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Abstract: In the present problem, an attempt has been made to study the propagation of Rayleigh
waves in an incompressible medium with polynomial variation (m) of rigidity over an incompressible
half-space under rigid layer. Instead of using the Whittaker function, the expansion formula proposed
by Newlands has been used for a better result in shallow depth. The velocity equation has been
calculated and the results are shown in figures. The study in the assumed medium, the authors obtained
that the phase velocity of Rayleigh waves increases except for the polynomial variation of rigidity m=1,
2 and 3.
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1. Introduction

The study of the propagation of Rayleigh waves in the layered non-homogeneous earth is central
interested in theoretical seismologists. As a result of intensive studies of many authors, a good
amount of information about the propagation of Rayleigh waves with different variations in density
and rigidity is available. A book of Ewing, Jardetzky and Press (1957) [1], Achenbach (1973) [2],
Miklowitz (1978) [3], Pilant (1979) [4] and many other different books contains a vast amount of
information on the propagation of Rayleigh waves. After these books were published, many
publications on these topics are available in different journals. Wang et al. (2008) [5] studied the
propagation and localization of Rayleigh waves in disordered piezoelectric phononic-crystals. Liu
and Liu (2004) [6] studied the propagation characteristics of Rayleigh waves in orthotropic
fluid-saturated porous media. Abd-All et al. (2011) [7] studied the propagation of Rayleigh waves in
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generalized magneto-thermo-elastic orthotropic material under initial stress and gravity field.
Rayleigh wave propagation in layered heterogeneous media has been studied in detail by Wilson
(1942) [8], Biot (1965) [9], Newlands (1950) [10] and Stonely (1934) [11]. Dutta (1963) [12]
illustrated Rayleigh wave propagation in a two-layer anisotropic media whereas propagation of
Rayleigh wave in an elastic half-space of orthotropic and viscoelastic material has been discussed by
Abd-Alla (1999) [13] and Abd-Alla (2015) [14]. Sharma and Mohinder (2004) [15] studied
Rayleigh-lamb waves in the magneto-thermo-elastic homogeneous isotropic plate. Mitra (1957) [16]
studied Rayleigh waves in multi-layered media. In some of the studies reported their solution is
expressed in Whittaker function (1990) [17] and the computation is involved with the asymptotic
expansion of the function. The effects of tidal waves are studied by different authors such as Z. Hu et
al. (2015,2015,2017) [18–20] , Chen et al. (2018) [21] and Suzuki et al. (2019) [22]. The expansion
is valid on larger depth but does not give good result in shallow depth. Newlands (1950) [10] found a
new approach to the problem and obtained a solution that may be used in shallow depth. Following
Newlands, in this paper attempt has been made to study the effect of rigid boundary on the
propagation of Rayleigh wave in an incompressible heterogeneous medium over an incompressible
half-space. The non-homogeneity has been taken in variation in the rigidity.

In this paper, the author dealt with the effect of the rigid boundary of propagation on Rayleigh
waves in an incompressible heterogeneous layer over an initially stressed incompressible half-space.
The heterogeneity has been taken in rigidity as and density as and in the upper layer. The equation of
the upper layer has been solved by the Newlands method (1950).

2. Formulation of the problem

Suppose an incompressible medium of thickness H under rigid layer with shear modulus rigidity
µ = µ0(1 + bz)m and density ρ = ρ0 lying over another incompressible half-space with constant shear
modulus µ2 and density ρ2, being taken as the vertical distance from the origin at the interface of an
incompressible medium and incompressible half-space whereas the rigid surface exits at z = −H. The
downward direction of z has been taken as positive in Figure 1.
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Figure 1. Geometry of the problem.

Consider the wave propagating along x-axis with wave velocity C and wave-length
2π
k

. Let u and w
are the displacement component in the x- and z- direction respectively at the point (x,y,z) at any time.
Suppose that apart from a factor eik(x−Ct) and u ,w are functions of z only.

3. Equation of motion and solution

3.1. Equation of motion and solution for upper layer

The equation of motion in two diminutions for an elastic solid are

∂

∂x

{
λ∆ + 2µ

∂u
∂x

}
+
∂

∂z

{
µ

(
∂u
∂z

+
∂w
∂x

)}
= ρ

∂2u
∂t2

∂

∂z

{
λ∆ + 2µ

∂w
∂z

}
+
∂

∂x

{
µ

(
∂u
∂z

+
∂w
∂x

)}
= ρ

∂2w
∂t2

(1)

where, since the medium is incompressible,

M=

(
∂u
∂x

+
∂w
∂z

)
= 0

O2ϕ = 0
(2)

