Citation: A. K. M. Kazi Sazzad Hossain, M. Ali Akbar. Solitary wave solutions of few nonlinear evolution equations[J]. AIMS Mathematics, 2020, 5(2): 1199-1215. doi: 10.3934/math.2020083
[1] | L. Yang, J. Liu, K. Yang, Exact solutions of nonlinear PDE nonlinear transformation and reduction of nonlinear PDE to a quadrature, Phys. Lett. A, 278 (2001), 267-270. doi: 10.1016/S0375-9601(00)00778-7 |
[2] | R. Hirota, Exact envelope soliton solutions of a nonlinear wave equation, J. Math. Phys., 14 (1973), 805-810. doi: 10.1063/1.1666399 |
[3] | R. Hirota, J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A, 85 (1981), 407-408. doi: 10.1016/0375-9601(81)90423-0 |
[4] | N. Taghizadeh, M. Mirzazadeh, The first integral method to some complex nonlinear partial differential equations, J. Comput. Appl. Math., 235 (2011), 4871-4877. doi: 10.1016/j.cam.2011.02.021 |
[5] | A. M. Wazwaz, A sine-cosine method for handlenonlinear wave equations, Math. Comput. Model., 40 (2004), 499-508. doi: 10.1016/j.mcm.2003.12.010 |
[6] | A. J. M. Jawad, S. Kumar, A. Biswas, Solition solutions of a few nonlinear wave equations in engineering sciences, Sci. Iran. D, 21 (2014), 861-869. |
[7] | S. Liu, Z. Fu, S. D. Liu, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear equations, Phys. Lett. A, 289 (2001), 69-74. doi: 10.1016/S0375-9601(01)00580-1 |
[8] | V. S. Kumar, H. Rezazadeh, M. Eslami, et al. Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity, Int. J. Appl. Comput. Math., 5 (2019), 127. |
[9] | A. C. Cevikel, A. Beker, M. Akar, et al. A procedure to construct exact solution of nonlinear evolution equations, Pramana J. Phys., 79 (2012), 337-344. doi: 10.1007/s12043-012-0326-1 |
[10] | G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic, Boston, MA, 1994. |
[11] | Y. He, S. Li, Y. Long, Exact solutions of the Klein-Gordon equation by modified Exp-function method, Int. Math. Forum, 7 (2012), 175-182. |
[12] | Z. Yan, H. Zhang, New explicit solitary wave solutions and periodic wave solutions for Whitham Broer-Kaup equation in shallow water, Phys. Lett. A, 285 (2001), 355-362. doi: 10.1016/S0375-9601(01)00376-0 |
[13] | M. A. Akbar, N. H. M. Ali, Exp-function method for Duffing equation and new solutions of (2+1) dimensional dispersive long wave equations, Prog. Appl. Math., 1 (2011), 30-42. |
[14] | A. Irshad, M. Usman, S. T. Mohyud-Din, Exp-function method for simplified modified Camassa-Holm equation, Int. J. Modern Math. Sci., 4 (2012), 146-155. |
[15] | J. Li, L. Zhang, Bifurcation of traveling wave solution of the generalized Pochhammer-Chree (PC) equation, Chaos Soliton. Fract., 14 (2002), 581-593. doi: 10.1016/S0960-0779(01)00248-X |
[16] | M. N. Alam, M. A. Akbar, R. Islam, Traveling wave solutions of the simplified MCH equation via Exp(-φ(ξ))-expansion method, J. Adv. Math. Comput. Sci., 5 (2015), 595-605. |
[17] | R. Islam, M. N. Alam, A. K. M. K. S. Hossain, et al. Traveling wave solutions of nonlinear evolution equations via Exp(−Φ(η))-expansion method, Global J. Sci. Front. Res., 13 (2013), 63-71. |
[18] | A. R. Seadawy, Ion acoustic solitary wave solutions of two dimensional nonlinear Kadomtsev-Petviashvili-burgers equation in quantum plasma, Meth. Method. Appl. Sci., 40 (2017), 1598-1607. doi: 10.1002/mma.4081 |
[19] | A. R. Seadawy, Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in plasma, Comput. Math. Appl., 67 (2014), 172-180. doi: 10.1016/j.camwa.2013.11.001 |
[20] | A. R. Seadawy, Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in magnetized plasma, Comput. Math. Appl., 71 (2016), 201-212. doi: 10.1016/j.camwa.2015.11.006 |
