Research article

Solitary wave solutions of few nonlinear evolution equations

  • Received: 08 October 2019 Accepted: 05 January 2020 Published: 17 January 2020
  • The solitary wave solutions of nonlinear evolution equations, in the recent years is being attractive in the field of physical sciences and engineering. In this article, we have investigated further general solitary wave solutions of three important nonlinear evolution equations, via the simplified MCH equation, the Pochhammer-Chree equation and the Schrödinger-Hirota equation by using modified simple equation method. These equations play an important role in the study of nonlinear sciences. The obtained solutions are expressed in terms of exponential and trigonometric functions including kink, singular kink and periodic soliton solutions. It is shown that the obtained solutions are more general and fresh and can be helpful to analyze the intricate physical incident in mathematical physics.

    Citation: A. K. M. Kazi Sazzad Hossain, M. Ali Akbar. Solitary wave solutions of few nonlinear evolution equations[J]. AIMS Mathematics, 2020, 5(2): 1199-1215. doi: 10.3934/math.2020083

    Related Papers:

  • The solitary wave solutions of nonlinear evolution equations, in the recent years is being attractive in the field of physical sciences and engineering. In this article, we have investigated further general solitary wave solutions of three important nonlinear evolution equations, via the simplified MCH equation, the Pochhammer-Chree equation and the Schrödinger-Hirota equation by using modified simple equation method. These equations play an important role in the study of nonlinear sciences. The obtained solutions are expressed in terms of exponential and trigonometric functions including kink, singular kink and periodic soliton solutions. It is shown that the obtained solutions are more general and fresh and can be helpful to analyze the intricate physical incident in mathematical physics.