Substituting,

u =
∂φ

∂x
+
∂ψ

∂z

w =
∂φ

∂z
−
∂ψ

∂x

(3)

where φ and ψ being scalar and vector potentials, by µ = µ0(1 + bz)m,incompressibility condition
∆ = 0, together with limλ→∞,∆→0λ∆ → P1 ,whereP1 the hydrostatic stress, Eq (1) takes the form as
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Again, substituting,

∂

∂x
[−P1 + 2µ0bm(1 + bz)m−1w + ρk2C2φ] +

∂

∂z
[µ∇2ψ + ρk2C2ψ] = 0

∂

∂z
[−P1 + 2µ0bm(1 + bz)m−1w + ρk2C2φ] −

∂

∂x
[µ∇2ψ + ρk2C2ψ] = 0

(4)

which are satisfied by

P1 = 2µ0bm(1 + bz)m−1w + ρk2C2φ

µ∇2ψ = ρk2C2ψ
(5)

From Eq (5)

∂2ψ

∂z2 + k2
[

ρc2

µ0(1 + bz)m − 1
]
ψ(z) = 0

∂2φ

∂z2 − k2Φ = 0
(6)

Taking Z = (1 + bz) in Eq (6), we have

d2ψ

dZ2 −

(
k
b

)2 (
1 −

ρC2

µ0Zm

)
ψ = 0 (7)

In power of
(

k
b

)2

, the series solution of Eq (7), may be written as

ψ(Z) = ψ0(Z) +

(
k
b

)2

ψ1(Z) + ...... +

(
k
b

)2n

ψn(Z) + ... (8)

Hence,ψ′′0 (Z) +

(
k
b

)2

ψ′′1 (Z) + ......

 − (
k
b

)2 [
1 −

ρC2

µ0Zm

] ψ0(Z) +

(
k
b

)2

ψ1(Z) + .....

 = 0 (9)

Thus,if

ψ′′0 (Z) = 0

ψ′′1 (Z) =

[
1 −

ρC2

µ0Zm

]
ψ0

.

.

ψ′′n+1(Z) =

[
1 −

ρC2

µ0Zm

]
ψn(Z)

(10)

Since the series [Eq (9)] converges and involves with two constants, then it is a valid solution. We
have,

ψ′n(1) = ψn(1) = 0 (11)
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ψ′n(Z) =
A2

b
, ψ0(Z) = A1 +

A2

b
(Z − 1) = A1 + A2z (12)

Due to linearity of Eq (7), we have

ψ = A1

ψ(1)
0 (Z) +

(
k
b

)2

ψ(1)
1 (Z) + ...

 + A2

ψ(2)
0 (Z) +

(
k
b

)2

ψ(2)
1 (Z) + ...

 = A1ψ
1 + A2ψ

2 (13)

Where,

ψ(1)
0 = 1

ψ(2)
0 =

Z − 1
b

= z
(14)

Now,

ψ1 =

∫ Z

1
dξ

∫ ξ

1

(
1 −

ρC2

µ0tm

)
ψ0(t)dt =

∫ Z

1
dξ

∫ ξ

1

(
1 −

ρC2

µ0tm

) [
A1 +

A2

b
(t − 1)

]
dt

= A1

{
(Z − 1)2

2
−
ρC2

µ0
[ZlogZ − (Z − 1)]

}
+ A2

{
(Z − 1)3

2
−
ρC2

µ0

[
Z2

2
− Z +

1
2
− (ZlogZ − (Z − 1))

]}
(15)

And the solution of ψ(1) and ψ(2) are readily obtained as follows:
Case I : When m=1

ψ1 = A1

{
(Z − 1)2

2
−
ρC2

µ0
[ZlogZ − (Z − 1)]

}
+

A2

b

{
(Z − 1)3

2
−
ρC2

µ0

[
1
2
−

Z2

2
+ ZlogZ

]}
(16)

The solutions are

ψ(1)
Z = 1 +

(
k
b

)2 [
(Z − 1)2

2
−
ρC2

µ0
{ZlogZ − (Z − 1)}

]
ψ2

Z = (Z − 1) +

(
k
b

)2 [
(Z − 1)3

6
−
ρC2

µ0

{
1
2
−

Z2

2
+ ZlogZ

}] (17)

Case II: when m=2

ψ1 = A1

[
(Z − 1)2

2
−
ρC2

µ0
{logZ − (Z − 1)}

]
+

A2

b

[
(Z − 1)3

6
−
ρC2

µ0
{(Z + 1)logZ + 2(1 − Z)}

]
(18)

The solution are

ψ(1)
Z = 1 +

(
k
b

)2 [
(Z − 1)2

2
−
ρC2

µ0
{logZ − (Z − 1)}

]
ψ(2)

Z = (Z − 1) +

(
k
b

)2 [
(Z − 1)3

6
−
ρC2

µ0
{(Z + 1)logZ + 2(1 − Z)}

] (19)

AIMS Mathematics Volume 5, Issue 3, 2088–2099.