[21] | M. N. Alam, M. A. Akbar, H. O. Roshid, Study of nonlinear evolution equations to construct traveling wave solutions via the new approach of generalized (G′/G)-expansion method, Math. Stat., 1 (2013), 102-112. |
[22] | J. G. Liu, M. S. Osman, W. H. Zhu, et al. Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers, Appl. Phys. B, 125 (2019), 175. |
[23] | A. Ali, A. R. Seadawy, D. Lu, New solitary wave solutions of some nonlinear models and their applications, Adv. Differ. Equ., 2018 (2018), 232. |
[24] | J. Zhang, F. Jiang, X. Zhao, An improved (G'/G)-expansion method for solving nonlinear evolution equations, Int. J. Comput. Math., 87 (2010), 1716-1725. doi: 10.1080/00207160802450166 |
[25] | M. A. Akbar, N. H. M. Ali, E. M. E. Zayed, Generalized and improved (g′/g)-expansion method combined with Jacobi elliptic equation, Commun. Theor. Phys., 61 (2014), 669-676. doi: 10.1088/0253-6102/61/6/02 |
[26] | A. K. M. K. S. Hossain, M. A. Akbar, M. A. K. Azad, The closed form solutions of simplified MCH equation and third extended fifth order nonlinear equation, Propul. Power Res., 8 (2019), 163-172. doi: 10.1016/j.jppr.2019.01.006 |
[27] | A. K. M. K. S. Hossain, M. A. Akbar, Closed form solutions of two nonlinear equations via enhanced (G'/G)-expansion method, Cogent Math., 4 (2017), 1355958. |
[28] | A. K. M. K. S. Hossain, M. A. Akbar, Closed form solutions of new fifth order nonlinear equations and new generalized fifth order nonlinear equations via the enhanced (G'/G)-expansion method, Biostat. Biometrics Open Acc. J., 4 (2017), 555631. |
[29] | M. A. Helal, A. R. Seadawy, Variational method for the derivative nonlinear Schrödinger equation with computational applications, Phys. Scripta, 80 (2009), 035004. |
[30] | A. R. Seadawy, New exact solutions for the KdV equation with higher order nonlinearity by using the variational method, Comput. Math. Appl., 62 (2011), 3741-3755. doi: 10.1016/j.camwa.2011.09.023 |
[31] | G. Zou, B. Wang, Solitary wave solutions for nonlinear fractional Schrödinger equation in Gaussian nonlocal media, Appl. Math. Lett., 88 (2019) 50-57. |
[32] | E. M. E. Zayed, A. G. Al-Nowehy, Exact traveling wave solutions for nonlinear PDEs in mathematical physics using the generalized Kudryashov method, Serb. J. Electr. Eng., 13 (2016), 203-227. doi: 10.2298/SJEE1602203M |
[33] | J. Hu, Explicit solutions to three nonlinear physical models, Phys. Lett. A, 287 (2001), 81-89. doi: 10.1016/S0375-9601(01)00461-3 |
[34] | A. Biswas, A. J. M. Jawad, W. N. Manrakhan, et al. Optical solitons and complexitons of the Schrödinger-Hirota equation, Opt. Laser Technol., 44 (2012), 2265-2269. doi: 10.1016/j.optlastec.2012.02.028 |
[35] | M. S. Osman, M. Inc, L. Jian-Guo, et al. Different wave structures and stability analysis for the generalized (2+1)-dimensional Camassa-Holm-Kadomtsev-Petviashvili equation, Phys. Scripta, Accepted. |
[36] | D. Lu, K. U. Tariq, M. S. Osman, et al. New analytical wave structures for the (3+1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications, Results Phys., 14 (2019), 102491. |
[37] | A. M. Wazwaz, New compact and noncompact solutions for two variants of a modified Camassa-Holm equation, Appl. Math. Comput., 163 (2005), 1165-1179. |
[38] | A. Biswas, A. J. M. Jawad, W. N. Manrakhan, et al. Optical solitons and complexitons of the Schrödinger-Hirota equation, Opt. Laser Technol., 44 (2012), 2265-2269. doi: 10.1016/j.optlastec.2012.02.028 |
[39] | M. A. Akbar, N. H. M. Ali, An ansatz for solving nonlinear partial differential equations in mathematical physics, SpringerPlus, 5 (2016), 24. |
