Special Issues

Effect of rigid boundary on Rayleigh wave in an incompressible heterogeneous medium over an incompressible half-space

  • Received: 24 September 2019 Accepted: 20 January 2020 Published: 25 February 2020
  • MSC : 86A15

  • In the present problem, an attempt has been made to study the propagation of Rayleigh waves in an incompressible medium with polynomial variation (m) of rigidity over an incompressible half-space under rigid layer. Instead of using the Whittaker function, the expansion formula proposed by Newlands has been used for a better result in shallow depth. The velocity equation has been calculated and the results are shown in figures. The study in the assumed medium, the authors obtained that the phase velocity of Rayleigh waves increases except for the polynomial variation of rigidity m = 1, 2 and 3.

    Citation: Anup Kumar Mukhopadhyay, Asit Kumar Gupta, Santimoy Kundu, Pulak Patra. Effect of rigid boundary on Rayleigh wave in an incompressible heterogeneous medium over an incompressible half-space[J]. AIMS Mathematics, 2020, 5(3): 2088-2099. doi: 10.3934/math.2020138

    Related Papers:

  • In the present problem, an attempt has been made to study the propagation of Rayleigh waves in an incompressible medium with polynomial variation (m) of rigidity over an incompressible half-space under rigid layer. Instead of using the Whittaker function, the expansion formula proposed by Newlands has been used for a better result in shallow depth. The velocity equation has been calculated and the results are shown in figures. The study in the assumed medium, the authors obtained that the phase velocity of Rayleigh waves increases except for the polynomial variation of rigidity m = 1, 2 and 3.


    加载中


    [1] W. M. Ewing, W. S. Jardetzky, F. Press, Elastic Waves in Layered Media, Mc. Gr.-Hill, New York, 1957.
    [2] J. D. Achenbach, Wave Propagation in Elastic Solids, North Hol. Pub. Com., New York, 1973.
    [3] J. Miklowitz, Theory of Elastic Waves and Wave Guides, North Hol. Pub. Com., New York, 1978.
    [4] W. L. Pilant, Elastic waves in the earth, Els. Sci. Pub. Comp., New York, 1979.
    [5] Y. Z. Wang, F. M. Li, W. H. Huang, et al., The propagation and localization of Rayleigh waves in disordered piezoelectric phononic-crystals, J. Mech. Phy. Solid, 56 (2008), 15781590.
    [6] K. Liu, Y. Liu, Propagation characteristic of Rayleigh waves in orthotropic fluid-saturated porous media, J. Sound Vib., 271 (2004), 1-13. doi: 10.1016/S0022-460X(03)00235-9
    [7] A. M. Abd-Alla, S. M. Abo-Dahab, H. A. Hammad, et al., On generalized magneto-thermo elastic Rayleigh waves in a granular medium under influence of gravity field and initial stress, J. Vib. Con., 17 (2011), 115-128. doi: 10.1177/1077546309341145
    [8] J. T. Wilson, Surface waves in a heterogeneous medium, Bul. Seis. Soc. Am., 32 (1942), 297-305.
    [9] M. A. Biot, Mechanics of Incremental Deformation, Wiley, New York, 1965.
    [10] M. Newlands, Rayleigh waves in at layer heterogeneous medium, Mon. Notices Royal Astro. Soc. Geophy. Suppl., 6 (1950), 109-126. doi: 10.1111/j.1365-246X.1950.tb02985.x
    [11] R. Stoneley, The transmission of Rayleigh waves in a heterogeneous medium, Mon. Notices Royal Astro. Soc. Geophy. Suppl., 3 (1934), 222-228. doi: 10.1111/j.1365-246X.1934.tb01735.x
    [12] S. Dutta, Rayleigh waves in a two layer heterogeneous medium, Bul. Seis. Soc. Am., 53 (1963), 517.
    [13] A. M. Abd-Alla, Propagation of Rayleigh waves in an elastic half-space of orthotropic material, App. Math. Comp., 99 (1999), 61-69. doi: 10.1016/S0096-3003(97)10170-9
    [14] A. M. Abd-Alla, A. Khan, S. M. Abo-Dahab, Rotational effect on Rayleigh, Love and Stoneley waves in fiber-reinforced anisotropic general viscoelastic media of higher and fraction orders with voids, J. Mech. Sci. Technol., 29 (2015), 4289-4297. doi: 10.1007/s12206-015-0926-z
    [15] J. N. Sharma, P. Mohinder, Rayleigh-Lamb waves in magneto thermo-elastic homogeneous isotropic plate, Int. J. Eng. Sci., 42 (2004), 137-155. doi: 10.1016/S0020-7225(03)00282-9
    [16] M. Mitra, Rayleigh waves in multi-layered medium with applications to microseisms, Geo. J. Int., 7 (1957), 324-331. doi: 10.1111/j.1365-246X.1957.tb02887.x
    [17] E. T. Whittaker, G. N. Watson, A Course in Modern Analysis, Cambridge University Press, Cambridge, UK, 1990.
    [18] Z. Hu, J. V. Belzen, D. V. D. Wall, et al., Windows of opportunity for salt marsh vegetation establishment on bare tidal flats: The importance of temporal and spatial variability in hydrodynamic forcing, J. Geophys. Res., Biogeosci., 120 (2015), 1450-1469. doi: 10.1002/2014JG002870
    [19] Z. Hu, Z. B. Wang, T. J. Zitman, et al., Predicting long-term and short-term tidal flat morphodynamics using a dynamic equilibrium theory, J. Geo. Res., Earth Sur., 120 (2015), 1803-1823. doi: 10.1002/2015JF003486
    [20] Z. Hu, P. Yao, D. V. D. Wall, et al., Patterns and Drivers of daily bed level dynamics on two tidal flats with contrasting waves exposure, Sci. Rep., 7, 2017.
    [21] H. Chen, Y. Ni, Y. Li, et al., Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods, Adv. Water Resour., 122 (2018), 217-227. doi: 10.1016/j.advwatres.2018.10.008
    [22] T. Suzuki, Z. Hu, K. Kumada, et al., Non-hydrostatic modelling of drag, inertia and porous effects in wave propagation over dense vegetation fields, Coastal Eng., 149 (2019), 49-64. doi: 10.1016/j.coastaleng.2019.03.011
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3400) PDF downloads(332) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog