Research article

Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions

  • Received: 05 November 2019 Accepted: 09 January 2020 Published: 21 January 2020
  • MSC : 26D07, 26D15

  • In this paper, some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions are established. Also, new inequalities involving multiplicative integrals are obtained for product and quotient of preinvex and multiplicatively preinvex functions.

    Citation: Serap Özcan. Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions[J]. AIMS Mathematics, 2020, 5(2): 1505-1518. doi: 10.3934/math.2020103

    Related Papers:

  • In this paper, some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions are established. Also, new inequalities involving multiplicative integrals are obtained for product and quotient of preinvex and multiplicatively preinvex functions.


    加载中


    [1] M. A. Ali, M. Abbas, Z. Zhang, et al. On Integral Inequalities for Product and Quotient of Two Multiplicatively Convex Functions, Asian Research Journal of Mathematics, 12 (2019), 1-11.
    [2] T. Antczak, Mean Value in Invexity and Analysis, Nonlinear Analysis, 60 (2005), 1471-1484.
    [3] A. Barani, A. G. Ghazanfari, S. S. Dragomir, Hermite-Hadamard Inequality Through Prequasiinvex Functions, RGMIA Res. Rep. Collect., 14 (2011).
    [4] A. Barani, A. G. Ghazanfari, S. S. Dragomir, Hermite-Hadamard Inequality for Functions Whose Derivatives Absolute Values are Preinvex, J. Inequal. Appl., 2012 (2012), 247.
    [5] A. E. Bashirov, E. M. Kurpınar, A. Özyapıcı, Multiplicative Calculus and Applications, J. Math. Anal. Appl., 337 (2008), 36-48.
    [6] A. Ben-Israel and B. Mond, What is Invexity, J. Aust. Math. Soc., Ser. B, 28 (1986), 1-9. doi: 10.1017/S0334270000005142
    [7] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, Mathematics Preprint Archive, 2003 (2003), 463-817.
    [8] S. S. Dragomir, Some New Inequalities of Hermite-Hadamard Type for GA-Convex Functions, Ann. Univ. Mariae Curie-Sklodowska, sec. A, 72 (2018), 55-68.
    [9] M. A. Hanson, On Sufficiency of the Kuhn-Tucker Conditions, J. Math. Anal. Appl., 1 (1981), 545-550.
    [10] İ. İşcan Hermite-Hadamard Type Inequalities for Harmonically Convex Functions, Hacettepe J. Math. Stat., 43 (2014), 935-942.
    [11] İ. İşcan, M. Kadakal and H. Kadakal, On Two Times Differentiable Preinvex and Prequasiinvex Functions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68 (2019), 950-963.
    [12] H. Kadakal, n-Times Differentiable Preinvex and Prequasiinvex Functions, Sigma J. Eng. Nat. Sci., 37 (2019), 529-540.
    [13] M. Kunt and İ. İşcan, Hermite-Hadamard-Fejer Type Inequalities for p-Convex Functions, Arab J. Math. Sci., 23 (2017), 215-230.
    [14] M. A. Latif and M. Shoaib, Hermite-Hadamard Type Integral Inequalities for Differentiable mPreinvex and (α, m)-Preinvex Functions, J. Egyptian Math. Soc., 23 (2015), 236-241. doi: 10.1016/j.joems.2014.06.006
    [15] S. R. Mohan and S. K. Neogy, On Invex Sets and Preinvex Functions, J. Math. Anal. Appl., 189 (1995), 901-908. doi: 10.1006/jmaa.1995.1057
    [16] M. A. Noor, Hermite-Hadamard Integral Inequalities for Log-Preinvex Functions, J. Math. Anal. Approx. Theory, 2 (2007), 126-131.
    [17] M. A. Noor, On Hadamard Integral Inequalities Involving Two Log-Preinvex Functions, J. Ineq. in Pure Appl. Math., 8 (2007), 1-14.
    [18] M. A. Noor, Variational Like Inequalities, Optimization, 30 (1994), 323-330. doi: 10.1080/02331939408843995
    [19] S. Özcan, Some Integral Inequalities for Harmonically (α, s)-Convex Functions, J. Func. Spaces, 2019 (2019), 1-8.
    [20] S. Özcan and İ. İşcan, Some New Hermite-Hadamard Type Inequalities for s-Convex Functions and Their Applications, J. Ineq. Appl., 2019 (2019), 201.
    [21] J. E. Pecaric, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
    [22] R. Pini, Invexity and Generalized Convexity, Optimization, 22 (1991), 513-523. doi: 10.1080/02331939108843693
    [23] E. Set, İ. İşcan, M. Z. Sarıkaya, et al. On New Inequalities of Hermite-Hadamard-Fejer Type for Convex Functions via Fractional Integrals, Appl. Math. Comput., 259 (2015), 875-881.
    [24] M. Tunç, Hermite-Hadamard Type Inequalities via m and (α, m)-Convexity, Demonstratio Math., 46 (2013), 475-483.
    [25] T. Weir and B. Mond, Preinvex Functions in Multiple Objective Optimization, J. Math. Anal. Appl., 136 (1998), 29-38.
    [26] B. Y. Xi, F. Qi and T. Y. Zhang, Some Inequalities of Hermite-Hadamard Type for m-HarmonicArithmetically Convex Functions, ScienceAsia, 41 (2015), 357-361. doi: 10.2306/scienceasia1513-1874.2015.41.357
    [27] X. M. Yang and D. Li, On Properties of Preinvex Functions, J. Math. Anal. Appl., 256 (2001), 229-241. doi: 10.1006/jmaa.2000.7310
    [28] X. M. Yang, X. Q. Yang and K. L. Teo, Generalized Invexity and Generalized Invariant Monotonicity, J. Optim. Theory. Appl., 117 (2003), 607-625. doi: 10.1023/A:1023953823177
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3449) PDF downloads(438) Cited by(22)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog