is because we can hardly establish
the boundedness of the Malliavin derivative DX, for any s < t, and the estimation for the second
moment of the difference between DX, and DX? for any s < t. Indeed, for analyzing both of them, we
need also the second Malliavin derivative and then the third Malliavin derivative etc., however, there
is not closable formulas for them.

(2) However, we estimate I3,(t), I133(t) (and Iy3,(1), I33(t)) by (2.11) (and (2.13)) instead of
(2.3) (and (2.5)) because we have little idea how to process the second term generated by (2.3) and
(2.5). For example, it is very difficult to estimate the upper bound of the following expression:

f
f1

dq| ds.
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4. A numerical example

Let us consider the following mixed SDE driven by both Brownian motion and fractional Brownian
motion,

Xl=X0+f,ude fo-XdW szdBf’, te[0,T], (4.1)

Here u, o are nonzero constants. Mixed SDE (4.1) has the explicit solution (see [30])
o2
X,:Xoexp{( —7)t+0'W,+B,H}, t€[0,T]. (4.2)

For any N € N, consider the isometric partition of [0,7T]: {0 =ty <t; < --- <ty =T, 6 = %}.
Define 7, := max{#; : t; < t}. The Euler approximation of (4.1) is expressed as

X) = X, +pX) (1 — 1) + o Xy (W, — W,) + X) (B = BI), 1 € (1, i ]. (4.3)

or, in the integral form,

! ! !
X =X+ f a(t,, X2)ds + f b(t,, X2)dW, + f c(t, X2)dBY, 1€[0,T].
0 0 0

In the M-file EulerMSDE.m we set the initial state of the random number generator to be 100 with
the command randn(’state’,100) and consider (4.1) withu = 2,0 = 1,7 = 1 and X, = 1. We compute
a discretized Brownian motion and fBm path over [0, 7] with N = 2% and evaluate the solutions in
(4.2) as Xtrue0_T, and then apply Euler approximation using a stepsize 6. The Euler solution is stored
in the 1-by-(N + 1) array XEO_T. The sup || - ||,-error and the constant C(w) in Remark 3.3 computed
as XEerrsup and Comega respectively in the M-file EulerMSDE.m. In order to compare different
convergent cases, we set H = 0.6,0.7,0.75,0.85,a = 0.75 — 0.5H and p = vy = min{0.5,2H — 1}/2.
We get the following numerical results:

From the Table 1, we can see the larger H, the smaller XEerrsup and Comega, i.e. the larger H,
the smaller error and dominated constant C(w). From the Figure 1, we can see the larger H, the better
the convergence, moreover, the two graphs of H = 0.75 and H = 0.85 are very similar. These are
consistent with our conclusion because the rate of convergence is less than min{0.5,2H — 1}. (see
Theorem 3.1)

Table 1. Values of H, «, v, XEerrsup and C,,.

H 0.6 0.7 0.75 0.85
alpha 045 0.4 0.375 0.325
gamma 0.1 0.2 0.25 0.25

XEerrsup 14.5509 5.8126  4.07903 2.36231
Comega 25.3346 17.6205 16.3161 9.44923
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H=0.6 H=0.7
Xtrue0 T

Xtrue0 T

H=0.75 H=0.85
Xtrue0 T

Xtrue0 T

Figure 1. Pathwise of solutions with different values of H.

5. Conclusions

The following time-dependent mixed stochastic differential equation driven by both Brownian
motion and fBm is considered in this paper.

t ! t
X, =Xy + f a(s, X;)ds + f b(s, X,)dW, + f c(s, X, )dB", te€l0,T].
0 0 0

We obtain that the Euler approximation has the convergent rate O(52"#=) with the norm ||-||,, (see
Definition 2.1) in probability. We also show that it has the rate of convergence 6'**=2) in the sense of
Besov type norm on some subsets of ) with probability close to one. Meanwhile, on the complement
of above subsets, the error of Euler (3.1) can be small enough correspondingly in the same norm (see
Corollary 3.3). We mention that it is also true for the result of Corollary 3.3 in the sense of mean-square
norm if 1 A (4H — 2) is replaced by % AQRH-1).