    加载中


    [1] L. Yang, J. Liu, K. Yang, Exact solutions of nonlinear PDE nonlinear transformation and reduction of nonlinear PDE to a quadrature, Phys. Lett. A, 278 (2001), 267-270. doi: 10.1016/S0375-9601(00)00778-7
    [2] R. Hirota, Exact envelope soliton solutions of a nonlinear wave equation, J. Math. Phys., 14 (1973), 805-810. doi: 10.1063/1.1666399
    [3] R. Hirota, J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A, 85 (1981), 407-408. doi: 10.1016/0375-9601(81)90423-0
    [4] N. Taghizadeh, M. Mirzazadeh, The first integral method to some complex nonlinear partial differential equations, J. Comput. Appl. Math., 235 (2011), 4871-4877. doi: 10.1016/j.cam.2011.02.021
    [5] A. M. Wazwaz, A sine-cosine method for handlenonlinear wave equations, Math. Comput. Model., 40 (2004), 499-508. doi: 10.1016/j.mcm.2003.12.010
    [6] A. J. M. Jawad, S. Kumar, A. Biswas, Solition solutions of a few nonlinear wave equations in engineering sciences, Sci. Iran. D, 21 (2014), 861-869.
    [7] S. Liu, Z. Fu, S. D. Liu, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear equations, Phys. Lett. A, 289 (2001), 69-74. doi: 10.1016/S0375-9601(01)00580-1
    [8] V. S. Kumar, H. Rezazadeh, M. Eslami, et al. Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity, Int. J. Appl. Comput. Math., 5 (2019), 127.
    [9] A. C. Cevikel, A. Beker, M. Akar, et al. A procedure to construct exact solution of nonlinear evolution equations, Pramana J. Phys., 79 (2012), 337-344. doi: 10.1007/s12043-012-0326-1
    [10] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic, Boston, MA, 1994.
    [11] Y. He, S. Li, Y. Long, Exact solutions of the Klein-Gordon equation by modified Exp-function method, Int. Math. Forum, 7 (2012), 175-182.
    [12] Z. Yan, H. Zhang, New explicit solitary wave solutions and periodic wave solutions for Whitham Broer-Kaup equation in shallow water, Phys. Lett. A, 285 (2001), 355-362. doi: 10.1016/S0375-9601(01)00376-0
    [13] M. A. Akbar, N. H. M. Ali, Exp-function method for Duffing equation and new solutions of (2+1) dimensional dispersive long wave equations, Prog. Appl. Math., 1 (2011), 30-42.
    [14] A. Irshad, M. Usman, S. T. Mohyud-Din, Exp-function method for simplified modified Camassa-Holm equation, Int. J. Modern Math. Sci., 4 (2012), 146-155.
    [15] J. Li, L. Zhang, Bifurcation of traveling wave solution of the generalized Pochhammer-Chree (PC) equation, Chaos Soliton. Fract., 14 (2002), 581-593. doi: 10.1016/S0960-0779(01)00248-X
    [16] M. N. Alam, M. A. Akbar, R. Islam, Traveling wave solutions of the simplified MCH equation via Exp(-φ(ξ))-expansion method, J. Adv. Math. Comput. Sci., 5 (2015), 595-605.
    [17] R. Islam, M. N. Alam, A. K. M. K. S. Hossain, et al. Traveling wave solutions of nonlinear evolution equations via Exp(−Φ(η))-expansion method, Global J. Sci. Front. Res., 13 (2013), 63-71.
    [18] A. R. Seadawy, Ion acoustic solitary wave solutions of two dimensional nonlinear Kadomtsev-Petviashvili-burgers equation in quantum plasma, Meth. Method. Appl. Sci., 40 (2017), 1598-1607. doi: 10.1002/mma.4081
    [19] A. R. Seadawy, Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in plasma, Comput. Math. Appl., 67 (2014), 172-180. doi: 10.1016/j.camwa.2013.11.001
    [20] A. R. Seadawy, Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in magnetized plasma, Comput. Math. Appl., 71 (2016), 201-212. doi: 10.1016/j.camwa.2015.11.006
    [21] M. N. Alam, M. A. Akbar, H. O. Roshid, Study of nonlinear evolution equations to construct traveling wave solutions via the new approach of generalized (G′/G)-expansion method, Math. Stat., 1 (2013), 102-112.
    [22] J. G. Liu, M. S. Osman, W. H. Zhu, et al. Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers, Appl. Phys. B, 125 (2019), 175.
    [23] A. Ali, A. R. Seadawy, D. Lu, New solitary wave solutions of some nonlinear models and their applications, Adv. Differ. Equ., 2018 (2018), 232.
    [24] J. Zhang, F. Jiang, X. Zhao, An improved (G'/G)-expansion method for solving nonlinear evolution equations, Int. J. Comput. Math., 87 (2010), 1716-1725. doi: 10.1080/00207160802450166
    [25] M. A. Akbar, N. H. M. Ali, E. M. E. Zayed, Generalized and improved (g′/g)-expansion method combined with Jacobi elliptic equation, Commun. Theor. Phys., 61 (2014), 669-676. doi: 10.1088/0253-6102/61/6/02
    [26] A. K. M. K. S. Hossain, M. A. Akbar, M. A. K. Azad, The closed form solutions of simplified MCH equation and third extended fifth order nonlinear equation, Propul. Power Res., 8 (2019), 163-172. doi: 10.1016/j.jppr.2019.01.006
    [27] A. K. M. K. S. Hossain, M. A. Akbar, Closed form solutions of two nonlinear equations via enhanced (G'/G)-expansion method, Cogent Math., 4 (2017), 1355958.
    [28] A. K. M. K. S. Hossain, M. A. Akbar, Closed form solutions of new fifth order nonlinear equations and new generalized fifth order nonlinear equations via the enhanced (G'/G)-expansion method, Biostat. Biometrics Open Acc. J., 4 (2017), 555631.
    [29] M. A. Helal, A. R. Seadawy, Variational method for the derivative nonlinear Schrödinger equation with computational applications, Phys. Scripta, 80 (2009), 035004.
    [30] A. R. Seadawy, New exact solutions for the KdV equation with higher order nonlinearity by using the variational method, Comput. Math. Appl., 62 (2011), 3741-3755. doi: 10.1016/j.camwa.2011.09.023