2093

Case III: when m=3

ψ1 = A1

[
(Z − 1)2

2
+
ρC2

µ0

{
1 −

Z
2
−

1
2Z

}]
+

A2

b

[
(Z − 1)3

6
+
ρC2

µ0

{
logZ +

1
2Z
−

Z
2

}]
(20)

The solution are

ψ(1)
Z = 1 +

(
k
b

)2 [
(Z − 1)2

2
+
ρC2

µ0

{
1 −

Z
2
−

1
2Z

}]
ψ(2)

Z = (Z − 1) +

(
k
b

)2 [
(Z − 1)3

6
+
ρC2

µ0

{
logZ +

1
2Z
−

Z
2

}] (21)

Case IV: when any value of m except 1,2 and 3

ψ1 = A1

[
(Z − 1)2

2
+
ρC2

µ0

1
(1 − m)

{
(Z − 1) +

1
(2 − m)

(
1 −

1
Zm−2

)}]
+

A2

b

[
(Z − 1)3

6
+
ρC2

µ0

1
(2 − m)

{
(Z − 1) +

1
(3 − m)

(
1 −

1
Zm−3

)}
+
ρC2

µ0

1
(1 − m)

{
(1 − Z) +

1
(2 − m)

(
1

Zm−2 − 1
)}]

(22)

The solutions are

ψ(1)
Z = 1 +

(
k
b

)2 [
(Z − 1)2

2
+
ρC2

µ0

1
(1 − m)

{
(Z − 1) +

1
(2 − m)

(
1 −

1
Zm−2

)}]
(23)

ψ(2)
Z = (Z − 1) +

(
k
b

)2[ (Z − 1)3

6
+
ρC2

µ0

1
(2 − m)

{
(Z − 1) +

1
(3 − m)

(
1 −

1
Z(m−3)

)}
+
ρC2

µ0

1
(1 − m)

{
(1 − Z) +

1
(2 − m)

(
1

Z(m−2) − 1
)}] (24)

Hence the final solutions are

φ = [Q1cosh(kz) + Q2sinh(kz)]cosk(x −Ct)
ψ = [A1ψ

(1)(z) + A2ψ
(2)(z)]sink(x −Ct)

(25)

Hence the displacement and stress component along x- and z- direction in the incompressible layer
sandwiched between the rigid surface and a half-space are given by

u =

[
−k(Q1cosh(kz) + Q2sinh(kz)) +

(
A1

∂

∂z
ψ(1)(Z) + A2

∂

∂z
ψ(2)(Z)

)]
sink(x −Ct)

w =
[
k(Q1sinh(kz) + Q2cosh(kz)) + k

(
A1ψ

(1)(Z) + A2ψ
(2)(Z)

)]
cosk(x −Ct)

σxz = 2k
[
−µ

∂φ

∂z
+ k

(
µ −

εµ0

2

)
ψ

]
σzz = 2

[
k2φ

(
µ −

εµ0

2

)
ψ − µ0bm(1 + bz)m−1∂φ

∂z
+ µ0bm(1 + bz)m−1kψ − µk

∂ψ

∂z

]
(26)

where,ε =
C2ρ

µ0
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3.2. Solution for the homogeneous half-space

The values of φ and ψ as

φ = Re−kzcosk(x −Ct)
ψ = S e−knzsink(x −Ct)

(27)

Where, n =

(
1 −

ρ2C2

µ2

)
Hence the displacement and stress component along x- and z- direction in the incompressible layer

sandwiched between the rigid surface and a half space are given by

u =
[
−kRe−kz − S kne−knz

]
sink(x −Ct)

w =
[
−kRe−kz − S ke−knz

]
cosk(x −Ct)

σxz = 2k
[
−µ

∂φ

∂z
+ k

(
µ −

εδµ0

2

)
ψ

]
σzz = 2

[
k2φ

(
µ −

εδµ0

2

)
ψ − µk

∂ψ

∂z

] (28)

where, δ =
ρ2

ρ0

3.3. Boundary conditions and dispersion relation

From the Figure 1 we can use the following boundary conditions:
(i) At z = 0 , the displacements are continuous
u1 = u2

w1 = w2

(ii) At the interface z=0 , the continuity of the stress requires that
(σxz)1 = (σxz)2