On one hand, as we known, the mean-square rate of convergence for "pure’ SDE driven by single
Brownian motion is O( %) (see [20]) and by single fractional Brownian motion is 06?71 (see [18]).
For the mixed SDEs, we can only obtain the worst convergent rate of those of ’pure’ SDEs because
their estimates for “pure’ equations are sharp (see [20, 28]).

On the other hand, Mishura and Shevchenko [16] researched the Euler approximation of the
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following one-dimensional mixed SDE:s,
! t !
X, :Xo+f a(s,Xs)ds+f b(s,Xs)dWs+f c(X,)dBY, te[0,T]. 5.1
0 0 0

They derived the mean-square rate of convergence O(52"2#-D). In [15] the authors also find that a
faster rate of convergence 0(6%) to (5.1) can be obtained if one uses the modified Euler method. In a
forthcoming paper we will study, whether the rate of convergence of (modified) Euler approximation
to (1.1) is O(62"2#-D) with P-a.s. (O(5?) with mean-square norm).

6. Appendix

In this section, we prove the bounded estimation (3.5) and recall two results from [17].

Lemma 6.1. Given o,5(1 > 8 > «a),T and any t € [0,T],n € N, consider the isometric partition of
[0,T]:{0=ty<ty <---<t,=T}. Let 6 = = and 7, ;= max{t; : t; < t}(see Euler equation (3.1), then

we have v
— Ty
dgdr < C,
f f (r—g)ﬂ(r g

here the constant C is independent of n and 9.

Proof. From the primary inequality (a + b+ c)’ < Co(d® + PP +P), a > 0,b > 0,c > 0, > 0, we have
Ty T Tr -7,y +(r— + —
fo _(@orgf ————dqdr < Cof f -t +r-af+( Tq)ﬁdqdr

(1—q)* (r—q)**! (t—q)(r — q)a+1
= Co(Q1 + Or + 03).

f f (z—qw(r—q)a“ ar

(r_Tr)B ) 1
< d dr
fo( o - e
! (}" - Tr)ﬂ_a

o @—-n"
6,8—(17*1—(1
< -

For 8 > a, we have

dr

1-«a

<C.

Exchanging the order of integration, we have

! T, T, !
T (r=qf f o 1
Q:ff dqdr = (r—qyf " dr dg < C,.
S A T e T Y N A t—g ="

! i (q - Tq)ﬁ
= dagd
0s fo fo (= qrr—g 1%
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f " ( (r— q)‘“‘ldr) Ak Tq)ﬁdq
0

T4+8 (t - (])a
< l f (g - Tq)ﬁ dq
aJo (Tg+6-q)t—qg)*
n—2
1 i 1 Tk+1 —t Ing 1
<- R —— f qu + dq
a = t—t)* Jyy (1 — @) a1 (ty, —q@)*(t — @)

+1—a 6ﬁ tn; 1
— ——dg
(t = tr1)® ot (ny — @

65—(1 =2 flk+2 1
—  ds+ 6ﬂ+1—2(1/
a Z ferl (t = tre1)

k=0

o f ! ds + 5ﬁ”‘2")
@ Jo (t—s)”

P,
TR )

IA
QIm
=~ 3
M

IA

IA
QRI—= RI— LI~

<

< Cs.
Let C = Cy(Cy + C;, + C3), we complete the proof. O

Lemma 6.2. (The modification of Lemma 7.1 of [17]) Let ¢ : [0,T] X R — R be a function such that
c(t, x) satisfies the assumption (Hc), then, for all xi, x,, X3, x4 € R, we have

lc(ty, x1) — c(t2, X2) — c(t1, x3) + c(t2, X4)|
<Clxi—x—x3+x4) + C - Ixy = x3] - (12 = 11 + [x1 = xa] + |3 = x4l).

The following lemma is a generalization of Gronwall lemma.

Lemma 6.3. (Lemma 7.6 of [17]) Fix0 <0 < 1,a,b > 0. Let x : [0,00) — [0, 00) be a continuous
function such that for each t

!
x <a+ bt f (t — 5) s %x,ds.
0

Then
x; < ad, e
= 0 ’
where I' is the Gamma function, ¢, and d, are positive constants depending only on 6 (as an example,
one can set ¢, = 2(I(1 — )19 and d, = ‘%;e)ez).
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