[40] | A. J. M. Jawad, M. D. Petkovic, A. Biswas, Modified simple equation method for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 869-877. |
[41] | A. K. M. K. S. Hossain, M. A. Akbar, A. M. Wazwaz, Closed form solutions of complex wave equations via modified simple equation method, Cogent Phys., 4 (2017), 1312751. |
[42] | A. K. M. K. S. Hossain, M. A. Akbar, M. A. K. Azad, Closed form wave solutions of two nonlinear evolution equations, Cogent Phys., 4 (2017), 1396948. |
[43] | A. K. M. K. S. Hossain, M. A. Akbar, Traveling wave solutions of nonlinear evolution equations via Modified simple equation method, Int. J. Appl. Math. Theor. Phys., 3 (2017), 20-25. doi: 10.11648/j.ijamtp.20170302.11 |
[44] | A. R. Seadawy, Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a stratified shear flow: Part I, Comput. Math. Appl., 70 (2015), 345-352. doi: 10.1016/j.camwa.2015.04.015 |
[45] | A. R. Seadawy, Stability analysis solutions for nonlinear three-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in a magnetized electron-positron plasma, Physica A, 455 (2016), 44-51. doi: 10.1016/j.physa.2016.02.061 |
[46] | A. R. Seadawy, M. Arshad, D. Lu, Stability analysis of new exact traveling-wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems, Eur. Phys. J. Plus, 132 (2017), 162. |
[47] | D. Lu, M. S. Osman, M. M. A. Khater, et al. Analytical and numerical simulations for the kinetics of phase separation in iron (Fe-Cr-X (X=Mo, Cu)) based on ternary alloys, Physica A, 537 (2019), 122634. |
[48] | M. S. Osman, D. Lu, M. M. A. Khater, et al. Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model, Optik, 192 (2019), 162927. |
[49] | B. Ghanbari, M. S. Osman, D. Baleanu, Generalized exponential rational function method for extended Zakharov-Kuzetsov equation with conformable derivative, Mod. Phys. Lett. A, 34 (2019), 1950155. |
[50] | M. S. Osman, A. M. Wazwaz, A general bilinear form to generate different wave structures of solitons for a (3+1)‐dimensional Boiti‐Leon‐Manna‐Pempinelli equation, Math. Method. Appl. Sci., 42 (2019), 6277-6283. doi: 10.1002/mma.5721 |
[51] | M. S. Osman, One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation, Nonlinear Dynam., 96 (2019), 1491-1496. doi: 10.1007/s11071-019-04866-1 |
[52] | M. S. Osman, H. I. A. Gawad, Multi-wave solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients, Eur. Phys. J. Plus, 130 (2015), 215. |
[53] | M. S. Osman, H. I. A. Gawad, On shallow water waves in a medium with time-dependent dispersion and nonlinearity coefficients, J. Adv. Res., 6 (2015), 593-599. doi: 10.1016/j.jare.2014.02.004 |
[54] | M. S. Osman, B. Ghanbari, J. A. T. Machado, New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity, Eur. Phys. J. Plus, 134 (2019), 20. |
[55] | R. Camassa, D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661 |
[56] | L. Tian, X. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation, Chaos Soliton. Fract., 19 (2004), 621-637. doi: 10.1016/S0960-0779(03)00192-9 |
[57] | W. Zhang, W. Ma, Explicit solitary wave solution of the generalized Pochhammer-Chree (PC) equation, Appl. Math. Mech., 20 (1999), 666-674. doi: 10.1007/BF02464941 |
[58] | P. A. Clarkson, R. J. Leveque, R. Saxton, Solitary wave interaction in elastic rods, Stud. Appl. Math., 75 (1986), 95-121. doi: 10.1002/sapm198675295 |
[59] | P. G. Drazin, R. S. Johnson, Solitons: An Introduction, Cambridge University Press, Cambridge, 1989. |
[60] | L. Zhibin, Exact solitary wave solutions of non-linear evolution equations, In: Mathematics Mechanization and Applications, Academic Press, 2000, 389-408. |