(σzz)1 = (σzz)2

(iii) At z=-H , the displacement vanishes
u1 = 0
w1 = 0

By using the boundary condition (i) and (ii), we have

−kQ1 + A2b = −kR − knS

Q2 − A1 = −R − S

−Q2 +

(
1 −

ε

2

)
A1 =

µ2R
µ0

+

(
µ2

µ0
−
εδ

2

)
S

kQ1

(
1 −

ε

2

)
− bmQ2 + bmA1 − bA2 = kR

(
µ2

µ0
−
εδ

2

)
+
µ2

µ0
knS

(29)
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By using the boundary condition (iii), we have

(Q1cosh(kz) + Q2sinh(kz)) −
1
k

(
A1

∂

∂z
ψ(1)(Z) + A2

∂

∂z
ψ(2)(Z)

)
= 0

k(Q1sinh(kz) + Q2cosh(kz)) + k
(
A1ψ

(1)(Z) + A2ψ
(2)(Z)

)
= 0

(30)

From the Eqs (29) and (30), we have the relation between Q1,Q2, A1 and A2

1
2
εQ1 = D1R + E1S

1
2
εQ2 = D2R + E2S

1
2
εA1 = D3R + E3S

1
2
εA2 = D4R + E4S

(31)

where

D1 =
1
k

[
k −

bmD2

ε/2
+

bmD3

ε/2
− k

(
µ2

µ0
−
εδ

2

)]
D2 = D3 −

ε

2
D3 = 1 −

µ2

µ0

D4 =
1
b

(
kD1 −

εk
2

)
(32)

E1 =
1
k

[
kn −

bmD2

ε/2
+

bmD3

ε/2
−
µ2

µ0
kn

]
E2 = E3 −

ε

2

E3 = 1 −
µ2

µ0
+
εδ

2

E4 =
1
b

(
kE1 −

εkn
2

)
(33)

M1 = (coshkz)z=−H

M2 = (sinhkz)z=−H

M3 = −
1
k

[
∂

∂z
ψ(1)(Z)

]
z=−H

M4 = −
1
k

[
∂

∂z
ψ(2)(Z)

]
z=−H

(34)
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N1 = (sinhkz)z=−H

N2 = (coshkz)z=−H

N3 = (ψ(1)(Z))z=−H

N4 = (ψ(2)(Z))z=−H

(35)

The consistency of Eq (30) for non-trivial solution of R and S implies that,

Σ4
i=1DiMiΣ

4
j=1E jN j = Σ4

k=1DkNkΣ
4
l=1ElMl (36)

Equation (36) is the required equation for the dispersion of Rayleigh surface wave in an
incompressible heterogeneous layer lying over an incompressible homogeneous elastic half-space
under rigid layer.

4. Numerical results and discussion of the result

On the above study the authors are used to parametric relation are taken as bH = 0.5,
ρ2

ρ0
= 1.2,

µ2

µ0
=

1.8., respectively as given in Table 1. For equation, the dispersion curve of Rayleigh waves has been
calculated in Eq (35) for different values of m starting from 0 to 5 and the authors observed that the

nature of phase velocity for different values of
2π
kH

in an incompressible heterogeneous under rigid
layer. The results are presented in Figures 2 and 3. In Figure 2 for different values of m=1,2 and
3 respectively being shows that in the assumed medium under a rigid layer, Rayleigh wave velocity

decreases with increases of
2π
kH

.We also observed that in case of linear, quadratic and cubic variation of
rigidity in an incompressible heterogeneous under rigid layer as the phase velocity of Rayleigh waves
increases as rigidity increases. On the other hand in case in case of the phase velocity of Rayleigh

waves increases as
2π
kH

increases under rigid layer. In case the homogeneous incompressible elastic
medium under rigid layer the phase velocity of Rayleigh waves more compares to m=0, 0.5, 4 and 5 .

Table 1. Parameters of Figure 2 and 3.

Figure no. Curve no. m

1 1

2 2 2

3 3

1 0

2 0.5

3 3 4

4 5
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Figure 2. Dispersion curve for Rayleigh wave in an incompressible heterogeneous layer over
incompressible homogeneous under rigid layer for m=1, 2 and 3.

Figure 3. Dispersion curve for Rayleigh wave in an incompressible heterogeneous layer over
an incompressible homogeneous under rigid layer for m=0, 0.5, 4 and 5.

5. Conclusions

From the above study, the authors reveals that some of the important facts regarding the propagation
of Rayleigh waves in assumed medium and half-space under rigid layer as
(i) The phase velocity of Rayleigh waves in an assumed medium under rigid layer decreases in the
linear, quadratic and cubic variation of rigidity only.
(ii)The phase velocity of Rayleigh waves increases for different values of m=0, 0.5, 4 and 5.
(iii)The phase velocity of Rayleigh waves in an assumed medium under a rigid layer decreases only
m=1,2 and 3 otherwise increases.
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