    [31] G. Zou, B. Wang, Solitary wave solutions for nonlinear fractional Schrödinger equation in Gaussian nonlocal media, Appl. Math. Lett., 88 (2019) 50-57.
    [32] E. M. E. Zayed, A. G. Al-Nowehy, Exact traveling wave solutions for nonlinear PDEs in mathematical physics using the generalized Kudryashov method, Serb. J. Electr. Eng., 13 (2016), 203-227. doi: 10.2298/SJEE1602203M
    [33] J. Hu, Explicit solutions to three nonlinear physical models, Phys. Lett. A, 287 (2001), 81-89. doi: 10.1016/S0375-9601(01)00461-3
    [34] A. Biswas, A. J. M. Jawad, W. N. Manrakhan, et al. Optical solitons and complexitons of the Schrödinger-Hirota equation, Opt. Laser Technol., 44 (2012), 2265-2269. doi: 10.1016/j.optlastec.2012.02.028
    [35] M. S. Osman, M. Inc, L. Jian-Guo, et al. Different wave structures and stability analysis for the generalized (2+1)-dimensional Camassa-Holm-Kadomtsev-Petviashvili equation, Phys. Scripta, Accepted.
    [36] D. Lu, K. U. Tariq, M. S. Osman, et al. New analytical wave structures for the (3+1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications, Results Phys., 14 (2019), 102491.
    [37] A. M. Wazwaz, New compact and noncompact solutions for two variants of a modified Camassa-Holm equation, Appl. Math. Comput., 163 (2005), 1165-1179.
    [38] A. Biswas, A. J. M. Jawad, W. N. Manrakhan, et al. Optical solitons and complexitons of the Schrödinger-Hirota equation, Opt. Laser Technol., 44 (2012), 2265-2269. doi: 10.1016/j.optlastec.2012.02.028
    [39] M. A. Akbar, N. H. M. Ali, An ansatz for solving nonlinear partial differential equations in mathematical physics, SpringerPlus, 5 (2016), 24.
    [40] A. J. M. Jawad, M. D. Petkovic, A. Biswas, Modified simple equation method for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 869-877.
    [41] A. K. M. K. S. Hossain, M. A. Akbar, A. M. Wazwaz, Closed form solutions of complex wave equations via modified simple equation method, Cogent Phys., 4 (2017), 1312751.
    [42] A. K. M. K. S. Hossain, M. A. Akbar, M. A. K. Azad, Closed form wave solutions of two nonlinear evolution equations, Cogent Phys., 4 (2017), 1396948.
    [43] A. K. M. K. S. Hossain, M. A. Akbar, Traveling wave solutions of nonlinear evolution equations via Modified simple equation method, Int. J. Appl. Math. Theor. Phys., 3 (2017), 20-25. doi: 10.11648/j.ijamtp.20170302.11
    [44] A. R. Seadawy, Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a stratified shear flow: Part I, Comput. Math. Appl., 70 (2015), 345-352. doi: 10.1016/j.camwa.2015.04.015
    [45] A. R. Seadawy, Stability analysis solutions for nonlinear three-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in a magnetized electron-positron plasma, Physica A, 455 (2016), 44-51. doi: 10.1016/j.physa.2016.02.061
    [46] A. R. Seadawy, M. Arshad, D. Lu, Stability analysis of new exact traveling-wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems, Eur. Phys. J. Plus, 132 (2017), 162.
    [47] D. Lu, M. S. Osman, M. M. A. Khater, et al. Analytical and numerical simulations for the kinetics of phase separation in iron (Fe-Cr-X (X=Mo, Cu)) based on ternary alloys, Physica A, 537 (2019), 122634.
    [48] M. S. Osman, D. Lu, M. M. A. Khater, et al. Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model, Optik, 192 (2019), 162927.
    [49] B. Ghanbari, M. S. Osman, D. Baleanu, Generalized exponential rational function method for extended Zakharov-Kuzetsov equation with conformable derivative, Mod. Phys. Lett. A, 34 (2019), 1950155.
    [50] M. S. Osman, A. M. Wazwaz, A general bilinear form to generate different wave structures of solitons for a (3+1)‐dimensional Boiti‐Leon‐Manna‐Pempinelli equation, Math. Method. Appl. Sci., 42 (2019), 6277-6283. doi: 10.1002/mma.5721
    [51] M. S. Osman, One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation, Nonlinear Dynam., 96 (2019), 1491-1496. doi: 10.1007/s11071-019-04866-1
    [52] M. S. Osman, H. I. A. Gawad, Multi-wave solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients, Eur. Phys. J. Plus, 130 (2015), 215.
    [53] M. S. Osman, H. I. A. Gawad, On shallow water waves in a medium with time-dependent dispersion and nonlinearity coefficients, J. Adv. Res., 6 (2015), 593-599. doi: 10.1016/j.jare.2014.02.004
    [54] M. S. Osman, B. Ghanbari, J. A. T. Machado, New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity, Eur. Phys. J. Plus, 134 (2019), 20.
    [55] R. Camassa, D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661
    [56] L. Tian, X. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation, Chaos Soliton. Fract., 19 (2004), 621-637. doi: 10.1016/S0960-0779(03)00192-9
    [57] W. Zhang, W. Ma, Explicit solitary wave solution of the generalized Pochhammer-Chree (PC) equation, Appl. Math. Mech., 20 (1999), 666-674. doi: 10.1007/BF02464941
    [58] P. A. Clarkson, R. J. Leveque, R. Saxton, Solitary wave interaction in elastic rods, Stud. Appl. Math., 75 (1986), 95-121. doi: 10.1002/sapm198675295
    [59] P. G. Drazin, R. S. Johnson, Solitons: An Introduction, Cambridge University Press, Cambridge, 1989.
    [60] L. Zhibin, Exact solitary wave solutions of non-linear evolution equations, In: Mathematics Mechanization and Applications, Academic Press, 2000, 389-408.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4016) PDF downloads(541) Cited by(8)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog